2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag
;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState
*env
)
54 return cpu_has_work(env
);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
62 longjmp(env
->jmp_env
, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext
*uc
= puc
;
73 #elif defined(__OpenBSD__)
74 struct sigcontext
*uc
= puc
;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
92 env
->exception_index
= -1;
93 longjmp(env
->jmp_env
, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
100 unsigned long next_tb
;
101 TranslationBlock
*tb
;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles
> CF_COUNT_MASK
)
106 max_cycles
= CF_COUNT_MASK
;
108 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
110 env
->current_tb
= tb
;
111 /* execute the generated code */
112 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
114 if ((next_tb
& 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env
, tb
);
119 tb_phys_invalidate(tb
, -1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
129 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
131 tb_invalidated_flag
= 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc
= get_phys_addr_code(env
, pc
);
137 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
139 h
= tb_phys_hash_func(phys_pc
);
140 ptb1
= &tb_phys_hash
[h
];
146 tb
->page_addr
[0] == phys_page1
&&
147 tb
->cs_base
== cs_base
&&
148 tb
->flags
== flags
) {
149 /* check next page if needed */
150 if (tb
->page_addr
[1] != -1) {
151 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
153 phys_page2
= get_phys_addr_code(env
, virt_page2
);
154 if (tb
->page_addr
[1] == phys_page2
)
160 ptb1
= &tb
->phys_hash_next
;
163 /* if no translated code available, then translate it now */
164 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
167 /* we add the TB in the virtual pc hash table */
168 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
172 static inline TranslationBlock
*tb_find_fast(void)
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
196 debug_excp_handler
= handler
;
200 static void cpu_handle_debug_exception(CPUState
*env
)
204 if (!env
->watchpoint_hit
)
205 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
208 if (debug_excp_handler
)
209 debug_excp_handler(env
);
212 /* main execution loop */
214 int cpu_exec(CPUState
*env1
)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret
, interrupt_request
;
219 TranslationBlock
*tb
;
221 unsigned long next_tb
;
223 if (cpu_halted(env1
) == EXCP_HALTED
)
226 cpu_single_env
= env1
;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 if (!kvm_enabled()) {
236 /* put eflags in CPU temporary format */
237 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
238 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
239 CC_OP
= CC_OP_EFLAGS
;
240 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
242 #elif defined(TARGET_SPARC)
243 #elif defined(TARGET_M68K)
244 env
->cc_op
= CC_OP_FLAGS
;
245 env
->cc_dest
= env
->sr
& 0xf;
246 env
->cc_x
= (env
->sr
>> 4) & 1;
247 #elif defined(TARGET_ALPHA)
248 #elif defined(TARGET_ARM)
249 #elif defined(TARGET_PPC)
250 #elif defined(TARGET_MICROBLAZE)
251 #elif defined(TARGET_MIPS)
252 #elif defined(TARGET_SH4)
253 #elif defined(TARGET_CRIS)
254 #elif defined(TARGET_S390X)
257 #error unsupported target CPU
259 env
->exception_index
= -1;
261 /* prepare setjmp context for exception handling */
263 if (setjmp(env
->jmp_env
) == 0) {
264 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
266 env
= cpu_single_env
;
267 #define env cpu_single_env
269 env
->current_tb
= NULL
;
270 /* if an exception is pending, we execute it here */
271 if (env
->exception_index
>= 0) {
272 if (env
->exception_index
>= EXCP_INTERRUPT
) {
273 /* exit request from the cpu execution loop */
274 ret
= env
->exception_index
;
275 if (ret
== EXCP_DEBUG
)
276 cpu_handle_debug_exception(env
);
279 #if defined(CONFIG_USER_ONLY)
280 /* if user mode only, we simulate a fake exception
281 which will be handled outside the cpu execution
283 #if defined(TARGET_I386)
284 do_interrupt_user(env
->exception_index
,
285 env
->exception_is_int
,
287 env
->exception_next_eip
);
288 /* successfully delivered */
289 env
->old_exception
= -1;
291 ret
= env
->exception_index
;
294 #if defined(TARGET_I386)
295 /* simulate a real cpu exception. On i386, it can
296 trigger new exceptions, but we do not handle
297 double or triple faults yet. */
298 do_interrupt(env
->exception_index
,
299 env
->exception_is_int
,
301 env
->exception_next_eip
, 0);
302 /* successfully delivered */
303 env
->old_exception
= -1;
304 #elif defined(TARGET_PPC)
306 #elif defined(TARGET_MICROBLAZE)
308 #elif defined(TARGET_MIPS)
310 #elif defined(TARGET_SPARC)
312 #elif defined(TARGET_ARM)
314 #elif defined(TARGET_SH4)
316 #elif defined(TARGET_ALPHA)
318 #elif defined(TARGET_CRIS)
320 #elif defined(TARGET_M68K)
325 env
->exception_index
= -1;
330 longjmp(env
->jmp_env
, 1);
333 next_tb
= 0; /* force lookup of first TB */
335 interrupt_request
= env
->interrupt_request
;
336 if (unlikely(interrupt_request
)) {
337 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
338 /* Mask out external interrupts for this step. */
339 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
344 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
345 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
346 env
->exception_index
= EXCP_DEBUG
;
349 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
350 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
351 defined(TARGET_MICROBLAZE)
352 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
353 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
355 env
->exception_index
= EXCP_HLT
;
359 #if defined(TARGET_I386)
360 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
361 svm_check_intercept(SVM_EXIT_INIT
);
363 env
->exception_index
= EXCP_HALTED
;
365 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
367 } else if (env
->hflags2
& HF2_GIF_MASK
) {
368 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
369 !(env
->hflags
& HF_SMM_MASK
)) {
370 svm_check_intercept(SVM_EXIT_SMI
);
371 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
374 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
375 !(env
->hflags2
& HF2_NMI_MASK
)) {
376 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
377 env
->hflags2
|= HF2_NMI_MASK
;
378 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
380 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
381 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
382 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
384 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
385 (((env
->hflags2
& HF2_VINTR_MASK
) &&
386 (env
->hflags2
& HF2_HIF_MASK
)) ||
387 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
388 (env
->eflags
& IF_MASK
&&
389 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
391 svm_check_intercept(SVM_EXIT_INTR
);
392 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
393 intno
= cpu_get_pic_interrupt(env
);
394 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
395 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
397 env
= cpu_single_env
;
398 #define env cpu_single_env
400 do_interrupt(intno
, 0, 0, 0, 1);
401 /* ensure that no TB jump will be modified as
402 the program flow was changed */
404 #if !defined(CONFIG_USER_ONLY)
405 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
406 (env
->eflags
& IF_MASK
) &&
407 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
409 /* FIXME: this should respect TPR */
410 svm_check_intercept(SVM_EXIT_VINTR
);
411 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
412 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
413 do_interrupt(intno
, 0, 0, 0, 1);
414 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
419 #elif defined(TARGET_PPC)
421 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
425 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
426 ppc_hw_interrupt(env
);
427 if (env
->pending_interrupts
== 0)
428 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
431 #elif defined(TARGET_MICROBLAZE)
432 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
433 && (env
->sregs
[SR_MSR
] & MSR_IE
)
434 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
435 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
436 env
->exception_index
= EXCP_IRQ
;
440 #elif defined(TARGET_MIPS)
441 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
442 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
443 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
444 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
445 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
446 !(env
->hflags
& MIPS_HFLAG_DM
)) {
448 env
->exception_index
= EXCP_EXT_INTERRUPT
;
453 #elif defined(TARGET_SPARC)
454 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
455 cpu_interrupts_enabled(env
)) {
456 int pil
= env
->interrupt_index
& 15;
457 int type
= env
->interrupt_index
& 0xf0;
459 if (((type
== TT_EXTINT
) &&
460 (pil
== 15 || pil
> env
->psrpil
)) ||
462 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
463 env
->exception_index
= env
->interrupt_index
;
465 env
->interrupt_index
= 0;
468 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
469 //do_interrupt(0, 0, 0, 0, 0);
470 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
472 #elif defined(TARGET_ARM)
473 if (interrupt_request
& CPU_INTERRUPT_FIQ
474 && !(env
->uncached_cpsr
& CPSR_F
)) {
475 env
->exception_index
= EXCP_FIQ
;
479 /* ARMv7-M interrupt return works by loading a magic value
480 into the PC. On real hardware the load causes the
481 return to occur. The qemu implementation performs the
482 jump normally, then does the exception return when the
483 CPU tries to execute code at the magic address.
484 This will cause the magic PC value to be pushed to
485 the stack if an interrupt occured at the wrong time.
486 We avoid this by disabling interrupts when
487 pc contains a magic address. */
488 if (interrupt_request
& CPU_INTERRUPT_HARD
489 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
490 || !(env
->uncached_cpsr
& CPSR_I
))) {
491 env
->exception_index
= EXCP_IRQ
;
495 #elif defined(TARGET_SH4)
496 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
500 #elif defined(TARGET_ALPHA)
501 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
505 #elif defined(TARGET_CRIS)
506 if (interrupt_request
& CPU_INTERRUPT_HARD
507 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
508 env
->exception_index
= EXCP_IRQ
;
512 if (interrupt_request
& CPU_INTERRUPT_NMI
513 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
514 env
->exception_index
= EXCP_NMI
;
518 #elif defined(TARGET_M68K)
519 if (interrupt_request
& CPU_INTERRUPT_HARD
520 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
521 < env
->pending_level
) {
522 /* Real hardware gets the interrupt vector via an
523 IACK cycle at this point. Current emulated
524 hardware doesn't rely on this, so we
525 provide/save the vector when the interrupt is
527 env
->exception_index
= env
->pending_vector
;
532 /* Don't use the cached interupt_request value,
533 do_interrupt may have updated the EXITTB flag. */
534 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
535 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
536 /* ensure that no TB jump will be modified as
537 the program flow was changed */
541 if (unlikely(env
->exit_request
)) {
542 env
->exit_request
= 0;
543 env
->exception_index
= EXCP_INTERRUPT
;
546 #ifdef CONFIG_DEBUG_EXEC
547 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
548 /* restore flags in standard format */
550 #if defined(TARGET_I386)
551 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
552 log_cpu_state(env
, X86_DUMP_CCOP
);
553 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
554 #elif defined(TARGET_ARM)
555 log_cpu_state(env
, 0);
556 #elif defined(TARGET_SPARC)
557 log_cpu_state(env
, 0);
558 #elif defined(TARGET_PPC)
559 log_cpu_state(env
, 0);
560 #elif defined(TARGET_M68K)
561 cpu_m68k_flush_flags(env
, env
->cc_op
);
562 env
->cc_op
= CC_OP_FLAGS
;
563 env
->sr
= (env
->sr
& 0xffe0)
564 | env
->cc_dest
| (env
->cc_x
<< 4);
565 log_cpu_state(env
, 0);
566 #elif defined(TARGET_MICROBLAZE)
567 log_cpu_state(env
, 0);
568 #elif defined(TARGET_MIPS)
569 log_cpu_state(env
, 0);
570 #elif defined(TARGET_SH4)
571 log_cpu_state(env
, 0);
572 #elif defined(TARGET_ALPHA)
573 log_cpu_state(env
, 0);
574 #elif defined(TARGET_CRIS)
575 log_cpu_state(env
, 0);
577 #error unsupported target CPU
583 /* Note: we do it here to avoid a gcc bug on Mac OS X when
584 doing it in tb_find_slow */
585 if (tb_invalidated_flag
) {
586 /* as some TB could have been invalidated because
587 of memory exceptions while generating the code, we
588 must recompute the hash index here */
590 tb_invalidated_flag
= 0;
592 #ifdef CONFIG_DEBUG_EXEC
593 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
594 (long)tb
->tc_ptr
, tb
->pc
,
595 lookup_symbol(tb
->pc
));
597 /* see if we can patch the calling TB. When the TB
598 spans two pages, we cannot safely do a direct
601 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
602 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
605 spin_unlock(&tb_lock
);
606 env
->current_tb
= tb
;
608 /* cpu_interrupt might be called while translating the
609 TB, but before it is linked into a potentially
610 infinite loop and becomes env->current_tb. Avoid
611 starting execution if there is a pending interrupt. */
612 if (unlikely (env
->exit_request
))
613 env
->current_tb
= NULL
;
615 while (env
->current_tb
) {
617 /* execute the generated code */
618 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
620 env
= cpu_single_env
;
621 #define env cpu_single_env
623 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
624 env
->current_tb
= NULL
;
625 if ((next_tb
& 3) == 2) {
626 /* Instruction counter expired. */
628 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
630 cpu_pc_from_tb(env
, tb
);
631 insns_left
= env
->icount_decr
.u32
;
632 if (env
->icount_extra
&& insns_left
>= 0) {
633 /* Refill decrementer and continue execution. */
634 env
->icount_extra
+= insns_left
;
635 if (env
->icount_extra
> 0xffff) {
638 insns_left
= env
->icount_extra
;
640 env
->icount_extra
-= insns_left
;
641 env
->icount_decr
.u16
.low
= insns_left
;
643 if (insns_left
> 0) {
644 /* Execute remaining instructions. */
645 cpu_exec_nocache(insns_left
, tb
);
647 env
->exception_index
= EXCP_INTERRUPT
;
653 /* reset soft MMU for next block (it can currently
654 only be set by a memory fault) */
662 #if defined(TARGET_I386)
663 /* restore flags in standard format */
664 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
665 #elif defined(TARGET_ARM)
666 /* XXX: Save/restore host fpu exception state?. */
667 #elif defined(TARGET_SPARC)
668 #elif defined(TARGET_PPC)
669 #elif defined(TARGET_M68K)
670 cpu_m68k_flush_flags(env
, env
->cc_op
);
671 env
->cc_op
= CC_OP_FLAGS
;
672 env
->sr
= (env
->sr
& 0xffe0)
673 | env
->cc_dest
| (env
->cc_x
<< 4);
674 #elif defined(TARGET_MICROBLAZE)
675 #elif defined(TARGET_MIPS)
676 #elif defined(TARGET_SH4)
677 #elif defined(TARGET_ALPHA)
678 #elif defined(TARGET_CRIS)
679 #elif defined(TARGET_S390X)
682 #error unsupported target CPU
685 /* restore global registers */
686 #include "hostregs_helper.h"
688 /* fail safe : never use cpu_single_env outside cpu_exec() */
689 cpu_single_env
= NULL
;
693 /* must only be called from the generated code as an exception can be
695 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
697 /* XXX: cannot enable it yet because it yields to MMU exception
698 where NIP != read address on PowerPC */
700 target_ulong phys_addr
;
701 phys_addr
= get_phys_addr_code(env
, start
);
702 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
706 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
708 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
710 CPUX86State
*saved_env
;
714 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
716 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
717 (selector
<< 4), 0xffff, 0);
719 helper_load_seg(seg_reg
, selector
);
724 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
726 CPUX86State
*saved_env
;
731 helper_fsave(ptr
, data32
);
736 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
738 CPUX86State
*saved_env
;
743 helper_frstor(ptr
, data32
);
748 #endif /* TARGET_I386 */
750 #if !defined(CONFIG_SOFTMMU)
752 #if defined(TARGET_I386)
753 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
755 #define EXCEPTION_ACTION cpu_loop_exit()
758 /* 'pc' is the host PC at which the exception was raised. 'address' is
759 the effective address of the memory exception. 'is_write' is 1 if a
760 write caused the exception and otherwise 0'. 'old_set' is the
761 signal set which should be restored */
762 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
763 int is_write
, sigset_t
*old_set
,
766 TranslationBlock
*tb
;
770 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
771 #if defined(DEBUG_SIGNAL)
772 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
773 pc
, address
, is_write
, *(unsigned long *)old_set
);
775 /* XXX: locking issue */
776 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
780 /* see if it is an MMU fault */
781 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
783 return 0; /* not an MMU fault */
785 return 1; /* the MMU fault was handled without causing real CPU fault */
786 /* now we have a real cpu fault */
789 /* the PC is inside the translated code. It means that we have
790 a virtual CPU fault */
791 cpu_restore_state(tb
, env
, pc
, puc
);
794 /* we restore the process signal mask as the sigreturn should
795 do it (XXX: use sigsetjmp) */
796 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
799 /* never comes here */
803 #if defined(__i386__)
805 #if defined(__APPLE__)
806 # include <sys/ucontext.h>
808 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
809 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
810 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
811 # define MASK_sig(context) ((context)->uc_sigmask)
812 #elif defined (__NetBSD__)
813 # include <ucontext.h>
815 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
816 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
817 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
818 # define MASK_sig(context) ((context)->uc_sigmask)
819 #elif defined (__FreeBSD__) || defined(__DragonFly__)
820 # include <ucontext.h>
822 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
823 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
824 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
825 # define MASK_sig(context) ((context)->uc_sigmask)
826 #elif defined(__OpenBSD__)
827 # define EIP_sig(context) ((context)->sc_eip)
828 # define TRAP_sig(context) ((context)->sc_trapno)
829 # define ERROR_sig(context) ((context)->sc_err)
830 # define MASK_sig(context) ((context)->sc_mask)
832 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
833 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
834 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
835 # define MASK_sig(context) ((context)->uc_sigmask)
838 int cpu_signal_handler(int host_signum
, void *pinfo
,
841 siginfo_t
*info
= pinfo
;
842 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
843 ucontext_t
*uc
= puc
;
844 #elif defined(__OpenBSD__)
845 struct sigcontext
*uc
= puc
;
847 struct ucontext
*uc
= puc
;
856 #define REG_TRAPNO TRAPNO
859 trapno
= TRAP_sig(uc
);
860 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
862 (ERROR_sig(uc
) >> 1) & 1 : 0,
866 #elif defined(__x86_64__)
869 #define PC_sig(context) _UC_MACHINE_PC(context)
870 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
871 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
872 #define MASK_sig(context) ((context)->uc_sigmask)
873 #elif defined(__OpenBSD__)
874 #define PC_sig(context) ((context)->sc_rip)
875 #define TRAP_sig(context) ((context)->sc_trapno)
876 #define ERROR_sig(context) ((context)->sc_err)
877 #define MASK_sig(context) ((context)->sc_mask)
878 #elif defined (__FreeBSD__) || defined(__DragonFly__)
879 #include <ucontext.h>
881 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
882 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
883 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
884 #define MASK_sig(context) ((context)->uc_sigmask)
886 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
887 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
888 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
889 #define MASK_sig(context) ((context)->uc_sigmask)
892 int cpu_signal_handler(int host_signum
, void *pinfo
,
895 siginfo_t
*info
= pinfo
;
897 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
898 ucontext_t
*uc
= puc
;
899 #elif defined(__OpenBSD__)
900 struct sigcontext
*uc
= puc
;
902 struct ucontext
*uc
= puc
;
906 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
907 TRAP_sig(uc
) == 0xe ?
908 (ERROR_sig(uc
) >> 1) & 1 : 0,
912 #elif defined(_ARCH_PPC)
914 /***********************************************************************
915 * signal context platform-specific definitions
919 /* All Registers access - only for local access */
920 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
921 /* Gpr Registers access */
922 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
923 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
924 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
925 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
926 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
927 # define LR_sig(context) REG_sig(link, context) /* Link register */
928 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
929 /* Float Registers access */
930 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
931 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
932 /* Exception Registers access */
933 # define DAR_sig(context) REG_sig(dar, context)
934 # define DSISR_sig(context) REG_sig(dsisr, context)
935 # define TRAP_sig(context) REG_sig(trap, context)
939 # include <sys/ucontext.h>
940 typedef struct ucontext SIGCONTEXT
;
941 /* All Registers access - only for local access */
942 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
943 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
944 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
945 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
946 /* Gpr Registers access */
947 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
948 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
949 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
950 # define CTR_sig(context) REG_sig(ctr, context)
951 # define XER_sig(context) REG_sig(xer, context) /* Link register */
952 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
953 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
954 /* Float Registers access */
955 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
956 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
957 /* Exception Registers access */
958 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
959 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
960 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
961 #endif /* __APPLE__ */
963 int cpu_signal_handler(int host_signum
, void *pinfo
,
966 siginfo_t
*info
= pinfo
;
967 struct ucontext
*uc
= puc
;
975 if (DSISR_sig(uc
) & 0x00800000)
978 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
981 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
982 is_write
, &uc
->uc_sigmask
, puc
);
985 #elif defined(__alpha__)
987 int cpu_signal_handler(int host_signum
, void *pinfo
,
990 siginfo_t
*info
= pinfo
;
991 struct ucontext
*uc
= puc
;
992 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
996 /* XXX: need kernel patch to get write flag faster */
997 switch (insn
>> 26) {
1012 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1013 is_write
, &uc
->uc_sigmask
, puc
);
1015 #elif defined(__sparc__)
1017 int cpu_signal_handler(int host_signum
, void *pinfo
,
1020 siginfo_t
*info
= pinfo
;
1023 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1024 uint32_t *regs
= (uint32_t *)(info
+ 1);
1025 void *sigmask
= (regs
+ 20);
1026 /* XXX: is there a standard glibc define ? */
1027 unsigned long pc
= regs
[1];
1030 struct sigcontext
*sc
= puc
;
1031 unsigned long pc
= sc
->sigc_regs
.tpc
;
1032 void *sigmask
= (void *)sc
->sigc_mask
;
1033 #elif defined(__OpenBSD__)
1034 struct sigcontext
*uc
= puc
;
1035 unsigned long pc
= uc
->sc_pc
;
1036 void *sigmask
= (void *)(long)uc
->sc_mask
;
1040 /* XXX: need kernel patch to get write flag faster */
1042 insn
= *(uint32_t *)pc
;
1043 if ((insn
>> 30) == 3) {
1044 switch((insn
>> 19) & 0x3f) {
1068 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1069 is_write
, sigmask
, NULL
);
1072 #elif defined(__arm__)
1074 int cpu_signal_handler(int host_signum
, void *pinfo
,
1077 siginfo_t
*info
= pinfo
;
1078 struct ucontext
*uc
= puc
;
1082 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1083 pc
= uc
->uc_mcontext
.gregs
[R15
];
1085 pc
= uc
->uc_mcontext
.arm_pc
;
1087 /* XXX: compute is_write */
1089 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1091 &uc
->uc_sigmask
, puc
);
1094 #elif defined(__mc68000)
1096 int cpu_signal_handler(int host_signum
, void *pinfo
,
1099 siginfo_t
*info
= pinfo
;
1100 struct ucontext
*uc
= puc
;
1104 pc
= uc
->uc_mcontext
.gregs
[16];
1105 /* XXX: compute is_write */
1107 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1109 &uc
->uc_sigmask
, puc
);
1112 #elif defined(__ia64)
1115 /* This ought to be in <bits/siginfo.h>... */
1116 # define __ISR_VALID 1
1119 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1121 siginfo_t
*info
= pinfo
;
1122 struct ucontext
*uc
= puc
;
1126 ip
= uc
->uc_mcontext
.sc_ip
;
1127 switch (host_signum
) {
1133 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1134 /* ISR.W (write-access) is bit 33: */
1135 is_write
= (info
->si_isr
>> 33) & 1;
1141 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1143 &uc
->uc_sigmask
, puc
);
1146 #elif defined(__s390__)
1148 int cpu_signal_handler(int host_signum
, void *pinfo
,
1151 siginfo_t
*info
= pinfo
;
1152 struct ucontext
*uc
= puc
;
1156 pc
= uc
->uc_mcontext
.psw
.addr
;
1157 /* XXX: compute is_write */
1159 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1160 is_write
, &uc
->uc_sigmask
, puc
);
1163 #elif defined(__mips__)
1165 int cpu_signal_handler(int host_signum
, void *pinfo
,
1168 siginfo_t
*info
= pinfo
;
1169 struct ucontext
*uc
= puc
;
1170 greg_t pc
= uc
->uc_mcontext
.pc
;
1173 /* XXX: compute is_write */
1175 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1176 is_write
, &uc
->uc_sigmask
, puc
);
1179 #elif defined(__hppa__)
1181 int cpu_signal_handler(int host_signum
, void *pinfo
,
1184 struct siginfo
*info
= pinfo
;
1185 struct ucontext
*uc
= puc
;
1189 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1190 /* FIXME: compute is_write */
1192 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1194 &uc
->uc_sigmask
, puc
);
1199 #error host CPU specific signal handler needed
1203 #endif /* !defined(CONFIG_SOFTMMU) */