coroutine: add test-coroutine --benchmark-lifecycle
[qemu/stefanha.git] / target-alpha / cpu.h
blob919be12a38ba211fa01ea3ebccf6a19830d48c69
1 /*
2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #if !defined (__CPU_ALPHA_H__)
21 #define __CPU_ALPHA_H__
23 #include "config.h"
25 #define TARGET_LONG_BITS 64
27 #define CPUState struct CPUAlphaState
29 #include "cpu-defs.h"
31 #include "softfloat.h"
33 #define TARGET_HAS_ICE 1
35 #define ELF_MACHINE EM_ALPHA
37 #define ICACHE_LINE_SIZE 32
38 #define DCACHE_LINE_SIZE 32
40 #define TARGET_PAGE_BITS 13
42 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
43 #define TARGET_PHYS_ADDR_SPACE_BITS 44
44 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
46 /* Alpha major type */
47 enum {
48 ALPHA_EV3 = 1,
49 ALPHA_EV4 = 2,
50 ALPHA_SIM = 3,
51 ALPHA_LCA = 4,
52 ALPHA_EV5 = 5, /* 21164 */
53 ALPHA_EV45 = 6, /* 21064A */
54 ALPHA_EV56 = 7, /* 21164A */
57 /* EV4 minor type */
58 enum {
59 ALPHA_EV4_2 = 0,
60 ALPHA_EV4_3 = 1,
63 /* LCA minor type */
64 enum {
65 ALPHA_LCA_1 = 1, /* 21066 */
66 ALPHA_LCA_2 = 2, /* 20166 */
67 ALPHA_LCA_3 = 3, /* 21068 */
68 ALPHA_LCA_4 = 4, /* 21068 */
69 ALPHA_LCA_5 = 5, /* 21066A */
70 ALPHA_LCA_6 = 6, /* 21068A */
73 /* EV5 minor type */
74 enum {
75 ALPHA_EV5_1 = 1, /* Rev BA, CA */
76 ALPHA_EV5_2 = 2, /* Rev DA, EA */
77 ALPHA_EV5_3 = 3, /* Pass 3 */
78 ALPHA_EV5_4 = 4, /* Pass 3.2 */
79 ALPHA_EV5_5 = 5, /* Pass 4 */
82 /* EV45 minor type */
83 enum {
84 ALPHA_EV45_1 = 1, /* Pass 1 */
85 ALPHA_EV45_2 = 2, /* Pass 1.1 */
86 ALPHA_EV45_3 = 3, /* Pass 2 */
89 /* EV56 minor type */
90 enum {
91 ALPHA_EV56_1 = 1, /* Pass 1 */
92 ALPHA_EV56_2 = 2, /* Pass 2 */
95 enum {
96 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
97 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
98 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
99 IMPLVER_21364 = 3, /* EV7 & EV79 */
102 enum {
103 AMASK_BWX = 0x00000001,
104 AMASK_FIX = 0x00000002,
105 AMASK_CIX = 0x00000004,
106 AMASK_MVI = 0x00000100,
107 AMASK_TRAP = 0x00000200,
108 AMASK_PREFETCH = 0x00001000,
111 enum {
112 VAX_ROUND_NORMAL = 0,
113 VAX_ROUND_CHOPPED,
116 enum {
117 IEEE_ROUND_NORMAL = 0,
118 IEEE_ROUND_DYNAMIC,
119 IEEE_ROUND_PLUS,
120 IEEE_ROUND_MINUS,
121 IEEE_ROUND_CHOPPED,
124 /* IEEE floating-point operations encoding */
125 /* Trap mode */
126 enum {
127 FP_TRAP_I = 0x0,
128 FP_TRAP_U = 0x1,
129 FP_TRAP_S = 0x4,
130 FP_TRAP_SU = 0x5,
131 FP_TRAP_SUI = 0x7,
134 /* Rounding mode */
135 enum {
136 FP_ROUND_CHOPPED = 0x0,
137 FP_ROUND_MINUS = 0x1,
138 FP_ROUND_NORMAL = 0x2,
139 FP_ROUND_DYNAMIC = 0x3,
142 /* FPCR bits */
143 #define FPCR_SUM (1ULL << 63)
144 #define FPCR_INED (1ULL << 62)
145 #define FPCR_UNFD (1ULL << 61)
146 #define FPCR_UNDZ (1ULL << 60)
147 #define FPCR_DYN_SHIFT 58
148 #define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT)
149 #define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT)
150 #define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT)
151 #define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT)
152 #define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT)
153 #define FPCR_IOV (1ULL << 57)
154 #define FPCR_INE (1ULL << 56)
155 #define FPCR_UNF (1ULL << 55)
156 #define FPCR_OVF (1ULL << 54)
157 #define FPCR_DZE (1ULL << 53)
158 #define FPCR_INV (1ULL << 52)
159 #define FPCR_OVFD (1ULL << 51)
160 #define FPCR_DZED (1ULL << 50)
161 #define FPCR_INVD (1ULL << 49)
162 #define FPCR_DNZ (1ULL << 48)
163 #define FPCR_DNOD (1ULL << 47)
164 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
165 | FPCR_OVF | FPCR_DZE | FPCR_INV)
167 /* The silly software trap enables implemented by the kernel emulation.
168 These are more or less architecturally required, since the real hardware
169 has read-as-zero bits in the FPCR when the features aren't implemented.
170 For the purposes of QEMU, we pretend the FPCR can hold everything. */
171 #define SWCR_TRAP_ENABLE_INV (1ULL << 1)
172 #define SWCR_TRAP_ENABLE_DZE (1ULL << 2)
173 #define SWCR_TRAP_ENABLE_OVF (1ULL << 3)
174 #define SWCR_TRAP_ENABLE_UNF (1ULL << 4)
175 #define SWCR_TRAP_ENABLE_INE (1ULL << 5)
176 #define SWCR_TRAP_ENABLE_DNO (1ULL << 6)
177 #define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1))
179 #define SWCR_MAP_DMZ (1ULL << 12)
180 #define SWCR_MAP_UMZ (1ULL << 13)
181 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
183 #define SWCR_STATUS_INV (1ULL << 17)
184 #define SWCR_STATUS_DZE (1ULL << 18)
185 #define SWCR_STATUS_OVF (1ULL << 19)
186 #define SWCR_STATUS_UNF (1ULL << 20)
187 #define SWCR_STATUS_INE (1ULL << 21)
188 #define SWCR_STATUS_DNO (1ULL << 22)
189 #define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17))
191 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
193 /* MMU modes definitions */
195 /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
196 The Unix PALcode only exposes the kernel and user modes; presumably
197 executive and supervisor are used by VMS.
199 PALcode itself uses physical mode for code and kernel mode for data;
200 there are PALmode instructions that can access data via physical mode
201 or via an os-installed "alternate mode", which is one of the 4 above.
203 QEMU does not currently properly distinguish between code/data when
204 looking up addresses. To avoid having to address this issue, our
205 emulated PALcode will cheat and use the KSEG mapping for its code+data
206 rather than physical addresses.
208 Moreover, we're only emulating Unix PALcode, and not attempting VMS.
210 All of which allows us to drop all but kernel and user modes.
211 Elide the unused MMU modes to save space. */
213 #define NB_MMU_MODES 2
215 #define MMU_MODE0_SUFFIX _kernel
216 #define MMU_MODE1_SUFFIX _user
217 #define MMU_KERNEL_IDX 0
218 #define MMU_USER_IDX 1
220 typedef struct CPUAlphaState CPUAlphaState;
222 struct CPUAlphaState {
223 uint64_t ir[31];
224 float64 fir[31];
225 uint64_t pc;
226 uint64_t unique;
227 uint64_t lock_addr;
228 uint64_t lock_st_addr;
229 uint64_t lock_value;
230 float_status fp_status;
231 /* The following fields make up the FPCR, but in FP_STATUS format. */
232 uint8_t fpcr_exc_status;
233 uint8_t fpcr_exc_mask;
234 uint8_t fpcr_dyn_round;
235 uint8_t fpcr_flush_to_zero;
236 uint8_t fpcr_dnz;
237 uint8_t fpcr_dnod;
238 uint8_t fpcr_undz;
240 /* The Internal Processor Registers. Some of these we assume always
241 exist for use in user-mode. */
242 uint8_t ps;
243 uint8_t intr_flag;
244 uint8_t pal_mode;
245 uint8_t fen;
247 uint32_t pcc_ofs;
249 /* These pass data from the exception logic in the translator and
250 helpers to the OS entry point. This is used for both system
251 emulation and user-mode. */
252 uint64_t trap_arg0;
253 uint64_t trap_arg1;
254 uint64_t trap_arg2;
256 #if !defined(CONFIG_USER_ONLY)
257 /* The internal data required by our emulation of the Unix PALcode. */
258 uint64_t exc_addr;
259 uint64_t palbr;
260 uint64_t ptbr;
261 uint64_t vptptr;
262 uint64_t sysval;
263 uint64_t usp;
264 uint64_t shadow[8];
265 uint64_t scratch[24];
266 #endif
268 #if TARGET_LONG_BITS > HOST_LONG_BITS
269 /* temporary fixed-point registers
270 * used to emulate 64 bits target on 32 bits hosts
272 target_ulong t0, t1;
273 #endif
275 /* Those resources are used only in Qemu core */
276 CPU_COMMON
278 int error_code;
280 uint32_t features;
281 uint32_t amask;
282 int implver;
285 #define cpu_init cpu_alpha_init
286 #define cpu_exec cpu_alpha_exec
287 #define cpu_gen_code cpu_alpha_gen_code
288 #define cpu_signal_handler cpu_alpha_signal_handler
290 #include "cpu-all.h"
292 enum {
293 FEATURE_ASN = 0x00000001,
294 FEATURE_SPS = 0x00000002,
295 FEATURE_VIRBND = 0x00000004,
296 FEATURE_TBCHK = 0x00000008,
299 enum {
300 EXCP_RESET,
301 EXCP_MCHK,
302 EXCP_SMP_INTERRUPT,
303 EXCP_CLK_INTERRUPT,
304 EXCP_DEV_INTERRUPT,
305 EXCP_MMFAULT,
306 EXCP_UNALIGN,
307 EXCP_OPCDEC,
308 EXCP_ARITH,
309 EXCP_FEN,
310 EXCP_CALL_PAL,
311 /* For Usermode emulation. */
312 EXCP_STL_C,
313 EXCP_STQ_C,
316 /* Alpha-specific interrupt pending bits. */
317 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
318 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
319 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
321 /* OSF/1 Page table bits. */
322 enum {
323 PTE_VALID = 0x0001,
324 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
325 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
326 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
327 PTE_ASM = 0x0010,
328 PTE_KRE = 0x0100,
329 PTE_URE = 0x0200,
330 PTE_KWE = 0x1000,
331 PTE_UWE = 0x2000
334 /* Hardware interrupt (entInt) constants. */
335 enum {
336 INT_K_IP,
337 INT_K_CLK,
338 INT_K_MCHK,
339 INT_K_DEV,
340 INT_K_PERF,
343 /* Memory management (entMM) constants. */
344 enum {
345 MM_K_TNV,
346 MM_K_ACV,
347 MM_K_FOR,
348 MM_K_FOE,
349 MM_K_FOW
352 /* Arithmetic exception (entArith) constants. */
353 enum {
354 EXC_M_SWC = 1, /* Software completion */
355 EXC_M_INV = 2, /* Invalid operation */
356 EXC_M_DZE = 4, /* Division by zero */
357 EXC_M_FOV = 8, /* Overflow */
358 EXC_M_UNF = 16, /* Underflow */
359 EXC_M_INE = 32, /* Inexact result */
360 EXC_M_IOV = 64 /* Integer Overflow */
363 /* Processor status constants. */
364 enum {
365 /* Low 3 bits are interrupt mask level. */
366 PS_INT_MASK = 7,
368 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
369 The Unix PALcode only uses bit 4. */
370 PS_USER_MODE = 8
373 static inline int cpu_mmu_index(CPUState *env)
375 if (env->pal_mode) {
376 return MMU_KERNEL_IDX;
377 } else if (env->ps & PS_USER_MODE) {
378 return MMU_USER_IDX;
379 } else {
380 return MMU_KERNEL_IDX;
384 enum {
385 IR_V0 = 0,
386 IR_T0 = 1,
387 IR_T1 = 2,
388 IR_T2 = 3,
389 IR_T3 = 4,
390 IR_T4 = 5,
391 IR_T5 = 6,
392 IR_T6 = 7,
393 IR_T7 = 8,
394 IR_S0 = 9,
395 IR_S1 = 10,
396 IR_S2 = 11,
397 IR_S3 = 12,
398 IR_S4 = 13,
399 IR_S5 = 14,
400 IR_S6 = 15,
401 IR_FP = IR_S6,
402 IR_A0 = 16,
403 IR_A1 = 17,
404 IR_A2 = 18,
405 IR_A3 = 19,
406 IR_A4 = 20,
407 IR_A5 = 21,
408 IR_T8 = 22,
409 IR_T9 = 23,
410 IR_T10 = 24,
411 IR_T11 = 25,
412 IR_RA = 26,
413 IR_T12 = 27,
414 IR_PV = IR_T12,
415 IR_AT = 28,
416 IR_GP = 29,
417 IR_SP = 30,
418 IR_ZERO = 31,
421 CPUAlphaState * cpu_alpha_init (const char *cpu_model);
422 int cpu_alpha_exec(CPUAlphaState *s);
423 /* you can call this signal handler from your SIGBUS and SIGSEGV
424 signal handlers to inform the virtual CPU of exceptions. non zero
425 is returned if the signal was handled by the virtual CPU. */
426 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
427 void *puc);
428 int cpu_alpha_handle_mmu_fault (CPUState *env, uint64_t address, int rw,
429 int mmu_idx, int is_softmmu);
430 #define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
431 void do_interrupt (CPUState *env);
433 uint64_t cpu_alpha_load_fpcr (CPUState *env);
434 void cpu_alpha_store_fpcr (CPUState *env, uint64_t val);
435 #ifndef CONFIG_USER_ONLY
436 void swap_shadow_regs(CPUState *env);
437 QEMU_NORETURN void cpu_unassigned_access(CPUState *env1,
438 target_phys_addr_t addr, int is_write,
439 int is_exec, int unused, int size);
440 #endif
442 /* Bits in TB->FLAGS that control how translation is processed. */
443 enum {
444 TB_FLAGS_PAL_MODE = 1,
445 TB_FLAGS_FEN = 2,
446 TB_FLAGS_USER_MODE = 8,
448 TB_FLAGS_AMASK_SHIFT = 4,
449 TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
450 TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
451 TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
452 TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
453 TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
454 TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
457 static inline void cpu_get_tb_cpu_state(CPUState *env, target_ulong *pc,
458 target_ulong *cs_base, int *pflags)
460 int flags = 0;
462 *pc = env->pc;
463 *cs_base = 0;
465 if (env->pal_mode) {
466 flags = TB_FLAGS_PAL_MODE;
467 } else {
468 flags = env->ps & PS_USER_MODE;
470 if (env->fen) {
471 flags |= TB_FLAGS_FEN;
473 flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
475 *pflags = flags;
478 #if defined(CONFIG_USER_ONLY)
479 static inline void cpu_clone_regs(CPUState *env, target_ulong newsp)
481 if (newsp) {
482 env->ir[IR_SP] = newsp;
484 env->ir[IR_V0] = 0;
485 env->ir[IR_A3] = 0;
488 static inline void cpu_set_tls(CPUState *env, target_ulong newtls)
490 env->unique = newtls;
492 #endif
494 static inline bool cpu_has_work(CPUState *env)
496 /* Here we are checking to see if the CPU should wake up from HALT.
497 We will have gotten into this state only for WTINT from PALmode. */
498 /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
499 asleep even if (some) interrupts have been asserted. For now,
500 assume that if a CPU really wants to stay asleep, it will mask
501 interrupts at the chipset level, which will prevent these bits
502 from being set in the first place. */
503 return env->interrupt_request & (CPU_INTERRUPT_HARD
504 | CPU_INTERRUPT_TIMER
505 | CPU_INTERRUPT_SMP
506 | CPU_INTERRUPT_MCHK);
509 #include "exec-all.h"
511 static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
513 env->pc = tb->pc;
516 #endif /* !defined (__CPU_ALPHA_H__) */