sh4/r2d: update pci, usb and kernel management
[qemu/sh4.git] / hw / mc146818rtc.c
blobac41a947b8b6dc448da915d58373666fe5e1c278
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
30 //#define DEBUG_CMOS
32 #define RTC_SECONDS 0
33 #define RTC_SECONDS_ALARM 1
34 #define RTC_MINUTES 2
35 #define RTC_MINUTES_ALARM 3
36 #define RTC_HOURS 4
37 #define RTC_HOURS_ALARM 5
38 #define RTC_ALARM_DONT_CARE 0xC0
40 #define RTC_DAY_OF_WEEK 6
41 #define RTC_DAY_OF_MONTH 7
42 #define RTC_MONTH 8
43 #define RTC_YEAR 9
45 #define RTC_REG_A 10
46 #define RTC_REG_B 11
47 #define RTC_REG_C 12
48 #define RTC_REG_D 13
50 #define REG_A_UIP 0x80
52 #define REG_B_SET 0x80
53 #define REG_B_PIE 0x40
54 #define REG_B_AIE 0x20
55 #define REG_B_UIE 0x10
57 struct RTCState {
58 uint8_t cmos_data[128];
59 uint8_t cmos_index;
60 struct tm current_tm;
61 qemu_irq irq;
62 int it_shift;
63 /* periodic timer */
64 QEMUTimer *periodic_timer;
65 int64_t next_periodic_time;
66 /* second update */
67 int64_t next_second_time;
68 QEMUTimer *second_timer;
69 QEMUTimer *second_timer2;
72 static void rtc_set_time(RTCState *s);
73 static void rtc_copy_date(RTCState *s);
75 static void rtc_timer_update(RTCState *s, int64_t current_time)
77 int period_code, period;
78 int64_t cur_clock, next_irq_clock;
80 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
81 if (period_code != 0 &&
82 (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
83 if (period_code <= 2)
84 period_code += 7;
85 /* period in 32 Khz cycles */
86 period = 1 << (period_code - 1);
87 /* compute 32 khz clock */
88 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
89 next_irq_clock = (cur_clock & ~(period - 1)) + period;
90 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
91 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
92 } else {
93 qemu_del_timer(s->periodic_timer);
97 static void rtc_periodic_timer(void *opaque)
99 RTCState *s = opaque;
101 rtc_timer_update(s, s->next_periodic_time);
102 s->cmos_data[RTC_REG_C] |= 0xc0;
103 qemu_irq_raise(s->irq);
106 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
108 RTCState *s = opaque;
110 if ((addr & 1) == 0) {
111 s->cmos_index = data & 0x7f;
112 } else {
113 #ifdef DEBUG_CMOS
114 printf("cmos: write index=0x%02x val=0x%02x\n",
115 s->cmos_index, data);
116 #endif
117 switch(s->cmos_index) {
118 case RTC_SECONDS_ALARM:
119 case RTC_MINUTES_ALARM:
120 case RTC_HOURS_ALARM:
121 /* XXX: not supported */
122 s->cmos_data[s->cmos_index] = data;
123 break;
124 case RTC_SECONDS:
125 case RTC_MINUTES:
126 case RTC_HOURS:
127 case RTC_DAY_OF_WEEK:
128 case RTC_DAY_OF_MONTH:
129 case RTC_MONTH:
130 case RTC_YEAR:
131 s->cmos_data[s->cmos_index] = data;
132 /* if in set mode, do not update the time */
133 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
134 rtc_set_time(s);
136 break;
137 case RTC_REG_A:
138 /* UIP bit is read only */
139 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
140 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
141 rtc_timer_update(s, qemu_get_clock(vm_clock));
142 break;
143 case RTC_REG_B:
144 if (data & REG_B_SET) {
145 /* set mode: reset UIP mode */
146 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
147 data &= ~REG_B_UIE;
148 } else {
149 /* if disabling set mode, update the time */
150 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
151 rtc_set_time(s);
154 s->cmos_data[RTC_REG_B] = data;
155 rtc_timer_update(s, qemu_get_clock(vm_clock));
156 break;
157 case RTC_REG_C:
158 case RTC_REG_D:
159 /* cannot write to them */
160 break;
161 default:
162 s->cmos_data[s->cmos_index] = data;
163 break;
168 static inline int to_bcd(RTCState *s, int a)
170 if (s->cmos_data[RTC_REG_B] & 0x04) {
171 return a;
172 } else {
173 return ((a / 10) << 4) | (a % 10);
177 static inline int from_bcd(RTCState *s, int a)
179 if (s->cmos_data[RTC_REG_B] & 0x04) {
180 return a;
181 } else {
182 return ((a >> 4) * 10) + (a & 0x0f);
186 static void rtc_set_time(RTCState *s)
188 struct tm *tm = &s->current_tm;
190 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
191 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
192 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
193 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
194 (s->cmos_data[RTC_HOURS] & 0x80)) {
195 tm->tm_hour += 12;
197 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
198 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
199 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
200 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
203 static void rtc_copy_date(RTCState *s)
205 const struct tm *tm = &s->current_tm;
207 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
208 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
209 if (s->cmos_data[RTC_REG_B] & 0x02) {
210 /* 24 hour format */
211 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
212 } else {
213 /* 12 hour format */
214 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
215 if (tm->tm_hour >= 12)
216 s->cmos_data[RTC_HOURS] |= 0x80;
218 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
219 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
220 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
221 s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
224 /* month is between 0 and 11. */
225 static int get_days_in_month(int month, int year)
227 static const int days_tab[12] = {
228 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
230 int d;
231 if ((unsigned )month >= 12)
232 return 31;
233 d = days_tab[month];
234 if (month == 1) {
235 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
236 d++;
238 return d;
241 /* update 'tm' to the next second */
242 static void rtc_next_second(struct tm *tm)
244 int days_in_month;
246 tm->tm_sec++;
247 if ((unsigned)tm->tm_sec >= 60) {
248 tm->tm_sec = 0;
249 tm->tm_min++;
250 if ((unsigned)tm->tm_min >= 60) {
251 tm->tm_min = 0;
252 tm->tm_hour++;
253 if ((unsigned)tm->tm_hour >= 24) {
254 tm->tm_hour = 0;
255 /* next day */
256 tm->tm_wday++;
257 if ((unsigned)tm->tm_wday >= 7)
258 tm->tm_wday = 0;
259 days_in_month = get_days_in_month(tm->tm_mon,
260 tm->tm_year + 1900);
261 tm->tm_mday++;
262 if (tm->tm_mday < 1) {
263 tm->tm_mday = 1;
264 } else if (tm->tm_mday > days_in_month) {
265 tm->tm_mday = 1;
266 tm->tm_mon++;
267 if (tm->tm_mon >= 12) {
268 tm->tm_mon = 0;
269 tm->tm_year++;
278 static void rtc_update_second(void *opaque)
280 RTCState *s = opaque;
281 int64_t delay;
283 /* if the oscillator is not in normal operation, we do not update */
284 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
285 s->next_second_time += ticks_per_sec;
286 qemu_mod_timer(s->second_timer, s->next_second_time);
287 } else {
288 rtc_next_second(&s->current_tm);
290 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
291 /* update in progress bit */
292 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
294 /* should be 244 us = 8 / 32768 seconds, but currently the
295 timers do not have the necessary resolution. */
296 delay = (ticks_per_sec * 1) / 100;
297 if (delay < 1)
298 delay = 1;
299 qemu_mod_timer(s->second_timer2,
300 s->next_second_time + delay);
304 static void rtc_update_second2(void *opaque)
306 RTCState *s = opaque;
308 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
309 rtc_copy_date(s);
312 /* check alarm */
313 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
314 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
315 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
316 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
317 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
318 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
319 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
321 s->cmos_data[RTC_REG_C] |= 0xa0;
322 qemu_irq_raise(s->irq);
326 /* update ended interrupt */
327 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
328 s->cmos_data[RTC_REG_C] |= 0x90;
329 qemu_irq_raise(s->irq);
332 /* clear update in progress bit */
333 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
335 s->next_second_time += ticks_per_sec;
336 qemu_mod_timer(s->second_timer, s->next_second_time);
339 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
341 RTCState *s = opaque;
342 int ret;
343 if ((addr & 1) == 0) {
344 return 0xff;
345 } else {
346 switch(s->cmos_index) {
347 case RTC_SECONDS:
348 case RTC_MINUTES:
349 case RTC_HOURS:
350 case RTC_DAY_OF_WEEK:
351 case RTC_DAY_OF_MONTH:
352 case RTC_MONTH:
353 case RTC_YEAR:
354 ret = s->cmos_data[s->cmos_index];
355 break;
356 case RTC_REG_A:
357 ret = s->cmos_data[s->cmos_index];
358 break;
359 case RTC_REG_C:
360 ret = s->cmos_data[s->cmos_index];
361 qemu_irq_lower(s->irq);
362 s->cmos_data[RTC_REG_C] = 0x00;
363 break;
364 default:
365 ret = s->cmos_data[s->cmos_index];
366 break;
368 #ifdef DEBUG_CMOS
369 printf("cmos: read index=0x%02x val=0x%02x\n",
370 s->cmos_index, ret);
371 #endif
372 return ret;
376 void rtc_set_memory(RTCState *s, int addr, int val)
378 if (addr >= 0 && addr <= 127)
379 s->cmos_data[addr] = val;
382 void rtc_set_date(RTCState *s, const struct tm *tm)
384 s->current_tm = *tm;
385 rtc_copy_date(s);
388 /* PC cmos mappings */
389 #define REG_IBM_CENTURY_BYTE 0x32
390 #define REG_IBM_PS2_CENTURY_BYTE 0x37
392 static void rtc_set_date_from_host(RTCState *s)
394 struct tm tm;
395 int val;
397 /* set the CMOS date */
398 qemu_get_timedate(&tm, 0);
399 rtc_set_date(s, &tm);
401 val = to_bcd(s, (tm.tm_year / 100) + 19);
402 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
403 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
406 static void rtc_save(QEMUFile *f, void *opaque)
408 RTCState *s = opaque;
410 qemu_put_buffer(f, s->cmos_data, 128);
411 qemu_put_8s(f, &s->cmos_index);
413 qemu_put_be32(f, s->current_tm.tm_sec);
414 qemu_put_be32(f, s->current_tm.tm_min);
415 qemu_put_be32(f, s->current_tm.tm_hour);
416 qemu_put_be32(f, s->current_tm.tm_wday);
417 qemu_put_be32(f, s->current_tm.tm_mday);
418 qemu_put_be32(f, s->current_tm.tm_mon);
419 qemu_put_be32(f, s->current_tm.tm_year);
421 qemu_put_timer(f, s->periodic_timer);
422 qemu_put_be64(f, s->next_periodic_time);
424 qemu_put_be64(f, s->next_second_time);
425 qemu_put_timer(f, s->second_timer);
426 qemu_put_timer(f, s->second_timer2);
429 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
431 RTCState *s = opaque;
433 if (version_id != 1)
434 return -EINVAL;
436 qemu_get_buffer(f, s->cmos_data, 128);
437 qemu_get_8s(f, &s->cmos_index);
439 s->current_tm.tm_sec=qemu_get_be32(f);
440 s->current_tm.tm_min=qemu_get_be32(f);
441 s->current_tm.tm_hour=qemu_get_be32(f);
442 s->current_tm.tm_wday=qemu_get_be32(f);
443 s->current_tm.tm_mday=qemu_get_be32(f);
444 s->current_tm.tm_mon=qemu_get_be32(f);
445 s->current_tm.tm_year=qemu_get_be32(f);
447 qemu_get_timer(f, s->periodic_timer);
448 s->next_periodic_time=qemu_get_be64(f);
450 s->next_second_time=qemu_get_be64(f);
451 qemu_get_timer(f, s->second_timer);
452 qemu_get_timer(f, s->second_timer2);
453 return 0;
456 RTCState *rtc_init(int base, qemu_irq irq)
458 RTCState *s;
460 s = qemu_mallocz(sizeof(RTCState));
461 if (!s)
462 return NULL;
464 s->irq = irq;
465 s->cmos_data[RTC_REG_A] = 0x26;
466 s->cmos_data[RTC_REG_B] = 0x02;
467 s->cmos_data[RTC_REG_C] = 0x00;
468 s->cmos_data[RTC_REG_D] = 0x80;
470 rtc_set_date_from_host(s);
472 s->periodic_timer = qemu_new_timer(vm_clock,
473 rtc_periodic_timer, s);
474 s->second_timer = qemu_new_timer(vm_clock,
475 rtc_update_second, s);
476 s->second_timer2 = qemu_new_timer(vm_clock,
477 rtc_update_second2, s);
479 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
480 qemu_mod_timer(s->second_timer2, s->next_second_time);
482 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
483 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
485 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
486 return s;
489 /* Memory mapped interface */
490 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
492 RTCState *s = opaque;
494 return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
497 static void cmos_mm_writeb (void *opaque,
498 target_phys_addr_t addr, uint32_t value)
500 RTCState *s = opaque;
502 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
505 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
507 RTCState *s = opaque;
508 uint32_t val;
510 val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
511 #ifdef TARGET_WORDS_BIGENDIAN
512 val = bswap16(val);
513 #endif
514 return val;
517 static void cmos_mm_writew (void *opaque,
518 target_phys_addr_t addr, uint32_t value)
520 RTCState *s = opaque;
521 #ifdef TARGET_WORDS_BIGENDIAN
522 value = bswap16(value);
523 #endif
524 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
527 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
529 RTCState *s = opaque;
530 uint32_t val;
532 val = cmos_ioport_read(s, addr >> s->it_shift);
533 #ifdef TARGET_WORDS_BIGENDIAN
534 val = bswap32(val);
535 #endif
536 return val;
539 static void cmos_mm_writel (void *opaque,
540 target_phys_addr_t addr, uint32_t value)
542 RTCState *s = opaque;
543 #ifdef TARGET_WORDS_BIGENDIAN
544 value = bswap32(value);
545 #endif
546 cmos_ioport_write(s, addr >> s->it_shift, value);
549 static CPUReadMemoryFunc *rtc_mm_read[] = {
550 &cmos_mm_readb,
551 &cmos_mm_readw,
552 &cmos_mm_readl,
555 static CPUWriteMemoryFunc *rtc_mm_write[] = {
556 &cmos_mm_writeb,
557 &cmos_mm_writew,
558 &cmos_mm_writel,
561 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
563 RTCState *s;
564 int io_memory;
566 s = qemu_mallocz(sizeof(RTCState));
567 if (!s)
568 return NULL;
570 s->irq = irq;
571 s->cmos_data[RTC_REG_A] = 0x26;
572 s->cmos_data[RTC_REG_B] = 0x02;
573 s->cmos_data[RTC_REG_C] = 0x00;
574 s->cmos_data[RTC_REG_D] = 0x80;
576 rtc_set_date_from_host(s);
578 s->periodic_timer = qemu_new_timer(vm_clock,
579 rtc_periodic_timer, s);
580 s->second_timer = qemu_new_timer(vm_clock,
581 rtc_update_second, s);
582 s->second_timer2 = qemu_new_timer(vm_clock,
583 rtc_update_second2, s);
585 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
586 qemu_mod_timer(s->second_timer2, s->next_second_time);
588 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
589 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
591 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
592 return s;