Define DMA address and direction types
[qemu/qmp-unstable.git] / block / qed.c
blobd032a4574c7ae5b9c43b8cd4143454b685827eac
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu-timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qerror.h"
20 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
23 bool finished = false;
25 /* Wait for the request to finish */
26 acb->finished = &finished;
27 while (!finished) {
28 qemu_aio_wait();
32 static AIOPool qed_aio_pool = {
33 .aiocb_size = sizeof(QEDAIOCB),
34 .cancel = qed_aio_cancel,
37 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
38 const char *filename)
40 const QEDHeader *header = (const QEDHeader *)buf;
42 if (buf_size < sizeof(*header)) {
43 return 0;
45 if (le32_to_cpu(header->magic) != QED_MAGIC) {
46 return 0;
48 return 100;
51 /**
52 * Check whether an image format is raw
54 * @fmt: Backing file format, may be NULL
56 static bool qed_fmt_is_raw(const char *fmt)
58 return fmt && strcmp(fmt, "raw") == 0;
61 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 cpu->magic = le32_to_cpu(le->magic);
64 cpu->cluster_size = le32_to_cpu(le->cluster_size);
65 cpu->table_size = le32_to_cpu(le->table_size);
66 cpu->header_size = le32_to_cpu(le->header_size);
67 cpu->features = le64_to_cpu(le->features);
68 cpu->compat_features = le64_to_cpu(le->compat_features);
69 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
70 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
71 cpu->image_size = le64_to_cpu(le->image_size);
72 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
73 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
76 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 le->magic = cpu_to_le32(cpu->magic);
79 le->cluster_size = cpu_to_le32(cpu->cluster_size);
80 le->table_size = cpu_to_le32(cpu->table_size);
81 le->header_size = cpu_to_le32(cpu->header_size);
82 le->features = cpu_to_le64(cpu->features);
83 le->compat_features = cpu_to_le64(cpu->compat_features);
84 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
85 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
86 le->image_size = cpu_to_le64(cpu->image_size);
87 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
88 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
91 static int qed_write_header_sync(BDRVQEDState *s)
93 QEDHeader le;
94 int ret;
96 qed_header_cpu_to_le(&s->header, &le);
97 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
98 if (ret != sizeof(le)) {
99 return ret;
101 return 0;
104 typedef struct {
105 GenericCB gencb;
106 BDRVQEDState *s;
107 struct iovec iov;
108 QEMUIOVector qiov;
109 int nsectors;
110 uint8_t *buf;
111 } QEDWriteHeaderCB;
113 static void qed_write_header_cb(void *opaque, int ret)
115 QEDWriteHeaderCB *write_header_cb = opaque;
117 qemu_vfree(write_header_cb->buf);
118 gencb_complete(write_header_cb, ret);
121 static void qed_write_header_read_cb(void *opaque, int ret)
123 QEDWriteHeaderCB *write_header_cb = opaque;
124 BDRVQEDState *s = write_header_cb->s;
125 BlockDriverAIOCB *acb;
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
135 acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
138 if (!acb) {
139 qed_write_header_cb(write_header_cb, -EIO);
144 * Update header in-place (does not rewrite backing filename or other strings)
146 * This function only updates known header fields in-place and does not affect
147 * extra data after the QED header.
149 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
150 void *opaque)
152 /* We must write full sectors for O_DIRECT but cannot necessarily generate
153 * the data following the header if an unrecognized compat feature is
154 * active. Therefore, first read the sectors containing the header, update
155 * them, and write back.
158 BlockDriverAIOCB *acb;
159 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
160 BDRV_SECTOR_SIZE;
161 size_t len = nsectors * BDRV_SECTOR_SIZE;
162 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
163 cb, opaque);
165 write_header_cb->s = s;
166 write_header_cb->nsectors = nsectors;
167 write_header_cb->buf = qemu_blockalign(s->bs, len);
168 write_header_cb->iov.iov_base = write_header_cb->buf;
169 write_header_cb->iov.iov_len = len;
170 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
172 acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
173 qed_write_header_read_cb, write_header_cb);
174 if (!acb) {
175 qed_write_header_cb(write_header_cb, -EIO);
179 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
181 uint64_t table_entries;
182 uint64_t l2_size;
184 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
185 l2_size = table_entries * cluster_size;
187 return l2_size * table_entries;
190 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
192 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
193 cluster_size > QED_MAX_CLUSTER_SIZE) {
194 return false;
196 if (cluster_size & (cluster_size - 1)) {
197 return false; /* not power of 2 */
199 return true;
202 static bool qed_is_table_size_valid(uint32_t table_size)
204 if (table_size < QED_MIN_TABLE_SIZE ||
205 table_size > QED_MAX_TABLE_SIZE) {
206 return false;
208 if (table_size & (table_size - 1)) {
209 return false; /* not power of 2 */
211 return true;
214 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
215 uint32_t table_size)
217 if (image_size % BDRV_SECTOR_SIZE != 0) {
218 return false; /* not multiple of sector size */
220 if (image_size > qed_max_image_size(cluster_size, table_size)) {
221 return false; /* image is too large */
223 return true;
227 * Read a string of known length from the image file
229 * @file: Image file
230 * @offset: File offset to start of string, in bytes
231 * @n: String length in bytes
232 * @buf: Destination buffer
233 * @buflen: Destination buffer length in bytes
234 * @ret: 0 on success, -errno on failure
236 * The string is NUL-terminated.
238 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
239 char *buf, size_t buflen)
241 int ret;
242 if (n >= buflen) {
243 return -EINVAL;
245 ret = bdrv_pread(file, offset, buf, n);
246 if (ret < 0) {
247 return ret;
249 buf[n] = '\0';
250 return 0;
254 * Allocate new clusters
256 * @s: QED state
257 * @n: Number of contiguous clusters to allocate
258 * @ret: Offset of first allocated cluster
260 * This function only produces the offset where the new clusters should be
261 * written. It updates BDRVQEDState but does not make any changes to the image
262 * file.
264 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
266 uint64_t offset = s->file_size;
267 s->file_size += n * s->header.cluster_size;
268 return offset;
271 QEDTable *qed_alloc_table(BDRVQEDState *s)
273 /* Honor O_DIRECT memory alignment requirements */
274 return qemu_blockalign(s->bs,
275 s->header.cluster_size * s->header.table_size);
279 * Allocate a new zeroed L2 table
281 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
283 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
285 l2_table->table = qed_alloc_table(s);
286 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
288 memset(l2_table->table->offsets, 0,
289 s->header.cluster_size * s->header.table_size);
290 return l2_table;
293 static void qed_aio_next_io(void *opaque, int ret);
295 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
297 assert(!s->allocating_write_reqs_plugged);
299 s->allocating_write_reqs_plugged = true;
302 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
304 QEDAIOCB *acb;
306 assert(s->allocating_write_reqs_plugged);
308 s->allocating_write_reqs_plugged = false;
310 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
311 if (acb) {
312 qed_aio_next_io(acb, 0);
316 static void qed_finish_clear_need_check(void *opaque, int ret)
318 /* Do nothing */
321 static void qed_flush_after_clear_need_check(void *opaque, int ret)
323 BDRVQEDState *s = opaque;
325 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
327 /* No need to wait until flush completes */
328 qed_unplug_allocating_write_reqs(s);
331 static void qed_clear_need_check(void *opaque, int ret)
333 BDRVQEDState *s = opaque;
335 if (ret) {
336 qed_unplug_allocating_write_reqs(s);
337 return;
340 s->header.features &= ~QED_F_NEED_CHECK;
341 qed_write_header(s, qed_flush_after_clear_need_check, s);
344 static void qed_need_check_timer_cb(void *opaque)
346 BDRVQEDState *s = opaque;
348 /* The timer should only fire when allocating writes have drained */
349 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
351 trace_qed_need_check_timer_cb(s);
353 qed_plug_allocating_write_reqs(s);
355 /* Ensure writes are on disk before clearing flag */
356 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
359 static void qed_start_need_check_timer(BDRVQEDState *s)
361 trace_qed_start_need_check_timer(s);
363 /* Use vm_clock so we don't alter the image file while suspended for
364 * migration.
366 qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
367 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
370 /* It's okay to call this multiple times or when no timer is started */
371 static void qed_cancel_need_check_timer(BDRVQEDState *s)
373 trace_qed_cancel_need_check_timer(s);
374 qemu_del_timer(s->need_check_timer);
377 static int bdrv_qed_open(BlockDriverState *bs, int flags)
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
391 qed_header_le_to_cpu(&le_header, &s->header);
393 if (s->header.magic != QED_MAGIC) {
394 return -EINVAL;
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
414 s->file_size = qed_start_of_cluster(s, file_size);
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
480 /* If image was not closed cleanly, check consistency */
481 if (s->header.features & QED_F_NEED_CHECK) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
487 if (!bdrv_is_read_only(bs->file)) {
488 BdrvCheckResult result = {0};
490 ret = qed_check(s, &result, true);
491 if (ret) {
492 goto out;
494 if (!result.corruptions && !result.check_errors) {
495 /* Ensure fixes reach storage before clearing check bit */
496 bdrv_flush(s->bs);
498 s->header.features &= ~QED_F_NEED_CHECK;
499 qed_write_header_sync(s);
504 s->need_check_timer = qemu_new_timer_ns(vm_clock,
505 qed_need_check_timer_cb, s);
507 out:
508 if (ret) {
509 qed_free_l2_cache(&s->l2_cache);
510 qemu_vfree(s->l1_table);
512 return ret;
515 static void bdrv_qed_close(BlockDriverState *bs)
517 BDRVQEDState *s = bs->opaque;
519 qed_cancel_need_check_timer(s);
520 qemu_free_timer(s->need_check_timer);
522 /* Ensure writes reach stable storage */
523 bdrv_flush(bs->file);
525 /* Clean shutdown, no check required on next open */
526 if (s->header.features & QED_F_NEED_CHECK) {
527 s->header.features &= ~QED_F_NEED_CHECK;
528 qed_write_header_sync(s);
531 qed_free_l2_cache(&s->l2_cache);
532 qemu_vfree(s->l1_table);
535 static int qed_create(const char *filename, uint32_t cluster_size,
536 uint64_t image_size, uint32_t table_size,
537 const char *backing_file, const char *backing_fmt)
539 QEDHeader header = {
540 .magic = QED_MAGIC,
541 .cluster_size = cluster_size,
542 .table_size = table_size,
543 .header_size = 1,
544 .features = 0,
545 .compat_features = 0,
546 .l1_table_offset = cluster_size,
547 .image_size = image_size,
549 QEDHeader le_header;
550 uint8_t *l1_table = NULL;
551 size_t l1_size = header.cluster_size * header.table_size;
552 int ret = 0;
553 BlockDriverState *bs = NULL;
555 ret = bdrv_create_file(filename, NULL);
556 if (ret < 0) {
557 return ret;
560 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
561 if (ret < 0) {
562 return ret;
565 /* File must start empty and grow, check truncate is supported */
566 ret = bdrv_truncate(bs, 0);
567 if (ret < 0) {
568 goto out;
571 if (backing_file) {
572 header.features |= QED_F_BACKING_FILE;
573 header.backing_filename_offset = sizeof(le_header);
574 header.backing_filename_size = strlen(backing_file);
576 if (qed_fmt_is_raw(backing_fmt)) {
577 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
581 qed_header_cpu_to_le(&header, &le_header);
582 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
583 if (ret < 0) {
584 goto out;
586 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
587 header.backing_filename_size);
588 if (ret < 0) {
589 goto out;
592 l1_table = g_malloc0(l1_size);
593 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
594 if (ret < 0) {
595 goto out;
598 ret = 0; /* success */
599 out:
600 g_free(l1_table);
601 bdrv_delete(bs);
602 return ret;
605 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
607 uint64_t image_size = 0;
608 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
609 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
610 const char *backing_file = NULL;
611 const char *backing_fmt = NULL;
613 while (options && options->name) {
614 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
615 image_size = options->value.n;
616 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
617 backing_file = options->value.s;
618 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
619 backing_fmt = options->value.s;
620 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
621 if (options->value.n) {
622 cluster_size = options->value.n;
624 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
625 if (options->value.n) {
626 table_size = options->value.n;
629 options++;
632 if (!qed_is_cluster_size_valid(cluster_size)) {
633 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
634 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
635 return -EINVAL;
637 if (!qed_is_table_size_valid(table_size)) {
638 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
639 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
640 return -EINVAL;
642 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
643 fprintf(stderr, "QED image size must be a non-zero multiple of "
644 "cluster size and less than %" PRIu64 " bytes\n",
645 qed_max_image_size(cluster_size, table_size));
646 return -EINVAL;
649 return qed_create(filename, cluster_size, image_size, table_size,
650 backing_file, backing_fmt);
653 typedef struct {
654 int is_allocated;
655 int *pnum;
656 } QEDIsAllocatedCB;
658 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
660 QEDIsAllocatedCB *cb = opaque;
661 *cb->pnum = len / BDRV_SECTOR_SIZE;
662 cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
665 static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
666 int nb_sectors, int *pnum)
668 BDRVQEDState *s = bs->opaque;
669 uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
670 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
671 QEDIsAllocatedCB cb = {
672 .is_allocated = -1,
673 .pnum = pnum,
675 QEDRequest request = { .l2_table = NULL };
677 qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
679 while (cb.is_allocated == -1) {
680 qemu_aio_wait();
683 qed_unref_l2_cache_entry(request.l2_table);
685 return cb.is_allocated;
688 static int bdrv_qed_make_empty(BlockDriverState *bs)
690 return -ENOTSUP;
693 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
695 return acb->common.bs->opaque;
699 * Read from the backing file or zero-fill if no backing file
701 * @s: QED state
702 * @pos: Byte position in device
703 * @qiov: Destination I/O vector
704 * @cb: Completion function
705 * @opaque: User data for completion function
707 * This function reads qiov->size bytes starting at pos from the backing file.
708 * If there is no backing file then zeroes are read.
710 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
711 QEMUIOVector *qiov,
712 BlockDriverCompletionFunc *cb, void *opaque)
714 BlockDriverAIOCB *aiocb;
715 uint64_t backing_length = 0;
716 size_t size;
718 /* If there is a backing file, get its length. Treat the absence of a
719 * backing file like a zero length backing file.
721 if (s->bs->backing_hd) {
722 int64_t l = bdrv_getlength(s->bs->backing_hd);
723 if (l < 0) {
724 cb(opaque, l);
725 return;
727 backing_length = l;
730 /* Zero all sectors if reading beyond the end of the backing file */
731 if (pos >= backing_length ||
732 pos + qiov->size > backing_length) {
733 qemu_iovec_memset(qiov, 0, qiov->size);
736 /* Complete now if there are no backing file sectors to read */
737 if (pos >= backing_length) {
738 cb(opaque, 0);
739 return;
742 /* If the read straddles the end of the backing file, shorten it */
743 size = MIN((uint64_t)backing_length - pos, qiov->size);
745 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
746 aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
747 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
748 if (!aiocb) {
749 cb(opaque, -EIO);
753 typedef struct {
754 GenericCB gencb;
755 BDRVQEDState *s;
756 QEMUIOVector qiov;
757 struct iovec iov;
758 uint64_t offset;
759 } CopyFromBackingFileCB;
761 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
763 CopyFromBackingFileCB *copy_cb = opaque;
764 qemu_vfree(copy_cb->iov.iov_base);
765 gencb_complete(&copy_cb->gencb, ret);
768 static void qed_copy_from_backing_file_write(void *opaque, int ret)
770 CopyFromBackingFileCB *copy_cb = opaque;
771 BDRVQEDState *s = copy_cb->s;
772 BlockDriverAIOCB *aiocb;
774 if (ret) {
775 qed_copy_from_backing_file_cb(copy_cb, ret);
776 return;
779 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
780 aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
781 &copy_cb->qiov,
782 copy_cb->qiov.size / BDRV_SECTOR_SIZE,
783 qed_copy_from_backing_file_cb, copy_cb);
784 if (!aiocb) {
785 qed_copy_from_backing_file_cb(copy_cb, -EIO);
790 * Copy data from backing file into the image
792 * @s: QED state
793 * @pos: Byte position in device
794 * @len: Number of bytes
795 * @offset: Byte offset in image file
796 * @cb: Completion function
797 * @opaque: User data for completion function
799 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
800 uint64_t len, uint64_t offset,
801 BlockDriverCompletionFunc *cb,
802 void *opaque)
804 CopyFromBackingFileCB *copy_cb;
806 /* Skip copy entirely if there is no work to do */
807 if (len == 0) {
808 cb(opaque, 0);
809 return;
812 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
813 copy_cb->s = s;
814 copy_cb->offset = offset;
815 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
816 copy_cb->iov.iov_len = len;
817 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
819 qed_read_backing_file(s, pos, &copy_cb->qiov,
820 qed_copy_from_backing_file_write, copy_cb);
824 * Link one or more contiguous clusters into a table
826 * @s: QED state
827 * @table: L2 table
828 * @index: First cluster index
829 * @n: Number of contiguous clusters
830 * @cluster: First cluster offset
832 * The cluster offset may be an allocated byte offset in the image file, the
833 * zero cluster marker, or the unallocated cluster marker.
835 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
836 unsigned int n, uint64_t cluster)
838 int i;
839 for (i = index; i < index + n; i++) {
840 table->offsets[i] = cluster;
841 if (!qed_offset_is_unalloc_cluster(cluster) &&
842 !qed_offset_is_zero_cluster(cluster)) {
843 cluster += s->header.cluster_size;
848 static void qed_aio_complete_bh(void *opaque)
850 QEDAIOCB *acb = opaque;
851 BlockDriverCompletionFunc *cb = acb->common.cb;
852 void *user_opaque = acb->common.opaque;
853 int ret = acb->bh_ret;
854 bool *finished = acb->finished;
856 qemu_bh_delete(acb->bh);
857 qemu_aio_release(acb);
859 /* Invoke callback */
860 cb(user_opaque, ret);
862 /* Signal cancel completion */
863 if (finished) {
864 *finished = true;
868 static void qed_aio_complete(QEDAIOCB *acb, int ret)
870 BDRVQEDState *s = acb_to_s(acb);
872 trace_qed_aio_complete(s, acb, ret);
874 /* Free resources */
875 qemu_iovec_destroy(&acb->cur_qiov);
876 qed_unref_l2_cache_entry(acb->request.l2_table);
878 /* Arrange for a bh to invoke the completion function */
879 acb->bh_ret = ret;
880 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
881 qemu_bh_schedule(acb->bh);
883 /* Start next allocating write request waiting behind this one. Note that
884 * requests enqueue themselves when they first hit an unallocated cluster
885 * but they wait until the entire request is finished before waking up the
886 * next request in the queue. This ensures that we don't cycle through
887 * requests multiple times but rather finish one at a time completely.
889 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
890 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
891 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
892 if (acb) {
893 qed_aio_next_io(acb, 0);
894 } else if (s->header.features & QED_F_NEED_CHECK) {
895 qed_start_need_check_timer(s);
901 * Commit the current L2 table to the cache
903 static void qed_commit_l2_update(void *opaque, int ret)
905 QEDAIOCB *acb = opaque;
906 BDRVQEDState *s = acb_to_s(acb);
907 CachedL2Table *l2_table = acb->request.l2_table;
908 uint64_t l2_offset = l2_table->offset;
910 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
912 /* This is guaranteed to succeed because we just committed the entry to the
913 * cache.
915 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
916 assert(acb->request.l2_table != NULL);
918 qed_aio_next_io(opaque, ret);
922 * Update L1 table with new L2 table offset and write it out
924 static void qed_aio_write_l1_update(void *opaque, int ret)
926 QEDAIOCB *acb = opaque;
927 BDRVQEDState *s = acb_to_s(acb);
928 int index;
930 if (ret) {
931 qed_aio_complete(acb, ret);
932 return;
935 index = qed_l1_index(s, acb->cur_pos);
936 s->l1_table->offsets[index] = acb->request.l2_table->offset;
938 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
942 * Update L2 table with new cluster offsets and write them out
944 static void qed_aio_write_l2_update(void *opaque, int ret)
946 QEDAIOCB *acb = opaque;
947 BDRVQEDState *s = acb_to_s(acb);
948 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
949 int index;
951 if (ret) {
952 goto err;
955 if (need_alloc) {
956 qed_unref_l2_cache_entry(acb->request.l2_table);
957 acb->request.l2_table = qed_new_l2_table(s);
960 index = qed_l2_index(s, acb->cur_pos);
961 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
962 acb->cur_cluster);
964 if (need_alloc) {
965 /* Write out the whole new L2 table */
966 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
967 qed_aio_write_l1_update, acb);
968 } else {
969 /* Write out only the updated part of the L2 table */
970 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
971 qed_aio_next_io, acb);
973 return;
975 err:
976 qed_aio_complete(acb, ret);
980 * Flush new data clusters before updating the L2 table
982 * This flush is necessary when a backing file is in use. A crash during an
983 * allocating write could result in empty clusters in the image. If the write
984 * only touched a subregion of the cluster, then backing image sectors have
985 * been lost in the untouched region. The solution is to flush after writing a
986 * new data cluster and before updating the L2 table.
988 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
990 QEDAIOCB *acb = opaque;
991 BDRVQEDState *s = acb_to_s(acb);
993 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
994 qed_aio_complete(acb, -EIO);
999 * Write data to the image file
1001 static void qed_aio_write_main(void *opaque, int ret)
1003 QEDAIOCB *acb = opaque;
1004 BDRVQEDState *s = acb_to_s(acb);
1005 uint64_t offset = acb->cur_cluster +
1006 qed_offset_into_cluster(s, acb->cur_pos);
1007 BlockDriverCompletionFunc *next_fn;
1008 BlockDriverAIOCB *file_acb;
1010 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1012 if (ret) {
1013 qed_aio_complete(acb, ret);
1014 return;
1017 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1018 next_fn = qed_aio_next_io;
1019 } else {
1020 if (s->bs->backing_hd) {
1021 next_fn = qed_aio_write_flush_before_l2_update;
1022 } else {
1023 next_fn = qed_aio_write_l2_update;
1027 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1028 file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1029 &acb->cur_qiov,
1030 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1031 next_fn, acb);
1032 if (!file_acb) {
1033 qed_aio_complete(acb, -EIO);
1038 * Populate back untouched region of new data cluster
1040 static void qed_aio_write_postfill(void *opaque, int ret)
1042 QEDAIOCB *acb = opaque;
1043 BDRVQEDState *s = acb_to_s(acb);
1044 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1045 uint64_t len =
1046 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1047 uint64_t offset = acb->cur_cluster +
1048 qed_offset_into_cluster(s, acb->cur_pos) +
1049 acb->cur_qiov.size;
1051 if (ret) {
1052 qed_aio_complete(acb, ret);
1053 return;
1056 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1057 qed_copy_from_backing_file(s, start, len, offset,
1058 qed_aio_write_main, acb);
1062 * Populate front untouched region of new data cluster
1064 static void qed_aio_write_prefill(void *opaque, int ret)
1066 QEDAIOCB *acb = opaque;
1067 BDRVQEDState *s = acb_to_s(acb);
1068 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1069 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1071 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1072 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1073 qed_aio_write_postfill, acb);
1077 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1079 static bool qed_should_set_need_check(BDRVQEDState *s)
1081 /* The flush before L2 update path ensures consistency */
1082 if (s->bs->backing_hd) {
1083 return false;
1086 return !(s->header.features & QED_F_NEED_CHECK);
1090 * Write new data cluster
1092 * @acb: Write request
1093 * @len: Length in bytes
1095 * This path is taken when writing to previously unallocated clusters.
1097 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1099 BDRVQEDState *s = acb_to_s(acb);
1101 /* Cancel timer when the first allocating request comes in */
1102 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1103 qed_cancel_need_check_timer(s);
1106 /* Freeze this request if another allocating write is in progress */
1107 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1108 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1110 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1111 s->allocating_write_reqs_plugged) {
1112 return; /* wait for existing request to finish */
1115 acb->cur_nclusters = qed_bytes_to_clusters(s,
1116 qed_offset_into_cluster(s, acb->cur_pos) + len);
1117 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1118 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1120 if (qed_should_set_need_check(s)) {
1121 s->header.features |= QED_F_NEED_CHECK;
1122 qed_write_header(s, qed_aio_write_prefill, acb);
1123 } else {
1124 qed_aio_write_prefill(acb, 0);
1129 * Write data cluster in place
1131 * @acb: Write request
1132 * @offset: Cluster offset in bytes
1133 * @len: Length in bytes
1135 * This path is taken when writing to already allocated clusters.
1137 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1139 /* Calculate the I/O vector */
1140 acb->cur_cluster = offset;
1141 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1143 /* Do the actual write */
1144 qed_aio_write_main(acb, 0);
1148 * Write data cluster
1150 * @opaque: Write request
1151 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1152 * or -errno
1153 * @offset: Cluster offset in bytes
1154 * @len: Length in bytes
1156 * Callback from qed_find_cluster().
1158 static void qed_aio_write_data(void *opaque, int ret,
1159 uint64_t offset, size_t len)
1161 QEDAIOCB *acb = opaque;
1163 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1165 acb->find_cluster_ret = ret;
1167 switch (ret) {
1168 case QED_CLUSTER_FOUND:
1169 qed_aio_write_inplace(acb, offset, len);
1170 break;
1172 case QED_CLUSTER_L2:
1173 case QED_CLUSTER_L1:
1174 case QED_CLUSTER_ZERO:
1175 qed_aio_write_alloc(acb, len);
1176 break;
1178 default:
1179 qed_aio_complete(acb, ret);
1180 break;
1185 * Read data cluster
1187 * @opaque: Read request
1188 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1189 * or -errno
1190 * @offset: Cluster offset in bytes
1191 * @len: Length in bytes
1193 * Callback from qed_find_cluster().
1195 static void qed_aio_read_data(void *opaque, int ret,
1196 uint64_t offset, size_t len)
1198 QEDAIOCB *acb = opaque;
1199 BDRVQEDState *s = acb_to_s(acb);
1200 BlockDriverState *bs = acb->common.bs;
1201 BlockDriverAIOCB *file_acb;
1203 /* Adjust offset into cluster */
1204 offset += qed_offset_into_cluster(s, acb->cur_pos);
1206 trace_qed_aio_read_data(s, acb, ret, offset, len);
1208 if (ret < 0) {
1209 goto err;
1212 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1214 /* Handle zero cluster and backing file reads */
1215 if (ret == QED_CLUSTER_ZERO) {
1216 qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1217 qed_aio_next_io(acb, 0);
1218 return;
1219 } else if (ret != QED_CLUSTER_FOUND) {
1220 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1221 qed_aio_next_io, acb);
1222 return;
1225 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1226 file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1227 &acb->cur_qiov,
1228 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1229 qed_aio_next_io, acb);
1230 if (!file_acb) {
1231 ret = -EIO;
1232 goto err;
1234 return;
1236 err:
1237 qed_aio_complete(acb, ret);
1241 * Begin next I/O or complete the request
1243 static void qed_aio_next_io(void *opaque, int ret)
1245 QEDAIOCB *acb = opaque;
1246 BDRVQEDState *s = acb_to_s(acb);
1247 QEDFindClusterFunc *io_fn =
1248 acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1250 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1252 /* Handle I/O error */
1253 if (ret) {
1254 qed_aio_complete(acb, ret);
1255 return;
1258 acb->qiov_offset += acb->cur_qiov.size;
1259 acb->cur_pos += acb->cur_qiov.size;
1260 qemu_iovec_reset(&acb->cur_qiov);
1262 /* Complete request */
1263 if (acb->cur_pos >= acb->end_pos) {
1264 qed_aio_complete(acb, 0);
1265 return;
1268 /* Find next cluster and start I/O */
1269 qed_find_cluster(s, &acb->request,
1270 acb->cur_pos, acb->end_pos - acb->cur_pos,
1271 io_fn, acb);
1274 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1275 int64_t sector_num,
1276 QEMUIOVector *qiov, int nb_sectors,
1277 BlockDriverCompletionFunc *cb,
1278 void *opaque, bool is_write)
1280 QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1282 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1283 opaque, is_write);
1285 acb->is_write = is_write;
1286 acb->finished = NULL;
1287 acb->qiov = qiov;
1288 acb->qiov_offset = 0;
1289 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1290 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1291 acb->request.l2_table = NULL;
1292 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1294 /* Start request */
1295 qed_aio_next_io(acb, 0);
1296 return &acb->common;
1299 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1300 int64_t sector_num,
1301 QEMUIOVector *qiov, int nb_sectors,
1302 BlockDriverCompletionFunc *cb,
1303 void *opaque)
1305 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1308 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1309 int64_t sector_num,
1310 QEMUIOVector *qiov, int nb_sectors,
1311 BlockDriverCompletionFunc *cb,
1312 void *opaque)
1314 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1317 static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1318 BlockDriverCompletionFunc *cb,
1319 void *opaque)
1321 return bdrv_aio_flush(bs->file, cb, opaque);
1324 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1326 BDRVQEDState *s = bs->opaque;
1327 uint64_t old_image_size;
1328 int ret;
1330 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1331 s->header.table_size)) {
1332 return -EINVAL;
1335 /* Shrinking is currently not supported */
1336 if ((uint64_t)offset < s->header.image_size) {
1337 return -ENOTSUP;
1340 old_image_size = s->header.image_size;
1341 s->header.image_size = offset;
1342 ret = qed_write_header_sync(s);
1343 if (ret < 0) {
1344 s->header.image_size = old_image_size;
1346 return ret;
1349 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1351 BDRVQEDState *s = bs->opaque;
1352 return s->header.image_size;
1355 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1357 BDRVQEDState *s = bs->opaque;
1359 memset(bdi, 0, sizeof(*bdi));
1360 bdi->cluster_size = s->header.cluster_size;
1361 return 0;
1364 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1365 const char *backing_file,
1366 const char *backing_fmt)
1368 BDRVQEDState *s = bs->opaque;
1369 QEDHeader new_header, le_header;
1370 void *buffer;
1371 size_t buffer_len, backing_file_len;
1372 int ret;
1374 /* Refuse to set backing filename if unknown compat feature bits are
1375 * active. If the image uses an unknown compat feature then we may not
1376 * know the layout of data following the header structure and cannot safely
1377 * add a new string.
1379 if (backing_file && (s->header.compat_features &
1380 ~QED_COMPAT_FEATURE_MASK)) {
1381 return -ENOTSUP;
1384 memcpy(&new_header, &s->header, sizeof(new_header));
1386 new_header.features &= ~(QED_F_BACKING_FILE |
1387 QED_F_BACKING_FORMAT_NO_PROBE);
1389 /* Adjust feature flags */
1390 if (backing_file) {
1391 new_header.features |= QED_F_BACKING_FILE;
1393 if (qed_fmt_is_raw(backing_fmt)) {
1394 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1398 /* Calculate new header size */
1399 backing_file_len = 0;
1401 if (backing_file) {
1402 backing_file_len = strlen(backing_file);
1405 buffer_len = sizeof(new_header);
1406 new_header.backing_filename_offset = buffer_len;
1407 new_header.backing_filename_size = backing_file_len;
1408 buffer_len += backing_file_len;
1410 /* Make sure we can rewrite header without failing */
1411 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1412 return -ENOSPC;
1415 /* Prepare new header */
1416 buffer = g_malloc(buffer_len);
1418 qed_header_cpu_to_le(&new_header, &le_header);
1419 memcpy(buffer, &le_header, sizeof(le_header));
1420 buffer_len = sizeof(le_header);
1422 if (backing_file) {
1423 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1424 buffer_len += backing_file_len;
1427 /* Write new header */
1428 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1429 g_free(buffer);
1430 if (ret == 0) {
1431 memcpy(&s->header, &new_header, sizeof(new_header));
1433 return ret;
1436 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1438 BDRVQEDState *s = bs->opaque;
1440 return qed_check(s, result, false);
1443 static QEMUOptionParameter qed_create_options[] = {
1445 .name = BLOCK_OPT_SIZE,
1446 .type = OPT_SIZE,
1447 .help = "Virtual disk size (in bytes)"
1448 }, {
1449 .name = BLOCK_OPT_BACKING_FILE,
1450 .type = OPT_STRING,
1451 .help = "File name of a base image"
1452 }, {
1453 .name = BLOCK_OPT_BACKING_FMT,
1454 .type = OPT_STRING,
1455 .help = "Image format of the base image"
1456 }, {
1457 .name = BLOCK_OPT_CLUSTER_SIZE,
1458 .type = OPT_SIZE,
1459 .help = "Cluster size (in bytes)",
1460 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1461 }, {
1462 .name = BLOCK_OPT_TABLE_SIZE,
1463 .type = OPT_SIZE,
1464 .help = "L1/L2 table size (in clusters)"
1466 { /* end of list */ }
1469 static BlockDriver bdrv_qed = {
1470 .format_name = "qed",
1471 .instance_size = sizeof(BDRVQEDState),
1472 .create_options = qed_create_options,
1474 .bdrv_probe = bdrv_qed_probe,
1475 .bdrv_open = bdrv_qed_open,
1476 .bdrv_close = bdrv_qed_close,
1477 .bdrv_create = bdrv_qed_create,
1478 .bdrv_is_allocated = bdrv_qed_is_allocated,
1479 .bdrv_make_empty = bdrv_qed_make_empty,
1480 .bdrv_aio_readv = bdrv_qed_aio_readv,
1481 .bdrv_aio_writev = bdrv_qed_aio_writev,
1482 .bdrv_aio_flush = bdrv_qed_aio_flush,
1483 .bdrv_truncate = bdrv_qed_truncate,
1484 .bdrv_getlength = bdrv_qed_getlength,
1485 .bdrv_get_info = bdrv_qed_get_info,
1486 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1487 .bdrv_check = bdrv_qed_check,
1490 static void bdrv_qed_init(void)
1492 bdrv_register(&bdrv_qed);
1495 block_init(bdrv_qed_init);