target-arm: Add 32/64-bit register sync
[qemu/qmp-unstable.git] / arch_init.c
blob89c8fa46bb6087b953600a54c89ee9b9f36891c6
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
56 #ifdef DEBUG_ARCH_INIT
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #ifdef TARGET_SPARC
65 int graphic_width = 1024;
66 int graphic_height = 768;
67 int graphic_depth = 8;
68 #else
69 int graphic_width = 800;
70 int graphic_height = 600;
71 int graphic_depth = 32;
72 #endif
75 #if defined(TARGET_ALPHA)
76 #define QEMU_ARCH QEMU_ARCH_ALPHA
77 #elif defined(TARGET_ARM)
78 #define QEMU_ARCH QEMU_ARCH_ARM
79 #elif defined(TARGET_CRIS)
80 #define QEMU_ARCH QEMU_ARCH_CRIS
81 #elif defined(TARGET_I386)
82 #define QEMU_ARCH QEMU_ARCH_I386
83 #elif defined(TARGET_M68K)
84 #define QEMU_ARCH QEMU_ARCH_M68K
85 #elif defined(TARGET_LM32)
86 #define QEMU_ARCH QEMU_ARCH_LM32
87 #elif defined(TARGET_MICROBLAZE)
88 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
89 #elif defined(TARGET_MIPS)
90 #define QEMU_ARCH QEMU_ARCH_MIPS
91 #elif defined(TARGET_MOXIE)
92 #define QEMU_ARCH QEMU_ARCH_MOXIE
93 #elif defined(TARGET_OPENRISC)
94 #define QEMU_ARCH QEMU_ARCH_OPENRISC
95 #elif defined(TARGET_PPC)
96 #define QEMU_ARCH QEMU_ARCH_PPC
97 #elif defined(TARGET_S390X)
98 #define QEMU_ARCH QEMU_ARCH_S390X
99 #elif defined(TARGET_SH4)
100 #define QEMU_ARCH QEMU_ARCH_SH4
101 #elif defined(TARGET_SPARC)
102 #define QEMU_ARCH QEMU_ARCH_SPARC
103 #elif defined(TARGET_XTENSA)
104 #define QEMU_ARCH QEMU_ARCH_XTENSA
105 #elif defined(TARGET_UNICORE32)
106 #define QEMU_ARCH QEMU_ARCH_UNICORE32
107 #elif defined(TARGET_TRICORE)
108 #define QEMU_ARCH QEMU_ARCH_TRICORE
109 #endif
111 const uint32_t arch_type = QEMU_ARCH;
112 static bool mig_throttle_on;
113 static int dirty_rate_high_cnt;
114 static void check_guest_throttling(void);
116 static uint64_t bitmap_sync_count;
118 /***********************************************************/
119 /* ram save/restore */
121 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
122 #define RAM_SAVE_FLAG_COMPRESS 0x02
123 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
124 #define RAM_SAVE_FLAG_PAGE 0x08
125 #define RAM_SAVE_FLAG_EOS 0x10
126 #define RAM_SAVE_FLAG_CONTINUE 0x20
127 #define RAM_SAVE_FLAG_XBZRLE 0x40
128 /* 0x80 is reserved in migration.h start with 0x100 next */
130 static struct defconfig_file {
131 const char *filename;
132 /* Indicates it is an user config file (disabled by -no-user-config) */
133 bool userconfig;
134 } default_config_files[] = {
135 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
136 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
137 { NULL }, /* end of list */
140 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
142 int qemu_read_default_config_files(bool userconfig)
144 int ret;
145 struct defconfig_file *f;
147 for (f = default_config_files; f->filename; f++) {
148 if (!userconfig && f->userconfig) {
149 continue;
151 ret = qemu_read_config_file(f->filename);
152 if (ret < 0 && ret != -ENOENT) {
153 return ret;
157 return 0;
160 static inline bool is_zero_range(uint8_t *p, uint64_t size)
162 return buffer_find_nonzero_offset(p, size) == size;
165 /* struct contains XBZRLE cache and a static page
166 used by the compression */
167 static struct {
168 /* buffer used for XBZRLE encoding */
169 uint8_t *encoded_buf;
170 /* buffer for storing page content */
171 uint8_t *current_buf;
172 /* Cache for XBZRLE, Protected by lock. */
173 PageCache *cache;
174 QemuMutex lock;
175 } XBZRLE;
177 /* buffer used for XBZRLE decoding */
178 static uint8_t *xbzrle_decoded_buf;
180 static void XBZRLE_cache_lock(void)
182 if (migrate_use_xbzrle())
183 qemu_mutex_lock(&XBZRLE.lock);
186 static void XBZRLE_cache_unlock(void)
188 if (migrate_use_xbzrle())
189 qemu_mutex_unlock(&XBZRLE.lock);
193 * called from qmp_migrate_set_cache_size in main thread, possibly while
194 * a migration is in progress.
195 * A running migration maybe using the cache and might finish during this
196 * call, hence changes to the cache are protected by XBZRLE.lock().
198 int64_t xbzrle_cache_resize(int64_t new_size)
200 PageCache *new_cache;
201 int64_t ret;
203 if (new_size < TARGET_PAGE_SIZE) {
204 return -1;
207 XBZRLE_cache_lock();
209 if (XBZRLE.cache != NULL) {
210 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
211 goto out_new_size;
213 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
214 TARGET_PAGE_SIZE);
215 if (!new_cache) {
216 error_report("Error creating cache");
217 ret = -1;
218 goto out;
221 cache_fini(XBZRLE.cache);
222 XBZRLE.cache = new_cache;
225 out_new_size:
226 ret = pow2floor(new_size);
227 out:
228 XBZRLE_cache_unlock();
229 return ret;
232 /* accounting for migration statistics */
233 typedef struct AccountingInfo {
234 uint64_t dup_pages;
235 uint64_t skipped_pages;
236 uint64_t norm_pages;
237 uint64_t iterations;
238 uint64_t xbzrle_bytes;
239 uint64_t xbzrle_pages;
240 uint64_t xbzrle_cache_miss;
241 double xbzrle_cache_miss_rate;
242 uint64_t xbzrle_overflows;
243 } AccountingInfo;
245 static AccountingInfo acct_info;
247 static void acct_clear(void)
249 memset(&acct_info, 0, sizeof(acct_info));
252 uint64_t dup_mig_bytes_transferred(void)
254 return acct_info.dup_pages * TARGET_PAGE_SIZE;
257 uint64_t dup_mig_pages_transferred(void)
259 return acct_info.dup_pages;
262 uint64_t skipped_mig_bytes_transferred(void)
264 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
267 uint64_t skipped_mig_pages_transferred(void)
269 return acct_info.skipped_pages;
272 uint64_t norm_mig_bytes_transferred(void)
274 return acct_info.norm_pages * TARGET_PAGE_SIZE;
277 uint64_t norm_mig_pages_transferred(void)
279 return acct_info.norm_pages;
282 uint64_t xbzrle_mig_bytes_transferred(void)
284 return acct_info.xbzrle_bytes;
287 uint64_t xbzrle_mig_pages_transferred(void)
289 return acct_info.xbzrle_pages;
292 uint64_t xbzrle_mig_pages_cache_miss(void)
294 return acct_info.xbzrle_cache_miss;
297 double xbzrle_mig_cache_miss_rate(void)
299 return acct_info.xbzrle_cache_miss_rate;
302 uint64_t xbzrle_mig_pages_overflow(void)
304 return acct_info.xbzrle_overflows;
307 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
308 int cont, int flag)
310 size_t size;
312 qemu_put_be64(f, offset | cont | flag);
313 size = 8;
315 if (!cont) {
316 qemu_put_byte(f, strlen(block->idstr));
317 qemu_put_buffer(f, (uint8_t *)block->idstr,
318 strlen(block->idstr));
319 size += 1 + strlen(block->idstr);
321 return size;
324 /* This is the last block that we have visited serching for dirty pages
326 static RAMBlock *last_seen_block;
327 /* This is the last block from where we have sent data */
328 static RAMBlock *last_sent_block;
329 static ram_addr_t last_offset;
330 static unsigned long *migration_bitmap;
331 static uint64_t migration_dirty_pages;
332 static uint32_t last_version;
333 static bool ram_bulk_stage;
335 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
336 * The important thing is that a stale (not-yet-0'd) page be replaced
337 * by the new data.
338 * As a bonus, if the page wasn't in the cache it gets added so that
339 * when a small write is made into the 0'd page it gets XBZRLE sent
341 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
343 if (ram_bulk_stage || !migrate_use_xbzrle()) {
344 return;
347 /* We don't care if this fails to allocate a new cache page
348 * as long as it updated an old one */
349 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
350 bitmap_sync_count);
353 #define ENCODING_FLAG_XBZRLE 0x1
355 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
356 ram_addr_t current_addr, RAMBlock *block,
357 ram_addr_t offset, int cont, bool last_stage)
359 int encoded_len = 0, bytes_sent = -1;
360 uint8_t *prev_cached_page;
362 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
363 acct_info.xbzrle_cache_miss++;
364 if (!last_stage) {
365 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
366 bitmap_sync_count) == -1) {
367 return -1;
368 } else {
369 /* update *current_data when the page has been
370 inserted into cache */
371 *current_data = get_cached_data(XBZRLE.cache, current_addr);
374 return -1;
377 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
379 /* save current buffer into memory */
380 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
382 /* XBZRLE encoding (if there is no overflow) */
383 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
384 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
385 TARGET_PAGE_SIZE);
386 if (encoded_len == 0) {
387 DPRINTF("Skipping unmodified page\n");
388 return 0;
389 } else if (encoded_len == -1) {
390 DPRINTF("Overflow\n");
391 acct_info.xbzrle_overflows++;
392 /* update data in the cache */
393 if (!last_stage) {
394 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
395 *current_data = prev_cached_page;
397 return -1;
400 /* we need to update the data in the cache, in order to get the same data */
401 if (!last_stage) {
402 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
405 /* Send XBZRLE based compressed page */
406 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
407 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
408 qemu_put_be16(f, encoded_len);
409 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
410 bytes_sent += encoded_len + 1 + 2;
411 acct_info.xbzrle_pages++;
412 acct_info.xbzrle_bytes += bytes_sent;
414 return bytes_sent;
417 static inline
418 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
419 ram_addr_t start)
421 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
422 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
423 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
424 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
426 unsigned long next;
428 if (ram_bulk_stage && nr > base) {
429 next = nr + 1;
430 } else {
431 next = find_next_bit(migration_bitmap, size, nr);
434 if (next < size) {
435 clear_bit(next, migration_bitmap);
436 migration_dirty_pages--;
438 return (next - base) << TARGET_PAGE_BITS;
441 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
443 bool ret;
444 int nr = addr >> TARGET_PAGE_BITS;
446 ret = test_and_set_bit(nr, migration_bitmap);
448 if (!ret) {
449 migration_dirty_pages++;
451 return ret;
454 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
456 ram_addr_t addr;
457 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
459 /* start address is aligned at the start of a word? */
460 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
461 int k;
462 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
463 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
465 for (k = page; k < page + nr; k++) {
466 if (src[k]) {
467 unsigned long new_dirty;
468 new_dirty = ~migration_bitmap[k];
469 migration_bitmap[k] |= src[k];
470 new_dirty &= src[k];
471 migration_dirty_pages += ctpopl(new_dirty);
472 src[k] = 0;
475 } else {
476 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
477 if (cpu_physical_memory_get_dirty(start + addr,
478 TARGET_PAGE_SIZE,
479 DIRTY_MEMORY_MIGRATION)) {
480 cpu_physical_memory_reset_dirty(start + addr,
481 TARGET_PAGE_SIZE,
482 DIRTY_MEMORY_MIGRATION);
483 migration_bitmap_set_dirty(start + addr);
490 /* Needs iothread lock! */
491 /* Fix me: there are too many global variables used in migration process. */
492 static int64_t start_time;
493 static int64_t bytes_xfer_prev;
494 static int64_t num_dirty_pages_period;
496 static void migration_bitmap_sync_init(void)
498 start_time = 0;
499 bytes_xfer_prev = 0;
500 num_dirty_pages_period = 0;
503 static void migration_bitmap_sync(void)
505 RAMBlock *block;
506 uint64_t num_dirty_pages_init = migration_dirty_pages;
507 MigrationState *s = migrate_get_current();
508 int64_t end_time;
509 int64_t bytes_xfer_now;
510 static uint64_t xbzrle_cache_miss_prev;
511 static uint64_t iterations_prev;
513 bitmap_sync_count++;
515 if (!bytes_xfer_prev) {
516 bytes_xfer_prev = ram_bytes_transferred();
519 if (!start_time) {
520 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
523 trace_migration_bitmap_sync_start();
524 address_space_sync_dirty_bitmap(&address_space_memory);
526 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
527 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
529 trace_migration_bitmap_sync_end(migration_dirty_pages
530 - num_dirty_pages_init);
531 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
532 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
534 /* more than 1 second = 1000 millisecons */
535 if (end_time > start_time + 1000) {
536 if (migrate_auto_converge()) {
537 /* The following detection logic can be refined later. For now:
538 Check to see if the dirtied bytes is 50% more than the approx.
539 amount of bytes that just got transferred since the last time we
540 were in this routine. If that happens >N times (for now N==4)
541 we turn on the throttle down logic */
542 bytes_xfer_now = ram_bytes_transferred();
543 if (s->dirty_pages_rate &&
544 (num_dirty_pages_period * TARGET_PAGE_SIZE >
545 (bytes_xfer_now - bytes_xfer_prev)/2) &&
546 (dirty_rate_high_cnt++ > 4)) {
547 trace_migration_throttle();
548 mig_throttle_on = true;
549 dirty_rate_high_cnt = 0;
551 bytes_xfer_prev = bytes_xfer_now;
552 } else {
553 mig_throttle_on = false;
555 if (migrate_use_xbzrle()) {
556 if (iterations_prev != 0) {
557 acct_info.xbzrle_cache_miss_rate =
558 (double)(acct_info.xbzrle_cache_miss -
559 xbzrle_cache_miss_prev) /
560 (acct_info.iterations - iterations_prev);
562 iterations_prev = acct_info.iterations;
563 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
565 s->dirty_pages_rate = num_dirty_pages_period * 1000
566 / (end_time - start_time);
567 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
568 start_time = end_time;
569 num_dirty_pages_period = 0;
570 s->dirty_sync_count = bitmap_sync_count;
575 * ram_save_page: Send the given page to the stream
577 * Returns: Number of bytes written.
579 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
580 bool last_stage)
582 int bytes_sent;
583 int cont;
584 ram_addr_t current_addr;
585 MemoryRegion *mr = block->mr;
586 uint8_t *p;
587 int ret;
588 bool send_async = true;
590 cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
592 p = memory_region_get_ram_ptr(mr) + offset;
594 /* In doubt sent page as normal */
595 bytes_sent = -1;
596 ret = ram_control_save_page(f, block->offset,
597 offset, TARGET_PAGE_SIZE, &bytes_sent);
599 XBZRLE_cache_lock();
601 current_addr = block->offset + offset;
602 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
603 if (ret != RAM_SAVE_CONTROL_DELAYED) {
604 if (bytes_sent > 0) {
605 acct_info.norm_pages++;
606 } else if (bytes_sent == 0) {
607 acct_info.dup_pages++;
610 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
611 acct_info.dup_pages++;
612 bytes_sent = save_block_hdr(f, block, offset, cont,
613 RAM_SAVE_FLAG_COMPRESS);
614 qemu_put_byte(f, 0);
615 bytes_sent++;
616 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
617 * page would be stale
619 xbzrle_cache_zero_page(current_addr);
620 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
621 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
622 offset, cont, last_stage);
623 if (!last_stage) {
624 /* Can't send this cached data async, since the cache page
625 * might get updated before it gets to the wire
627 send_async = false;
631 /* XBZRLE overflow or normal page */
632 if (bytes_sent == -1) {
633 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
634 if (send_async) {
635 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
636 } else {
637 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
639 bytes_sent += TARGET_PAGE_SIZE;
640 acct_info.norm_pages++;
643 XBZRLE_cache_unlock();
645 return bytes_sent;
649 * ram_find_and_save_block: Finds a page to send and sends it to f
651 * Returns: The number of bytes written.
652 * 0 means no dirty pages
655 static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
657 RAMBlock *block = last_seen_block;
658 ram_addr_t offset = last_offset;
659 bool complete_round = false;
660 int bytes_sent = 0;
661 MemoryRegion *mr;
663 if (!block)
664 block = QTAILQ_FIRST(&ram_list.blocks);
666 while (true) {
667 mr = block->mr;
668 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
669 if (complete_round && block == last_seen_block &&
670 offset >= last_offset) {
671 break;
673 if (offset >= block->used_length) {
674 offset = 0;
675 block = QTAILQ_NEXT(block, next);
676 if (!block) {
677 block = QTAILQ_FIRST(&ram_list.blocks);
678 complete_round = true;
679 ram_bulk_stage = false;
681 } else {
682 bytes_sent = ram_save_page(f, block, offset, last_stage);
684 /* if page is unmodified, continue to the next */
685 if (bytes_sent > 0) {
686 last_sent_block = block;
687 break;
691 last_seen_block = block;
692 last_offset = offset;
694 return bytes_sent;
697 static uint64_t bytes_transferred;
699 void acct_update_position(QEMUFile *f, size_t size, bool zero)
701 uint64_t pages = size / TARGET_PAGE_SIZE;
702 if (zero) {
703 acct_info.dup_pages += pages;
704 } else {
705 acct_info.norm_pages += pages;
706 bytes_transferred += size;
707 qemu_update_position(f, size);
711 static ram_addr_t ram_save_remaining(void)
713 return migration_dirty_pages;
716 uint64_t ram_bytes_remaining(void)
718 return ram_save_remaining() * TARGET_PAGE_SIZE;
721 uint64_t ram_bytes_transferred(void)
723 return bytes_transferred;
726 uint64_t ram_bytes_total(void)
728 RAMBlock *block;
729 uint64_t total = 0;
731 QTAILQ_FOREACH(block, &ram_list.blocks, next)
732 total += block->used_length;
734 return total;
737 void free_xbzrle_decoded_buf(void)
739 g_free(xbzrle_decoded_buf);
740 xbzrle_decoded_buf = NULL;
743 static void migration_end(void)
745 if (migration_bitmap) {
746 memory_global_dirty_log_stop();
747 g_free(migration_bitmap);
748 migration_bitmap = NULL;
751 XBZRLE_cache_lock();
752 if (XBZRLE.cache) {
753 cache_fini(XBZRLE.cache);
754 g_free(XBZRLE.encoded_buf);
755 g_free(XBZRLE.current_buf);
756 XBZRLE.cache = NULL;
757 XBZRLE.encoded_buf = NULL;
758 XBZRLE.current_buf = NULL;
760 XBZRLE_cache_unlock();
763 static void ram_migration_cancel(void *opaque)
765 migration_end();
768 static void reset_ram_globals(void)
770 last_seen_block = NULL;
771 last_sent_block = NULL;
772 last_offset = 0;
773 last_version = ram_list.version;
774 ram_bulk_stage = true;
777 #define MAX_WAIT 50 /* ms, half buffered_file limit */
779 static int ram_save_setup(QEMUFile *f, void *opaque)
781 RAMBlock *block;
782 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
784 mig_throttle_on = false;
785 dirty_rate_high_cnt = 0;
786 bitmap_sync_count = 0;
787 migration_bitmap_sync_init();
789 if (migrate_use_xbzrle()) {
790 XBZRLE_cache_lock();
791 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
792 TARGET_PAGE_SIZE,
793 TARGET_PAGE_SIZE);
794 if (!XBZRLE.cache) {
795 XBZRLE_cache_unlock();
796 error_report("Error creating cache");
797 return -1;
799 XBZRLE_cache_unlock();
801 /* We prefer not to abort if there is no memory */
802 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
803 if (!XBZRLE.encoded_buf) {
804 error_report("Error allocating encoded_buf");
805 return -1;
808 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
809 if (!XBZRLE.current_buf) {
810 error_report("Error allocating current_buf");
811 g_free(XBZRLE.encoded_buf);
812 XBZRLE.encoded_buf = NULL;
813 return -1;
816 acct_clear();
819 qemu_mutex_lock_iothread();
820 qemu_mutex_lock_ramlist();
821 bytes_transferred = 0;
822 reset_ram_globals();
824 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
825 migration_bitmap = bitmap_new(ram_bitmap_pages);
826 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
829 * Count the total number of pages used by ram blocks not including any
830 * gaps due to alignment or unplugs.
832 migration_dirty_pages = 0;
833 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
834 uint64_t block_pages;
836 block_pages = block->used_length >> TARGET_PAGE_BITS;
837 migration_dirty_pages += block_pages;
840 memory_global_dirty_log_start();
841 migration_bitmap_sync();
842 qemu_mutex_unlock_iothread();
844 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
846 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
847 qemu_put_byte(f, strlen(block->idstr));
848 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
849 qemu_put_be64(f, block->used_length);
852 qemu_mutex_unlock_ramlist();
854 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
855 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
857 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
859 return 0;
862 static int ram_save_iterate(QEMUFile *f, void *opaque)
864 int ret;
865 int i;
866 int64_t t0;
867 int total_sent = 0;
869 qemu_mutex_lock_ramlist();
871 if (ram_list.version != last_version) {
872 reset_ram_globals();
875 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
877 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
878 i = 0;
879 while ((ret = qemu_file_rate_limit(f)) == 0) {
880 int bytes_sent;
882 bytes_sent = ram_find_and_save_block(f, false);
883 /* no more blocks to sent */
884 if (bytes_sent == 0) {
885 break;
887 total_sent += bytes_sent;
888 acct_info.iterations++;
889 check_guest_throttling();
890 /* we want to check in the 1st loop, just in case it was the 1st time
891 and we had to sync the dirty bitmap.
892 qemu_get_clock_ns() is a bit expensive, so we only check each some
893 iterations
895 if ((i & 63) == 0) {
896 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
897 if (t1 > MAX_WAIT) {
898 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
899 t1, i);
900 break;
903 i++;
906 qemu_mutex_unlock_ramlist();
909 * Must occur before EOS (or any QEMUFile operation)
910 * because of RDMA protocol.
912 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
914 bytes_transferred += total_sent;
917 * Do not count these 8 bytes into total_sent, so that we can
918 * return 0 if no page had been dirtied.
920 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
921 bytes_transferred += 8;
923 ret = qemu_file_get_error(f);
924 if (ret < 0) {
925 return ret;
928 return total_sent;
931 static int ram_save_complete(QEMUFile *f, void *opaque)
933 qemu_mutex_lock_ramlist();
934 migration_bitmap_sync();
936 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
938 /* try transferring iterative blocks of memory */
940 /* flush all remaining blocks regardless of rate limiting */
941 while (true) {
942 int bytes_sent;
944 bytes_sent = ram_find_and_save_block(f, true);
945 /* no more blocks to sent */
946 if (bytes_sent == 0) {
947 break;
949 bytes_transferred += bytes_sent;
952 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
953 migration_end();
955 qemu_mutex_unlock_ramlist();
956 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
958 return 0;
961 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
963 uint64_t remaining_size;
965 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
967 if (remaining_size < max_size) {
968 qemu_mutex_lock_iothread();
969 migration_bitmap_sync();
970 qemu_mutex_unlock_iothread();
971 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
973 return remaining_size;
976 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
978 unsigned int xh_len;
979 int xh_flags;
981 if (!xbzrle_decoded_buf) {
982 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
985 /* extract RLE header */
986 xh_flags = qemu_get_byte(f);
987 xh_len = qemu_get_be16(f);
989 if (xh_flags != ENCODING_FLAG_XBZRLE) {
990 error_report("Failed to load XBZRLE page - wrong compression!");
991 return -1;
994 if (xh_len > TARGET_PAGE_SIZE) {
995 error_report("Failed to load XBZRLE page - len overflow!");
996 return -1;
998 /* load data and decode */
999 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1001 /* decode RLE */
1002 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1003 TARGET_PAGE_SIZE) == -1) {
1004 error_report("Failed to load XBZRLE page - decode error!");
1005 return -1;
1008 return 0;
1011 static inline void *host_from_stream_offset(QEMUFile *f,
1012 ram_addr_t offset,
1013 int flags)
1015 static RAMBlock *block = NULL;
1016 char id[256];
1017 uint8_t len;
1019 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1020 if (!block || block->max_length <= offset) {
1021 error_report("Ack, bad migration stream!");
1022 return NULL;
1025 return memory_region_get_ram_ptr(block->mr) + offset;
1028 len = qemu_get_byte(f);
1029 qemu_get_buffer(f, (uint8_t *)id, len);
1030 id[len] = 0;
1032 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1033 if (!strncmp(id, block->idstr, sizeof(id)) &&
1034 block->max_length > offset) {
1035 return memory_region_get_ram_ptr(block->mr) + offset;
1039 error_report("Can't find block %s!", id);
1040 return NULL;
1044 * If a page (or a whole RDMA chunk) has been
1045 * determined to be zero, then zap it.
1047 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1049 if (ch != 0 || !is_zero_range(host, size)) {
1050 memset(host, ch, size);
1054 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1056 int flags = 0, ret = 0;
1057 static uint64_t seq_iter;
1059 seq_iter++;
1061 if (version_id != 4) {
1062 ret = -EINVAL;
1065 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1066 ram_addr_t addr, total_ram_bytes;
1067 void *host;
1068 uint8_t ch;
1070 addr = qemu_get_be64(f);
1071 flags = addr & ~TARGET_PAGE_MASK;
1072 addr &= TARGET_PAGE_MASK;
1074 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1075 case RAM_SAVE_FLAG_MEM_SIZE:
1076 /* Synchronize RAM block list */
1077 total_ram_bytes = addr;
1078 while (!ret && total_ram_bytes) {
1079 RAMBlock *block;
1080 uint8_t len;
1081 char id[256];
1082 ram_addr_t length;
1084 len = qemu_get_byte(f);
1085 qemu_get_buffer(f, (uint8_t *)id, len);
1086 id[len] = 0;
1087 length = qemu_get_be64(f);
1089 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1090 if (!strncmp(id, block->idstr, sizeof(id))) {
1091 if (length != block->used_length) {
1092 Error *local_err = NULL;
1094 ret = qemu_ram_resize(block->offset, length, &local_err);
1095 if (local_err) {
1096 error_report("%s", error_get_pretty(local_err));
1097 error_free(local_err);
1100 break;
1104 if (!block) {
1105 error_report("Unknown ramblock \"%s\", cannot "
1106 "accept migration", id);
1107 ret = -EINVAL;
1110 total_ram_bytes -= length;
1112 break;
1113 case RAM_SAVE_FLAG_COMPRESS:
1114 host = host_from_stream_offset(f, addr, flags);
1115 if (!host) {
1116 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1117 ret = -EINVAL;
1118 break;
1121 ch = qemu_get_byte(f);
1122 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1123 break;
1124 case RAM_SAVE_FLAG_PAGE:
1125 host = host_from_stream_offset(f, addr, flags);
1126 if (!host) {
1127 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1128 ret = -EINVAL;
1129 break;
1132 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1133 break;
1134 case RAM_SAVE_FLAG_XBZRLE:
1135 host = host_from_stream_offset(f, addr, flags);
1136 if (!host) {
1137 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1138 ret = -EINVAL;
1139 break;
1142 if (load_xbzrle(f, addr, host) < 0) {
1143 error_report("Failed to decompress XBZRLE page at "
1144 RAM_ADDR_FMT, addr);
1145 ret = -EINVAL;
1146 break;
1148 break;
1149 case RAM_SAVE_FLAG_EOS:
1150 /* normal exit */
1151 break;
1152 default:
1153 if (flags & RAM_SAVE_FLAG_HOOK) {
1154 ram_control_load_hook(f, flags);
1155 } else {
1156 error_report("Unknown combination of migration flags: %#x",
1157 flags);
1158 ret = -EINVAL;
1161 if (!ret) {
1162 ret = qemu_file_get_error(f);
1166 DPRINTF("Completed load of VM with exit code %d seq iteration "
1167 "%" PRIu64 "\n", ret, seq_iter);
1168 return ret;
1171 static SaveVMHandlers savevm_ram_handlers = {
1172 .save_live_setup = ram_save_setup,
1173 .save_live_iterate = ram_save_iterate,
1174 .save_live_complete = ram_save_complete,
1175 .save_live_pending = ram_save_pending,
1176 .load_state = ram_load,
1177 .cancel = ram_migration_cancel,
1180 void ram_mig_init(void)
1182 qemu_mutex_init(&XBZRLE.lock);
1183 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1186 struct soundhw {
1187 const char *name;
1188 const char *descr;
1189 int enabled;
1190 int isa;
1191 union {
1192 int (*init_isa) (ISABus *bus);
1193 int (*init_pci) (PCIBus *bus);
1194 } init;
1197 static struct soundhw soundhw[9];
1198 static int soundhw_count;
1200 void isa_register_soundhw(const char *name, const char *descr,
1201 int (*init_isa)(ISABus *bus))
1203 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1204 soundhw[soundhw_count].name = name;
1205 soundhw[soundhw_count].descr = descr;
1206 soundhw[soundhw_count].isa = 1;
1207 soundhw[soundhw_count].init.init_isa = init_isa;
1208 soundhw_count++;
1211 void pci_register_soundhw(const char *name, const char *descr,
1212 int (*init_pci)(PCIBus *bus))
1214 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1215 soundhw[soundhw_count].name = name;
1216 soundhw[soundhw_count].descr = descr;
1217 soundhw[soundhw_count].isa = 0;
1218 soundhw[soundhw_count].init.init_pci = init_pci;
1219 soundhw_count++;
1222 void select_soundhw(const char *optarg)
1224 struct soundhw *c;
1226 if (is_help_option(optarg)) {
1227 show_valid_cards:
1229 if (soundhw_count) {
1230 printf("Valid sound card names (comma separated):\n");
1231 for (c = soundhw; c->name; ++c) {
1232 printf ("%-11s %s\n", c->name, c->descr);
1234 printf("\n-soundhw all will enable all of the above\n");
1235 } else {
1236 printf("Machine has no user-selectable audio hardware "
1237 "(it may or may not have always-present audio hardware).\n");
1239 exit(!is_help_option(optarg));
1241 else {
1242 size_t l;
1243 const char *p;
1244 char *e;
1245 int bad_card = 0;
1247 if (!strcmp(optarg, "all")) {
1248 for (c = soundhw; c->name; ++c) {
1249 c->enabled = 1;
1251 return;
1254 p = optarg;
1255 while (*p) {
1256 e = strchr(p, ',');
1257 l = !e ? strlen(p) : (size_t) (e - p);
1259 for (c = soundhw; c->name; ++c) {
1260 if (!strncmp(c->name, p, l) && !c->name[l]) {
1261 c->enabled = 1;
1262 break;
1266 if (!c->name) {
1267 if (l > 80) {
1268 error_report("Unknown sound card name (too big to show)");
1270 else {
1271 error_report("Unknown sound card name `%.*s'",
1272 (int) l, p);
1274 bad_card = 1;
1276 p += l + (e != NULL);
1279 if (bad_card) {
1280 goto show_valid_cards;
1285 void audio_init(void)
1287 struct soundhw *c;
1288 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1289 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1291 for (c = soundhw; c->name; ++c) {
1292 if (c->enabled) {
1293 if (c->isa) {
1294 if (!isa_bus) {
1295 error_report("ISA bus not available for %s", c->name);
1296 exit(1);
1298 c->init.init_isa(isa_bus);
1299 } else {
1300 if (!pci_bus) {
1301 error_report("PCI bus not available for %s", c->name);
1302 exit(1);
1304 c->init.init_pci(pci_bus);
1310 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1312 int ret;
1314 if (strlen(str) != 36) {
1315 return -1;
1318 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1319 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1320 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1321 &uuid[15]);
1323 if (ret != 16) {
1324 return -1;
1326 return 0;
1329 void do_acpitable_option(const QemuOpts *opts)
1331 #ifdef TARGET_I386
1332 Error *err = NULL;
1334 acpi_table_add(opts, &err);
1335 if (err) {
1336 error_report("Wrong acpi table provided: %s",
1337 error_get_pretty(err));
1338 error_free(err);
1339 exit(1);
1341 #endif
1344 void do_smbios_option(QemuOpts *opts)
1346 #ifdef TARGET_I386
1347 smbios_entry_add(opts);
1348 #endif
1351 void cpudef_init(void)
1353 #if defined(cpudef_setup)
1354 cpudef_setup(); /* parse cpu definitions in target config file */
1355 #endif
1358 int kvm_available(void)
1360 #ifdef CONFIG_KVM
1361 return 1;
1362 #else
1363 return 0;
1364 #endif
1367 int xen_available(void)
1369 #ifdef CONFIG_XEN
1370 return 1;
1371 #else
1372 return 0;
1373 #endif
1377 TargetInfo *qmp_query_target(Error **errp)
1379 TargetInfo *info = g_malloc0(sizeof(*info));
1381 info->arch = g_strdup(TARGET_NAME);
1383 return info;
1386 /* Stub function that's gets run on the vcpu when its brought out of the
1387 VM to run inside qemu via async_run_on_cpu()*/
1388 static void mig_sleep_cpu(void *opq)
1390 qemu_mutex_unlock_iothread();
1391 g_usleep(30*1000);
1392 qemu_mutex_lock_iothread();
1395 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1396 much time in the VM. The migration thread will try to catchup.
1397 Workload will experience a performance drop.
1399 static void mig_throttle_guest_down(void)
1401 CPUState *cpu;
1403 qemu_mutex_lock_iothread();
1404 CPU_FOREACH(cpu) {
1405 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1407 qemu_mutex_unlock_iothread();
1410 static void check_guest_throttling(void)
1412 static int64_t t0;
1413 int64_t t1;
1415 if (!mig_throttle_on) {
1416 return;
1419 if (!t0) {
1420 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1421 return;
1424 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1426 /* If it has been more than 40 ms since the last time the guest
1427 * was throttled then do it again.
1429 if (40 < (t1-t0)/1000000) {
1430 mig_throttle_guest_down();
1431 t0 = t1;