1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
38 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO
= 0x0100000,
42 ADDR_COMPAT_LAYOUT
= 0x0200000,
43 READ_IMPLIES_EXEC
= 0x0400000,
44 ADDR_LIMIT_32BIT
= 0x0800000,
45 SHORT_INODE
= 0x1000000,
46 WHOLE_SECONDS
= 0x2000000,
47 STICKY_TIMEOUTS
= 0x4000000,
48 ADDR_LIMIT_3GB
= 0x8000000,
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
59 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
60 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
61 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
62 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
63 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
64 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
65 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
66 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
68 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
69 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
71 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
72 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
73 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
74 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
76 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
77 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
78 PER_OSF4
= 0x000f, /* OSF/1 v4 */
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 /* this flag is uneffective under linux too, should be deleted */
90 #define MAP_DENYWRITE 0
93 /* should probably go in elf.h */
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
101 #define ELF_DATA ELFDATA2LSB
104 typedef target_ulong target_elf_greg_t
;
106 typedef uint16_t target_uid_t
;
107 typedef uint16_t target_gid_t
;
109 typedef uint32_t target_uid_t
;
110 typedef uint32_t target_gid_t
;
112 typedef int32_t target_pid_t
;
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform
[] = "i386";
121 int family
= (thread_env
->cpuid_version
>> 8) & 0xff;
125 elf_platform
[1] = '0' + family
;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 return thread_env
->cpuid_features
;
137 #define ELF_START_MMAP 0x2aaaaab000ULL
138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
140 #define ELF_CLASS ELFCLASS64
141 #define ELF_ARCH EM_X86_64
143 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
146 regs
->rsp
= infop
->start_stack
;
147 regs
->rip
= infop
->entry
;
151 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
158 * See linux kernel: arch/x86/include/asm/elf.h
160 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
162 (*regs
)[0] = env
->regs
[15];
163 (*regs
)[1] = env
->regs
[14];
164 (*regs
)[2] = env
->regs
[13];
165 (*regs
)[3] = env
->regs
[12];
166 (*regs
)[4] = env
->regs
[R_EBP
];
167 (*regs
)[5] = env
->regs
[R_EBX
];
168 (*regs
)[6] = env
->regs
[11];
169 (*regs
)[7] = env
->regs
[10];
170 (*regs
)[8] = env
->regs
[9];
171 (*regs
)[9] = env
->regs
[8];
172 (*regs
)[10] = env
->regs
[R_EAX
];
173 (*regs
)[11] = env
->regs
[R_ECX
];
174 (*regs
)[12] = env
->regs
[R_EDX
];
175 (*regs
)[13] = env
->regs
[R_ESI
];
176 (*regs
)[14] = env
->regs
[R_EDI
];
177 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
178 (*regs
)[16] = env
->eip
;
179 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
180 (*regs
)[18] = env
->eflags
;
181 (*regs
)[19] = env
->regs
[R_ESP
];
182 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
183 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
184 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
185 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
186 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
187 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
188 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
193 #define ELF_START_MMAP 0x80000000
196 * This is used to ensure we don't load something for the wrong architecture.
198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
201 * These are used to set parameters in the core dumps.
203 #define ELF_CLASS ELFCLASS32
204 #define ELF_ARCH EM_386
206 static inline void init_thread(struct target_pt_regs
*regs
,
207 struct image_info
*infop
)
209 regs
->esp
= infop
->start_stack
;
210 regs
->eip
= infop
->entry
;
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
218 A value of 0 tells we have no such handler. */
223 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
230 * See linux kernel: arch/x86/include/asm/elf.h
232 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
234 (*regs
)[0] = env
->regs
[R_EBX
];
235 (*regs
)[1] = env
->regs
[R_ECX
];
236 (*regs
)[2] = env
->regs
[R_EDX
];
237 (*regs
)[3] = env
->regs
[R_ESI
];
238 (*regs
)[4] = env
->regs
[R_EDI
];
239 (*regs
)[5] = env
->regs
[R_EBP
];
240 (*regs
)[6] = env
->regs
[R_EAX
];
241 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
242 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
243 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
244 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
245 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
246 (*regs
)[12] = env
->eip
;
247 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
248 (*regs
)[14] = env
->eflags
;
249 (*regs
)[15] = env
->regs
[R_ESP
];
250 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
254 #define USE_ELF_CORE_DUMP
255 #define ELF_EXEC_PAGESIZE 4096
261 #define ELF_START_MMAP 0x80000000
263 #define elf_check_arch(x) ( (x) == EM_ARM )
265 #define ELF_CLASS ELFCLASS32
266 #define ELF_ARCH EM_ARM
268 static inline void init_thread(struct target_pt_regs
*regs
,
269 struct image_info
*infop
)
271 abi_long stack
= infop
->start_stack
;
272 memset(regs
, 0, sizeof(*regs
));
273 regs
->ARM_cpsr
= 0x10;
274 if (infop
->entry
& 1)
275 regs
->ARM_cpsr
|= CPSR_T
;
276 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
277 regs
->ARM_sp
= infop
->start_stack
;
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
280 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
281 /* XXX: it seems that r0 is zeroed after ! */
283 /* For uClinux PIC binaries. */
284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
285 regs
->ARM_r10
= infop
->start_data
;
289 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
291 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
293 (*regs
)[0] = tswapl(env
->regs
[0]);
294 (*regs
)[1] = tswapl(env
->regs
[1]);
295 (*regs
)[2] = tswapl(env
->regs
[2]);
296 (*regs
)[3] = tswapl(env
->regs
[3]);
297 (*regs
)[4] = tswapl(env
->regs
[4]);
298 (*regs
)[5] = tswapl(env
->regs
[5]);
299 (*regs
)[6] = tswapl(env
->regs
[6]);
300 (*regs
)[7] = tswapl(env
->regs
[7]);
301 (*regs
)[8] = tswapl(env
->regs
[8]);
302 (*regs
)[9] = tswapl(env
->regs
[9]);
303 (*regs
)[10] = tswapl(env
->regs
[10]);
304 (*regs
)[11] = tswapl(env
->regs
[11]);
305 (*regs
)[12] = tswapl(env
->regs
[12]);
306 (*regs
)[13] = tswapl(env
->regs
[13]);
307 (*regs
)[14] = tswapl(env
->regs
[14]);
308 (*regs
)[15] = tswapl(env
->regs
[15]);
310 (*regs
)[16] = tswapl(cpsr_read((CPUState
*)env
));
311 (*regs
)[17] = tswapl(env
->regs
[0]); /* XXX */
314 #define USE_ELF_CORE_DUMP
315 #define ELF_EXEC_PAGESIZE 4096
319 ARM_HWCAP_ARM_SWP
= 1 << 0,
320 ARM_HWCAP_ARM_HALF
= 1 << 1,
321 ARM_HWCAP_ARM_THUMB
= 1 << 2,
322 ARM_HWCAP_ARM_26BIT
= 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
324 ARM_HWCAP_ARM_FPA
= 1 << 5,
325 ARM_HWCAP_ARM_VFP
= 1 << 6,
326 ARM_HWCAP_ARM_EDSP
= 1 << 7,
327 ARM_HWCAP_ARM_JAVA
= 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE
= 1 << 10,
330 ARM_HWCAP_ARM_NEON
= 1 << 11,
331 ARM_HWCAP_ARM_VFPv3
= 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16
= 1 << 13,
335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
343 #ifdef TARGET_SPARC64
345 #define ELF_START_MMAP 0x80000000
348 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
350 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
353 #define ELF_CLASS ELFCLASS64
354 #define ELF_ARCH EM_SPARCV9
356 #define STACK_BIAS 2047
358 static inline void init_thread(struct target_pt_regs
*regs
,
359 struct image_info
*infop
)
364 regs
->pc
= infop
->entry
;
365 regs
->npc
= regs
->pc
+ 4;
368 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
370 if (personality(infop
->personality
) == PER_LINUX32
)
371 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
373 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
378 #define ELF_START_MMAP 0x80000000
380 #define elf_check_arch(x) ( (x) == EM_SPARC )
382 #define ELF_CLASS ELFCLASS32
383 #define ELF_ARCH EM_SPARC
385 static inline void init_thread(struct target_pt_regs
*regs
,
386 struct image_info
*infop
)
389 regs
->pc
= infop
->entry
;
390 regs
->npc
= regs
->pc
+ 4;
392 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
400 #define ELF_START_MMAP 0x80000000
402 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
404 #define elf_check_arch(x) ( (x) == EM_PPC64 )
406 #define ELF_CLASS ELFCLASS64
410 #define elf_check_arch(x) ( (x) == EM_PPC )
412 #define ELF_CLASS ELFCLASS32
416 #define ELF_ARCH EM_PPC
418 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
419 See arch/powerpc/include/asm/cputable.h. */
421 QEMU_PPC_FEATURE_32
= 0x80000000,
422 QEMU_PPC_FEATURE_64
= 0x40000000,
423 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
424 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
425 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
426 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
427 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
428 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
429 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
430 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
431 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
432 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
433 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
434 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
435 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
436 QEMU_PPC_FEATURE_CELL
= 0x00010000,
437 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
438 QEMU_PPC_FEATURE_SMT
= 0x00004000,
439 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
440 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
441 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
442 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
443 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
444 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
445 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
446 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
448 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
449 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
452 #define ELF_HWCAP get_elf_hwcap()
454 static uint32_t get_elf_hwcap(void)
456 CPUState
*e
= thread_env
;
457 uint32_t features
= 0;
459 /* We don't have to be terribly complete here; the high points are
460 Altivec/FP/SPE support. Anything else is just a bonus. */
461 #define GET_FEATURE(flag, feature) \
462 do {if (e->insns_flags & flag) features |= feature; } while(0)
463 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
464 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
465 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
466 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
467 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
468 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
469 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
470 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
477 * The requirements here are:
478 * - keep the final alignment of sp (sp & 0xf)
479 * - make sure the 32-bit value at the first 16 byte aligned position of
480 * AUXV is greater than 16 for glibc compatibility.
481 * AT_IGNOREPPC is used for that.
482 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
483 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
485 #define DLINFO_ARCH_ITEMS 5
486 #define ARCH_DLINFO \
488 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
489 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
490 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
492 * Now handle glibc compatibility. \
494 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
495 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
498 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
500 _regs
->gpr
[1] = infop
->start_stack
;
501 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
502 _regs
->gpr
[2] = ldq_raw(infop
->entry
+ 8) + infop
->load_addr
;
503 infop
->entry
= ldq_raw(infop
->entry
) + infop
->load_addr
;
505 _regs
->nip
= infop
->entry
;
508 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
510 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
512 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
515 target_ulong ccr
= 0;
517 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
518 (*regs
)[i
] = tswapl(env
->gpr
[i
]);
521 (*regs
)[32] = tswapl(env
->nip
);
522 (*regs
)[33] = tswapl(env
->msr
);
523 (*regs
)[35] = tswapl(env
->ctr
);
524 (*regs
)[36] = tswapl(env
->lr
);
525 (*regs
)[37] = tswapl(env
->xer
);
527 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
528 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
530 (*regs
)[38] = tswapl(ccr
);
533 #define USE_ELF_CORE_DUMP
534 #define ELF_EXEC_PAGESIZE 4096
540 #define ELF_START_MMAP 0x80000000
542 #define elf_check_arch(x) ( (x) == EM_MIPS )
545 #define ELF_CLASS ELFCLASS64
547 #define ELF_CLASS ELFCLASS32
549 #define ELF_ARCH EM_MIPS
551 static inline void init_thread(struct target_pt_regs
*regs
,
552 struct image_info
*infop
)
554 regs
->cp0_status
= 2 << CP0St_KSU
;
555 regs
->cp0_epc
= infop
->entry
;
556 regs
->regs
[29] = infop
->start_stack
;
559 /* See linux kernel: arch/mips/include/asm/elf.h. */
561 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
563 /* See linux kernel: arch/mips/include/asm/reg.h. */
570 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
571 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
572 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
573 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
574 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
575 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
576 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
577 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
580 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
581 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
585 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
588 (*regs
)[TARGET_EF_R0
] = 0;
590 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
591 (*regs
)[TARGET_EF_R0
+ i
] = tswapl(env
->active_tc
.gpr
[i
]);
594 (*regs
)[TARGET_EF_R26
] = 0;
595 (*regs
)[TARGET_EF_R27
] = 0;
596 (*regs
)[TARGET_EF_LO
] = tswapl(env
->active_tc
.LO
[0]);
597 (*regs
)[TARGET_EF_HI
] = tswapl(env
->active_tc
.HI
[0]);
598 (*regs
)[TARGET_EF_CP0_EPC
] = tswapl(env
->active_tc
.PC
);
599 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapl(env
->CP0_BadVAddr
);
600 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapl(env
->CP0_Status
);
601 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapl(env
->CP0_Cause
);
604 #define USE_ELF_CORE_DUMP
605 #define ELF_EXEC_PAGESIZE 4096
607 #endif /* TARGET_MIPS */
609 #ifdef TARGET_MICROBLAZE
611 #define ELF_START_MMAP 0x80000000
613 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
615 #define ELF_CLASS ELFCLASS32
616 #define ELF_ARCH EM_MICROBLAZE
618 static inline void init_thread(struct target_pt_regs
*regs
,
619 struct image_info
*infop
)
621 regs
->pc
= infop
->entry
;
622 regs
->r1
= infop
->start_stack
;
626 #define ELF_EXEC_PAGESIZE 4096
628 #define USE_ELF_CORE_DUMP
630 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
632 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
633 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
637 for (i
= 0; i
< 32; i
++) {
638 (*regs
)[pos
++] = tswapl(env
->regs
[i
]);
641 for (i
= 0; i
< 6; i
++) {
642 (*regs
)[pos
++] = tswapl(env
->sregs
[i
]);
646 #endif /* TARGET_MICROBLAZE */
650 #define ELF_START_MMAP 0x80000000
652 #define elf_check_arch(x) ( (x) == EM_SH )
654 #define ELF_CLASS ELFCLASS32
655 #define ELF_ARCH EM_SH
657 static inline void init_thread(struct target_pt_regs
*regs
,
658 struct image_info
*infop
)
660 /* Check other registers XXXXX */
661 regs
->pc
= infop
->entry
;
662 regs
->regs
[15] = infop
->start_stack
;
665 /* See linux kernel: arch/sh/include/asm/elf.h. */
667 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
669 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
675 TARGET_REG_MACH
= 20,
676 TARGET_REG_MACL
= 21,
677 TARGET_REG_SYSCALL
= 22
680 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
685 for (i
= 0; i
< 16; i
++) {
686 (*regs
[i
]) = tswapl(env
->gregs
[i
]);
689 (*regs
)[TARGET_REG_PC
] = tswapl(env
->pc
);
690 (*regs
)[TARGET_REG_PR
] = tswapl(env
->pr
);
691 (*regs
)[TARGET_REG_SR
] = tswapl(env
->sr
);
692 (*regs
)[TARGET_REG_GBR
] = tswapl(env
->gbr
);
693 (*regs
)[TARGET_REG_MACH
] = tswapl(env
->mach
);
694 (*regs
)[TARGET_REG_MACL
] = tswapl(env
->macl
);
695 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
698 #define USE_ELF_CORE_DUMP
699 #define ELF_EXEC_PAGESIZE 4096
705 #define ELF_START_MMAP 0x80000000
707 #define elf_check_arch(x) ( (x) == EM_CRIS )
709 #define ELF_CLASS ELFCLASS32
710 #define ELF_ARCH EM_CRIS
712 static inline void init_thread(struct target_pt_regs
*regs
,
713 struct image_info
*infop
)
715 regs
->erp
= infop
->entry
;
718 #define ELF_EXEC_PAGESIZE 8192
724 #define ELF_START_MMAP 0x80000000
726 #define elf_check_arch(x) ( (x) == EM_68K )
728 #define ELF_CLASS ELFCLASS32
729 #define ELF_ARCH EM_68K
731 /* ??? Does this need to do anything?
732 #define ELF_PLAT_INIT(_r) */
734 static inline void init_thread(struct target_pt_regs
*regs
,
735 struct image_info
*infop
)
737 regs
->usp
= infop
->start_stack
;
739 regs
->pc
= infop
->entry
;
742 /* See linux kernel: arch/m68k/include/asm/elf.h. */
744 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
746 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
748 (*regs
)[0] = tswapl(env
->dregs
[1]);
749 (*regs
)[1] = tswapl(env
->dregs
[2]);
750 (*regs
)[2] = tswapl(env
->dregs
[3]);
751 (*regs
)[3] = tswapl(env
->dregs
[4]);
752 (*regs
)[4] = tswapl(env
->dregs
[5]);
753 (*regs
)[5] = tswapl(env
->dregs
[6]);
754 (*regs
)[6] = tswapl(env
->dregs
[7]);
755 (*regs
)[7] = tswapl(env
->aregs
[0]);
756 (*regs
)[8] = tswapl(env
->aregs
[1]);
757 (*regs
)[9] = tswapl(env
->aregs
[2]);
758 (*regs
)[10] = tswapl(env
->aregs
[3]);
759 (*regs
)[11] = tswapl(env
->aregs
[4]);
760 (*regs
)[12] = tswapl(env
->aregs
[5]);
761 (*regs
)[13] = tswapl(env
->aregs
[6]);
762 (*regs
)[14] = tswapl(env
->dregs
[0]);
763 (*regs
)[15] = tswapl(env
->aregs
[7]);
764 (*regs
)[16] = tswapl(env
->dregs
[0]); /* FIXME: orig_d0 */
765 (*regs
)[17] = tswapl(env
->sr
);
766 (*regs
)[18] = tswapl(env
->pc
);
767 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
770 #define USE_ELF_CORE_DUMP
771 #define ELF_EXEC_PAGESIZE 8192
777 #define ELF_START_MMAP (0x30000000000ULL)
779 #define elf_check_arch(x) ( (x) == ELF_ARCH )
781 #define ELF_CLASS ELFCLASS64
782 #define ELF_ARCH EM_ALPHA
784 static inline void init_thread(struct target_pt_regs
*regs
,
785 struct image_info
*infop
)
787 regs
->pc
= infop
->entry
;
789 regs
->usp
= infop
->start_stack
;
792 #define ELF_EXEC_PAGESIZE 8192
794 #endif /* TARGET_ALPHA */
797 #define ELF_PLATFORM (NULL)
806 #define ELF_CLASS ELFCLASS32
808 #define bswaptls(ptr) bswap32s(ptr)
815 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
816 unsigned int a_text
; /* length of text, in bytes */
817 unsigned int a_data
; /* length of data, in bytes */
818 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
819 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
820 unsigned int a_entry
; /* start address */
821 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
822 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
826 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
832 /* Necessary parameters */
833 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
834 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
835 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
837 #define DLINFO_ITEMS 12
839 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
845 static void bswap_ehdr(struct elfhdr
*ehdr
)
847 bswap16s(&ehdr
->e_type
); /* Object file type */
848 bswap16s(&ehdr
->e_machine
); /* Architecture */
849 bswap32s(&ehdr
->e_version
); /* Object file version */
850 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
851 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
852 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
853 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
854 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
855 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
856 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
857 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
858 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
859 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
862 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
865 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
866 bswap32s(&phdr
->p_type
); /* Segment type */
867 bswap32s(&phdr
->p_flags
); /* Segment flags */
868 bswaptls(&phdr
->p_offset
); /* Segment file offset */
869 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
870 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
871 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
872 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
873 bswaptls(&phdr
->p_align
); /* Segment alignment */
877 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
880 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
881 bswap32s(&shdr
->sh_name
);
882 bswap32s(&shdr
->sh_type
);
883 bswaptls(&shdr
->sh_flags
);
884 bswaptls(&shdr
->sh_addr
);
885 bswaptls(&shdr
->sh_offset
);
886 bswaptls(&shdr
->sh_size
);
887 bswap32s(&shdr
->sh_link
);
888 bswap32s(&shdr
->sh_info
);
889 bswaptls(&shdr
->sh_addralign
);
890 bswaptls(&shdr
->sh_entsize
);
894 static void bswap_sym(struct elf_sym
*sym
)
896 bswap32s(&sym
->st_name
);
897 bswaptls(&sym
->st_value
);
898 bswaptls(&sym
->st_size
);
899 bswap16s(&sym
->st_shndx
);
902 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
903 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
904 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
905 static inline void bswap_sym(struct elf_sym
*sym
) { }
908 #ifdef USE_ELF_CORE_DUMP
909 static int elf_core_dump(int, const CPUState
*);
910 #endif /* USE_ELF_CORE_DUMP */
911 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
913 /* Verify the portions of EHDR within E_IDENT for the target.
914 This can be performed before bswapping the entire header. */
915 static bool elf_check_ident(struct elfhdr
*ehdr
)
917 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
918 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
919 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
920 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
921 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
922 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
923 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
926 /* Verify the portions of EHDR outside of E_IDENT for the target.
927 This has to wait until after bswapping the header. */
928 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
930 return (elf_check_arch(ehdr
->e_machine
)
931 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
932 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
933 && ehdr
->e_shentsize
== sizeof(struct elf_shdr
)
934 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
938 * 'copy_elf_strings()' copies argument/envelope strings from user
939 * memory to free pages in kernel mem. These are in a format ready
940 * to be put directly into the top of new user memory.
943 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
946 char *tmp
, *tmp1
, *pag
= NULL
;
950 return 0; /* bullet-proofing */
955 fprintf(stderr
, "VFS: argc is wrong");
961 if (p
< len
) { /* this shouldn't happen - 128kB */
967 offset
= p
% TARGET_PAGE_SIZE
;
968 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
970 pag
= (char *)malloc(TARGET_PAGE_SIZE
);
971 memset(pag
, 0, TARGET_PAGE_SIZE
);
972 page
[p
/TARGET_PAGE_SIZE
] = pag
;
977 if (len
== 0 || offset
== 0) {
978 *(pag
+ offset
) = *tmp
;
981 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
982 tmp
-= bytes_to_copy
;
984 offset
-= bytes_to_copy
;
985 len
-= bytes_to_copy
;
986 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
993 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
994 struct image_info
*info
)
996 abi_ulong stack_base
, size
, error
, guard
;
999 /* Create enough stack to hold everything. If we don't use
1000 it for args, we'll use it for something else. */
1001 size
= guest_stack_size
;
1002 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
) {
1003 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1005 guard
= TARGET_PAGE_SIZE
;
1006 if (guard
< qemu_real_host_page_size
) {
1007 guard
= qemu_real_host_page_size
;
1010 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1011 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1013 perror("mmap stack");
1017 /* We reserve one extra page at the top of the stack as guard. */
1018 target_mprotect(error
, guard
, PROT_NONE
);
1020 info
->stack_limit
= error
+ guard
;
1021 stack_base
= info
->stack_limit
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1024 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1025 if (bprm
->page
[i
]) {
1027 /* FIXME - check return value of memcpy_to_target() for failure */
1028 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
1029 free(bprm
->page
[i
]);
1031 stack_base
+= TARGET_PAGE_SIZE
;
1036 /* Map and zero the bss. We need to explicitly zero any fractional pages
1037 after the data section (i.e. bss). */
1038 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1040 uintptr_t host_start
, host_map_start
, host_end
;
1042 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1044 /* ??? There is confusion between qemu_real_host_page_size and
1045 qemu_host_page_size here and elsewhere in target_mmap, which
1046 may lead to the end of the data section mapping from the file
1047 not being mapped. At least there was an explicit test and
1048 comment for that here, suggesting that "the file size must
1049 be known". The comment probably pre-dates the introduction
1050 of the fstat system call in target_mmap which does in fact
1051 find out the size. What isn't clear is if the workaround
1052 here is still actually needed. For now, continue with it,
1053 but merge it with the "normal" mmap that would allocate the bss. */
1055 host_start
= (uintptr_t) g2h(elf_bss
);
1056 host_end
= (uintptr_t) g2h(last_bss
);
1057 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1058 host_map_start
&= -qemu_real_host_page_size
;
1060 if (host_map_start
< host_end
) {
1061 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1062 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1063 if (p
== MAP_FAILED
) {
1064 perror("cannot mmap brk");
1068 /* Since we didn't use target_mmap, make sure to record
1069 the validity of the pages with qemu. */
1070 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
|PAGE_VALID
);
1073 if (host_start
< host_map_start
) {
1074 memset((void *)host_start
, 0, host_map_start
- host_start
);
1078 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1079 struct elfhdr
*exec
,
1080 struct image_info
*info
,
1081 struct image_info
*interp_info
)
1085 abi_ulong u_platform
;
1086 const char *k_platform
;
1087 const int n
= sizeof(elf_addr_t
);
1091 k_platform
= ELF_PLATFORM
;
1093 size_t len
= strlen(k_platform
) + 1;
1094 sp
-= (len
+ n
- 1) & ~(n
- 1);
1096 /* FIXME - check return value of memcpy_to_target() for failure */
1097 memcpy_to_target(sp
, k_platform
, len
);
1100 * Force 16 byte _final_ alignment here for generality.
1102 sp
= sp
&~ (abi_ulong
)15;
1103 size
= (DLINFO_ITEMS
+ 1) * 2;
1106 #ifdef DLINFO_ARCH_ITEMS
1107 size
+= DLINFO_ARCH_ITEMS
* 2;
1109 size
+= envc
+ argc
+ 2;
1110 size
+= 1; /* argc itself */
1113 sp
-= 16 - (size
& 15);
1115 /* This is correct because Linux defines
1116 * elf_addr_t as Elf32_Off / Elf64_Off
1118 #define NEW_AUX_ENT(id, val) do { \
1119 sp -= n; put_user_ual(val, sp); \
1120 sp -= n; put_user_ual(id, sp); \
1123 NEW_AUX_ENT (AT_NULL
, 0);
1125 /* There must be exactly DLINFO_ITEMS entries here. */
1126 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1127 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1128 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1129 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1130 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1131 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1132 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1133 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1134 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1135 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1136 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1137 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1138 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1140 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1143 * ARCH_DLINFO must come last so platform specific code can enforce
1144 * special alignment requirements on the AUXV if necessary (eg. PPC).
1150 info
->saved_auxv
= sp
;
1152 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1156 /* Load an ELF image into the address space.
1158 IMAGE_NAME is the filename of the image, to use in error messages.
1159 IMAGE_FD is the open file descriptor for the image.
1161 BPRM_BUF is a copy of the beginning of the file; this of course
1162 contains the elf file header at offset 0. It is assumed that this
1163 buffer is sufficiently aligned to present no problems to the host
1164 in accessing data at aligned offsets within the buffer.
1166 On return: INFO values will be filled in, as necessary or available. */
1168 static void load_elf_image(const char *image_name
, int image_fd
,
1169 struct image_info
*info
, char **pinterp_name
,
1170 char bprm_buf
[BPRM_BUF_SIZE
])
1172 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1173 struct elf_phdr
*phdr
;
1174 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1178 /* First of all, some simple consistency checks */
1179 errmsg
= "Invalid ELF image for this architecture";
1180 if (!elf_check_ident(ehdr
)) {
1184 if (!elf_check_ehdr(ehdr
)) {
1188 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1189 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1190 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1192 phdr
= (struct elf_phdr
*) alloca(i
);
1193 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1198 bswap_phdr(phdr
, ehdr
->e_phnum
);
1200 /* Find the maximum size of the image and allocate an appropriate
1201 amount of memory to handle that. */
1202 loaddr
= -1, hiaddr
= 0;
1203 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1204 if (phdr
[i
].p_type
== PT_LOAD
) {
1205 abi_ulong a
= phdr
[i
].p_vaddr
;
1209 a
+= phdr
[i
].p_memsz
;
1217 if (ehdr
->e_type
== ET_DYN
) {
1218 /* The image indicates that it can be loaded anywhere. Find a
1219 location that can hold the memory space required. If the
1220 image is pre-linked, LOADDR will be non-zero. Since we do
1221 not supply MAP_FIXED here we'll use that address if and
1222 only if it remains available. */
1223 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1224 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1226 if (load_addr
== -1) {
1229 } else if (pinterp_name
!= NULL
) {
1230 /* This is the main executable. Make sure that the low
1231 address does not conflict with MMAP_MIN_ADDR or the
1232 QEMU application itself. */
1233 #if defined(CONFIG_USE_GUEST_BASE)
1235 * In case where user has not explicitly set the guest_base, we
1236 * probe here that should we set it automatically.
1238 if (!have_guest_base
&& !reserved_va
) {
1239 unsigned long host_start
, real_start
, host_size
;
1241 /* Round addresses to page boundaries. */
1242 loaddr
&= qemu_host_page_mask
;
1243 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1245 if (loaddr
< mmap_min_addr
) {
1246 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1248 host_start
= loaddr
;
1249 if (host_start
!= loaddr
) {
1250 errmsg
= "Address overflow loading ELF binary";
1254 host_size
= hiaddr
- loaddr
;
1256 /* Do not use mmap_find_vma here because that is limited to the
1257 guest address space. We are going to make the
1258 guest address space fit whatever we're given. */
1259 real_start
= (unsigned long)
1260 mmap((void *)host_start
, host_size
, PROT_NONE
,
1261 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
, -1, 0);
1262 if (real_start
== (unsigned long)-1) {
1265 if (real_start
== host_start
) {
1268 /* That address didn't work. Unmap and try a different one.
1269 The address the host picked because is typically right at
1270 the top of the host address space and leaves the guest with
1271 no usable address space. Resort to a linear search. We
1272 already compensated for mmap_min_addr, so this should not
1273 happen often. Probably means we got unlucky and host
1274 address space randomization put a shared library somewhere
1276 munmap((void *)real_start
, host_size
);
1277 host_start
+= qemu_host_page_size
;
1278 if (host_start
== loaddr
) {
1279 /* Theoretically possible if host doesn't have any suitably
1280 aligned areas. Normally the first mmap will fail. */
1281 errmsg
= "Unable to find space for application";
1285 qemu_log("Relocating guest address space from 0x"
1286 TARGET_ABI_FMT_lx
" to 0x%lx\n", loaddr
, real_start
);
1287 guest_base
= real_start
- loaddr
;
1291 load_bias
= load_addr
- loaddr
;
1293 info
->load_bias
= load_bias
;
1294 info
->load_addr
= load_addr
;
1295 info
->entry
= ehdr
->e_entry
+ load_bias
;
1296 info
->start_code
= -1;
1298 info
->start_data
= -1;
1302 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1303 struct elf_phdr
*eppnt
= phdr
+ i
;
1304 if (eppnt
->p_type
== PT_LOAD
) {
1305 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1308 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1309 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1310 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1312 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1313 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1314 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1316 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1317 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1318 image_fd
, eppnt
->p_offset
- vaddr_po
);
1323 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1324 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1326 /* If the load segment requests extra zeros (e.g. bss), map it. */
1327 if (vaddr_ef
< vaddr_em
) {
1328 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1331 /* Find the full program boundaries. */
1332 if (elf_prot
& PROT_EXEC
) {
1333 if (vaddr
< info
->start_code
) {
1334 info
->start_code
= vaddr
;
1336 if (vaddr_ef
> info
->end_code
) {
1337 info
->end_code
= vaddr_ef
;
1340 if (elf_prot
& PROT_WRITE
) {
1341 if (vaddr
< info
->start_data
) {
1342 info
->start_data
= vaddr
;
1344 if (vaddr_ef
> info
->end_data
) {
1345 info
->end_data
= vaddr_ef
;
1347 if (vaddr_em
> info
->brk
) {
1348 info
->brk
= vaddr_em
;
1351 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1354 if (*pinterp_name
) {
1355 errmsg
= "Multiple PT_INTERP entries";
1358 interp_name
= malloc(eppnt
->p_filesz
);
1363 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
1364 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
1367 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
1369 if (retval
!= eppnt
->p_filesz
) {
1373 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
1374 errmsg
= "Invalid PT_INTERP entry";
1377 *pinterp_name
= interp_name
;
1381 if (info
->end_data
== 0) {
1382 info
->start_data
= info
->end_code
;
1383 info
->end_data
= info
->end_code
;
1384 info
->brk
= info
->end_code
;
1387 if (qemu_log_enabled()) {
1388 load_symbols(ehdr
, image_fd
, load_bias
);
1396 errmsg
= "Incomplete read of file header";
1400 errmsg
= strerror(errno
);
1402 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1406 static void load_elf_interp(const char *filename
, struct image_info
*info
,
1407 char bprm_buf
[BPRM_BUF_SIZE
])
1411 fd
= open(path(filename
), O_RDONLY
);
1416 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
1420 if (retval
< BPRM_BUF_SIZE
) {
1421 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
1424 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
1428 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
1432 static int symfind(const void *s0
, const void *s1
)
1434 struct elf_sym
*key
= (struct elf_sym
*)s0
;
1435 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
1437 if (key
->st_value
< sym
->st_value
) {
1439 } else if (key
->st_value
>= sym
->st_value
+ sym
->st_size
) {
1445 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
1447 #if ELF_CLASS == ELFCLASS32
1448 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
1450 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
1455 struct elf_sym
*sym
;
1457 key
.st_value
= orig_addr
;
1459 sym
= bsearch(&key
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
1461 return s
->disas_strtab
+ sym
->st_name
;
1467 /* FIXME: This should use elf_ops.h */
1468 static int symcmp(const void *s0
, const void *s1
)
1470 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
1471 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
1472 return (sym0
->st_value
< sym1
->st_value
)
1474 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
1477 /* Best attempt to load symbols from this ELF object. */
1478 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
1480 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
1481 struct elf_shdr
*shdr
;
1484 struct elf_sym
*syms
, *new_syms
;
1486 shnum
= hdr
->e_shnum
;
1487 i
= shnum
* sizeof(struct elf_shdr
);
1488 shdr
= (struct elf_shdr
*)alloca(i
);
1489 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
1493 bswap_shdr(shdr
, shnum
);
1494 for (i
= 0; i
< shnum
; ++i
) {
1495 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
1497 str_idx
= shdr
[i
].sh_link
;
1502 /* There will be no symbol table if the file was stripped. */
1506 /* Now know where the strtab and symtab are. Snarf them. */
1507 s
= malloc(sizeof(*s
));
1512 i
= shdr
[str_idx
].sh_size
;
1513 s
->disas_strtab
= strings
= malloc(i
);
1514 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
1520 i
= shdr
[sym_idx
].sh_size
;
1522 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
1529 nsyms
= i
/ sizeof(struct elf_sym
);
1530 for (i
= 0; i
< nsyms
; ) {
1531 bswap_sym(syms
+ i
);
1532 /* Throw away entries which we do not need. */
1533 if (syms
[i
].st_shndx
== SHN_UNDEF
1534 || syms
[i
].st_shndx
>= SHN_LORESERVE
1535 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
1537 syms
[i
] = syms
[nsyms
];
1540 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1541 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1542 syms
[i
].st_value
&= ~(target_ulong
)1;
1544 syms
[i
].st_value
+= load_bias
;
1549 /* Attempt to free the storage associated with the local symbols
1550 that we threw away. Whether or not this has any effect on the
1551 memory allocation depends on the malloc implementation and how
1552 many symbols we managed to discard. */
1553 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
1554 if (new_syms
== NULL
) {
1562 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
1564 s
->disas_num_syms
= nsyms
;
1565 #if ELF_CLASS == ELFCLASS32
1566 s
->disas_symtab
.elf32
= syms
;
1568 s
->disas_symtab
.elf64
= syms
;
1570 s
->lookup_symbol
= lookup_symbolxx
;
1575 int load_elf_binary(struct linux_binprm
* bprm
, struct target_pt_regs
* regs
,
1576 struct image_info
* info
)
1578 struct image_info interp_info
;
1579 struct elfhdr elf_ex
;
1580 char *elf_interpreter
= NULL
;
1582 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
1586 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
1587 &elf_interpreter
, bprm
->buf
);
1589 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1590 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1591 when we load the interpreter. */
1592 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
1594 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
1595 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
1596 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
1598 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
1602 /* Do this so that we can load the interpreter, if need be. We will
1603 change some of these later */
1604 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
1606 if (elf_interpreter
) {
1607 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
1609 /* If the program interpreter is one of these two, then assume
1610 an iBCS2 image. Otherwise assume a native linux image. */
1612 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
1613 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
1614 info
->personality
= PER_SVR4
;
1616 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1617 and some applications "depend" upon this behavior. Since
1618 we do not have the power to recompile these, we emulate
1619 the SVr4 behavior. Sigh. */
1620 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
1621 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
1625 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
1626 info
, (elf_interpreter
? &interp_info
: NULL
));
1627 info
->start_stack
= bprm
->p
;
1629 /* If we have an interpreter, set that as the program's entry point.
1630 Copy the load_addr as well, to help PPC64 interpret the entry
1631 point as a function descriptor. Do this after creating elf tables
1632 so that we copy the original program entry point into the AUXV. */
1633 if (elf_interpreter
) {
1634 info
->load_addr
= interp_info
.load_addr
;
1635 info
->entry
= interp_info
.entry
;
1636 free(elf_interpreter
);
1639 #ifdef USE_ELF_CORE_DUMP
1640 bprm
->core_dump
= &elf_core_dump
;
1646 #ifdef USE_ELF_CORE_DUMP
1648 * Definitions to generate Intel SVR4-like core files.
1649 * These mostly have the same names as the SVR4 types with "target_elf_"
1650 * tacked on the front to prevent clashes with linux definitions,
1651 * and the typedef forms have been avoided. This is mostly like
1652 * the SVR4 structure, but more Linuxy, with things that Linux does
1653 * not support and which gdb doesn't really use excluded.
1655 * Fields we don't dump (their contents is zero) in linux-user qemu
1656 * are marked with XXX.
1658 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1660 * Porting ELF coredump for target is (quite) simple process. First you
1661 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1662 * the target resides):
1664 * #define USE_ELF_CORE_DUMP
1666 * Next you define type of register set used for dumping. ELF specification
1667 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1669 * typedef <target_regtype> target_elf_greg_t;
1670 * #define ELF_NREG <number of registers>
1671 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1673 * Last step is to implement target specific function that copies registers
1674 * from given cpu into just specified register set. Prototype is:
1676 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1677 * const CPUState *env);
1680 * regs - copy register values into here (allocated and zeroed by caller)
1681 * env - copy registers from here
1683 * Example for ARM target is provided in this file.
1686 /* An ELF note in memory */
1690 size_t namesz_rounded
;
1697 struct target_elf_siginfo
{
1698 int si_signo
; /* signal number */
1699 int si_code
; /* extra code */
1700 int si_errno
; /* errno */
1703 struct target_elf_prstatus
{
1704 struct target_elf_siginfo pr_info
; /* Info associated with signal */
1705 short pr_cursig
; /* Current signal */
1706 target_ulong pr_sigpend
; /* XXX */
1707 target_ulong pr_sighold
; /* XXX */
1708 target_pid_t pr_pid
;
1709 target_pid_t pr_ppid
;
1710 target_pid_t pr_pgrp
;
1711 target_pid_t pr_sid
;
1712 struct target_timeval pr_utime
; /* XXX User time */
1713 struct target_timeval pr_stime
; /* XXX System time */
1714 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
1715 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
1716 target_elf_gregset_t pr_reg
; /* GP registers */
1717 int pr_fpvalid
; /* XXX */
1720 #define ELF_PRARGSZ (80) /* Number of chars for args */
1722 struct target_elf_prpsinfo
{
1723 char pr_state
; /* numeric process state */
1724 char pr_sname
; /* char for pr_state */
1725 char pr_zomb
; /* zombie */
1726 char pr_nice
; /* nice val */
1727 target_ulong pr_flag
; /* flags */
1728 target_uid_t pr_uid
;
1729 target_gid_t pr_gid
;
1730 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
1732 char pr_fname
[16]; /* filename of executable */
1733 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
1736 /* Here is the structure in which status of each thread is captured. */
1737 struct elf_thread_status
{
1738 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
1739 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
1741 elf_fpregset_t fpu
; /* NT_PRFPREG */
1742 struct task_struct
*thread
;
1743 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1745 struct memelfnote notes
[1];
1749 struct elf_note_info
{
1750 struct memelfnote
*notes
;
1751 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1752 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1754 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
1757 * Current version of ELF coredump doesn't support
1758 * dumping fp regs etc.
1760 elf_fpregset_t
*fpu
;
1761 elf_fpxregset_t
*xfpu
;
1762 int thread_status_size
;
1768 struct vm_area_struct
{
1769 abi_ulong vma_start
; /* start vaddr of memory region */
1770 abi_ulong vma_end
; /* end vaddr of memory region */
1771 abi_ulong vma_flags
; /* protection etc. flags for the region */
1772 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
1776 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
1777 int mm_count
; /* number of mappings */
1780 static struct mm_struct
*vma_init(void);
1781 static void vma_delete(struct mm_struct
*);
1782 static int vma_add_mapping(struct mm_struct
*, abi_ulong
,
1783 abi_ulong
, abi_ulong
);
1784 static int vma_get_mapping_count(const struct mm_struct
*);
1785 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
1786 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
1787 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
1788 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
1789 unsigned long flags
);
1791 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
1792 static void fill_note(struct memelfnote
*, const char *, int,
1793 unsigned int, void *);
1794 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
1795 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
1796 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
1797 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
1798 static size_t note_size(const struct memelfnote
*);
1799 static void free_note_info(struct elf_note_info
*);
1800 static int fill_note_info(struct elf_note_info
*, long, const CPUState
*);
1801 static void fill_thread_info(struct elf_note_info
*, const CPUState
*);
1802 static int core_dump_filename(const TaskState
*, char *, size_t);
1804 static int dump_write(int, const void *, size_t);
1805 static int write_note(struct memelfnote
*, int);
1806 static int write_note_info(struct elf_note_info
*, int);
1809 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
1811 prstatus
->pr_info
.si_signo
= tswapl(prstatus
->pr_info
.si_signo
);
1812 prstatus
->pr_info
.si_code
= tswapl(prstatus
->pr_info
.si_code
);
1813 prstatus
->pr_info
.si_errno
= tswapl(prstatus
->pr_info
.si_errno
);
1814 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
1815 prstatus
->pr_sigpend
= tswapl(prstatus
->pr_sigpend
);
1816 prstatus
->pr_sighold
= tswapl(prstatus
->pr_sighold
);
1817 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
1818 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
1819 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
1820 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
1821 /* cpu times are not filled, so we skip them */
1822 /* regs should be in correct format already */
1823 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
1826 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
1828 psinfo
->pr_flag
= tswapl(psinfo
->pr_flag
);
1829 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
1830 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
1831 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
1832 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
1833 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
1834 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
1837 static void bswap_note(struct elf_note
*en
)
1839 bswap32s(&en
->n_namesz
);
1840 bswap32s(&en
->n_descsz
);
1841 bswap32s(&en
->n_type
);
1844 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
1845 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
1846 static inline void bswap_note(struct elf_note
*en
) { }
1847 #endif /* BSWAP_NEEDED */
1850 * Minimal support for linux memory regions. These are needed
1851 * when we are finding out what memory exactly belongs to
1852 * emulated process. No locks needed here, as long as
1853 * thread that received the signal is stopped.
1856 static struct mm_struct
*vma_init(void)
1858 struct mm_struct
*mm
;
1860 if ((mm
= qemu_malloc(sizeof (*mm
))) == NULL
)
1864 QTAILQ_INIT(&mm
->mm_mmap
);
1869 static void vma_delete(struct mm_struct
*mm
)
1871 struct vm_area_struct
*vma
;
1873 while ((vma
= vma_first(mm
)) != NULL
) {
1874 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
1880 static int vma_add_mapping(struct mm_struct
*mm
, abi_ulong start
,
1881 abi_ulong end
, abi_ulong flags
)
1883 struct vm_area_struct
*vma
;
1885 if ((vma
= qemu_mallocz(sizeof (*vma
))) == NULL
)
1888 vma
->vma_start
= start
;
1890 vma
->vma_flags
= flags
;
1892 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
1898 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
1900 return (QTAILQ_FIRST(&mm
->mm_mmap
));
1903 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
1905 return (QTAILQ_NEXT(vma
, vma_link
));
1908 static int vma_get_mapping_count(const struct mm_struct
*mm
)
1910 return (mm
->mm_count
);
1914 * Calculate file (dump) size of given memory region.
1916 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
1918 /* if we cannot even read the first page, skip it */
1919 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
1923 * Usually we don't dump executable pages as they contain
1924 * non-writable code that debugger can read directly from
1925 * target library etc. However, thread stacks are marked
1926 * also executable so we read in first page of given region
1927 * and check whether it contains elf header. If there is
1928 * no elf header, we dump it.
1930 if (vma
->vma_flags
& PROT_EXEC
) {
1931 char page
[TARGET_PAGE_SIZE
];
1933 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
1934 if ((page
[EI_MAG0
] == ELFMAG0
) &&
1935 (page
[EI_MAG1
] == ELFMAG1
) &&
1936 (page
[EI_MAG2
] == ELFMAG2
) &&
1937 (page
[EI_MAG3
] == ELFMAG3
)) {
1939 * Mappings are possibly from ELF binary. Don't dump
1946 return (vma
->vma_end
- vma
->vma_start
);
1949 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
1950 unsigned long flags
)
1952 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
1954 vma_add_mapping(mm
, start
, end
, flags
);
1958 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1959 unsigned int sz
, void *data
)
1961 unsigned int namesz
;
1963 namesz
= strlen(name
) + 1;
1965 note
->namesz
= namesz
;
1966 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
1968 note
->datasz
= roundup(sz
, sizeof (int32_t));;
1972 * We calculate rounded up note size here as specified by
1975 note
->notesz
= sizeof (struct elf_note
) +
1976 note
->namesz_rounded
+ note
->datasz
;
1979 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
1982 (void) memset(elf
, 0, sizeof(*elf
));
1984 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1985 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1986 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1987 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1988 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1990 elf
->e_type
= ET_CORE
;
1991 elf
->e_machine
= machine
;
1992 elf
->e_version
= EV_CURRENT
;
1993 elf
->e_phoff
= sizeof(struct elfhdr
);
1994 elf
->e_flags
= flags
;
1995 elf
->e_ehsize
= sizeof(struct elfhdr
);
1996 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1997 elf
->e_phnum
= segs
;
2002 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2004 phdr
->p_type
= PT_NOTE
;
2005 phdr
->p_offset
= offset
;
2008 phdr
->p_filesz
= sz
;
2013 bswap_phdr(phdr
, 1);
2016 static size_t note_size(const struct memelfnote
*note
)
2018 return (note
->notesz
);
2021 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2022 const TaskState
*ts
, int signr
)
2024 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2025 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2026 prstatus
->pr_pid
= ts
->ts_tid
;
2027 prstatus
->pr_ppid
= getppid();
2028 prstatus
->pr_pgrp
= getpgrp();
2029 prstatus
->pr_sid
= getsid(0);
2031 bswap_prstatus(prstatus
);
2034 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2036 char *filename
, *base_filename
;
2037 unsigned int i
, len
;
2039 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2041 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2042 if (len
>= ELF_PRARGSZ
)
2043 len
= ELF_PRARGSZ
- 1;
2044 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2046 for (i
= 0; i
< len
; i
++)
2047 if (psinfo
->pr_psargs
[i
] == 0)
2048 psinfo
->pr_psargs
[i
] = ' ';
2049 psinfo
->pr_psargs
[len
] = 0;
2051 psinfo
->pr_pid
= getpid();
2052 psinfo
->pr_ppid
= getppid();
2053 psinfo
->pr_pgrp
= getpgrp();
2054 psinfo
->pr_sid
= getsid(0);
2055 psinfo
->pr_uid
= getuid();
2056 psinfo
->pr_gid
= getgid();
2058 filename
= strdup(ts
->bprm
->filename
);
2059 base_filename
= strdup(basename(filename
));
2060 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2061 sizeof(psinfo
->pr_fname
));
2062 free(base_filename
);
2065 bswap_psinfo(psinfo
);
2069 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2071 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2072 elf_addr_t orig_auxv
= auxv
;
2078 * Auxiliary vector is stored in target process stack. It contains
2079 * {type, value} pairs that we need to dump into note. This is not
2080 * strictly necessary but we do it here for sake of completeness.
2083 /* find out lenght of the vector, AT_NULL is terminator */
2086 get_user_ual(val
, auxv
);
2088 auxv
+= 2 * sizeof (elf_addr_t
);
2089 } while (val
!= AT_NULL
);
2090 len
= i
* sizeof (elf_addr_t
);
2092 /* read in whole auxv vector and copy it to memelfnote */
2093 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2095 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2096 unlock_user(ptr
, auxv
, len
);
2101 * Constructs name of coredump file. We have following convention
2103 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2105 * Returns 0 in case of success, -1 otherwise (errno is set).
2107 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2111 char *filename
= NULL
;
2112 char *base_filename
= NULL
;
2116 assert(bufsize
>= PATH_MAX
);
2118 if (gettimeofday(&tv
, NULL
) < 0) {
2119 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2124 filename
= strdup(ts
->bprm
->filename
);
2125 base_filename
= strdup(basename(filename
));
2126 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2127 localtime_r(&tv
.tv_sec
, &tm
));
2128 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2129 base_filename
, timestamp
, (int)getpid());
2130 free(base_filename
);
2136 static int dump_write(int fd
, const void *ptr
, size_t size
)
2138 const char *bufp
= (const char *)ptr
;
2139 ssize_t bytes_written
, bytes_left
;
2140 struct rlimit dumpsize
;
2144 getrlimit(RLIMIT_CORE
, &dumpsize
);
2145 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2146 if (errno
== ESPIPE
) { /* not a seekable stream */
2152 if (dumpsize
.rlim_cur
<= pos
) {
2154 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2157 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2158 bytes_left
= limit_left
>= size
? size
: limit_left
;
2163 * In normal conditions, single write(2) should do but
2164 * in case of socket etc. this mechanism is more portable.
2167 bytes_written
= write(fd
, bufp
, bytes_left
);
2168 if (bytes_written
< 0) {
2172 } else if (bytes_written
== 0) { /* eof */
2175 bufp
+= bytes_written
;
2176 bytes_left
-= bytes_written
;
2177 } while (bytes_left
> 0);
2182 static int write_note(struct memelfnote
*men
, int fd
)
2186 en
.n_namesz
= men
->namesz
;
2187 en
.n_type
= men
->type
;
2188 en
.n_descsz
= men
->datasz
;
2192 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2194 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2196 if (dump_write(fd
, men
->data
, men
->datasz
) != 0)
2202 static void fill_thread_info(struct elf_note_info
*info
, const CPUState
*env
)
2204 TaskState
*ts
= (TaskState
*)env
->opaque
;
2205 struct elf_thread_status
*ets
;
2207 ets
= qemu_mallocz(sizeof (*ets
));
2208 ets
->num_notes
= 1; /* only prstatus is dumped */
2209 fill_prstatus(&ets
->prstatus
, ts
, 0);
2210 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2211 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2214 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2216 info
->notes_size
+= note_size(&ets
->notes
[0]);
2219 static int fill_note_info(struct elf_note_info
*info
,
2220 long signr
, const CPUState
*env
)
2223 CPUState
*cpu
= NULL
;
2224 TaskState
*ts
= (TaskState
*)env
->opaque
;
2227 (void) memset(info
, 0, sizeof (*info
));
2229 QTAILQ_INIT(&info
->thread_list
);
2231 info
->notes
= qemu_mallocz(NUMNOTES
* sizeof (struct memelfnote
));
2232 if (info
->notes
== NULL
)
2234 info
->prstatus
= qemu_mallocz(sizeof (*info
->prstatus
));
2235 if (info
->prstatus
== NULL
)
2237 info
->psinfo
= qemu_mallocz(sizeof (*info
->psinfo
));
2238 if (info
->prstatus
== NULL
)
2242 * First fill in status (and registers) of current thread
2243 * including process info & aux vector.
2245 fill_prstatus(info
->prstatus
, ts
, signr
);
2246 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2247 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2248 sizeof (*info
->prstatus
), info
->prstatus
);
2249 fill_psinfo(info
->psinfo
, ts
);
2250 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2251 sizeof (*info
->psinfo
), info
->psinfo
);
2252 fill_auxv_note(&info
->notes
[2], ts
);
2255 info
->notes_size
= 0;
2256 for (i
= 0; i
< info
->numnote
; i
++)
2257 info
->notes_size
+= note_size(&info
->notes
[i
]);
2259 /* read and fill status of all threads */
2261 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2262 if (cpu
== thread_env
)
2264 fill_thread_info(info
, cpu
);
2271 static void free_note_info(struct elf_note_info
*info
)
2273 struct elf_thread_status
*ets
;
2275 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2276 ets
= QTAILQ_FIRST(&info
->thread_list
);
2277 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2281 qemu_free(info
->prstatus
);
2282 qemu_free(info
->psinfo
);
2283 qemu_free(info
->notes
);
2286 static int write_note_info(struct elf_note_info
*info
, int fd
)
2288 struct elf_thread_status
*ets
;
2291 /* write prstatus, psinfo and auxv for current thread */
2292 for (i
= 0; i
< info
->numnote
; i
++)
2293 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2296 /* write prstatus for each thread */
2297 for (ets
= info
->thread_list
.tqh_first
; ets
!= NULL
;
2298 ets
= ets
->ets_link
.tqe_next
) {
2299 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2307 * Write out ELF coredump.
2309 * See documentation of ELF object file format in:
2310 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2312 * Coredump format in linux is following:
2314 * 0 +----------------------+ \
2315 * | ELF header | ET_CORE |
2316 * +----------------------+ |
2317 * | ELF program headers | |--- headers
2318 * | - NOTE section | |
2319 * | - PT_LOAD sections | |
2320 * +----------------------+ /
2325 * +----------------------+ <-- aligned to target page
2326 * | Process memory dump |
2331 * +----------------------+
2333 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2334 * NT_PRSINFO -> struct elf_prpsinfo
2335 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2337 * Format follows System V format as close as possible. Current
2338 * version limitations are as follows:
2339 * - no floating point registers are dumped
2341 * Function returns 0 in case of success, negative errno otherwise.
2343 * TODO: make this work also during runtime: it should be
2344 * possible to force coredump from running process and then
2345 * continue processing. For example qemu could set up SIGUSR2
2346 * handler (provided that target process haven't registered
2347 * handler for that) that does the dump when signal is received.
2349 static int elf_core_dump(int signr
, const CPUState
*env
)
2351 const TaskState
*ts
= (const TaskState
*)env
->opaque
;
2352 struct vm_area_struct
*vma
= NULL
;
2353 char corefile
[PATH_MAX
];
2354 struct elf_note_info info
;
2356 struct elf_phdr phdr
;
2357 struct rlimit dumpsize
;
2358 struct mm_struct
*mm
= NULL
;
2359 off_t offset
= 0, data_offset
= 0;
2364 getrlimit(RLIMIT_CORE
, &dumpsize
);
2365 if (dumpsize
.rlim_cur
== 0)
2368 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2371 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
2372 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
2376 * Walk through target process memory mappings and
2377 * set up structure containing this information. After
2378 * this point vma_xxx functions can be used.
2380 if ((mm
= vma_init()) == NULL
)
2383 walk_memory_regions(mm
, vma_walker
);
2384 segs
= vma_get_mapping_count(mm
);
2387 * Construct valid coredump ELF header. We also
2388 * add one more segment for notes.
2390 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
2391 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
2394 /* fill in in-memory version of notes */
2395 if (fill_note_info(&info
, signr
, env
) < 0)
2398 offset
+= sizeof (elf
); /* elf header */
2399 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
2401 /* write out notes program header */
2402 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
2404 offset
+= info
.notes_size
;
2405 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
2409 * ELF specification wants data to start at page boundary so
2412 offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2415 * Write program headers for memory regions mapped in
2416 * the target process.
2418 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2419 (void) memset(&phdr
, 0, sizeof (phdr
));
2421 phdr
.p_type
= PT_LOAD
;
2422 phdr
.p_offset
= offset
;
2423 phdr
.p_vaddr
= vma
->vma_start
;
2425 phdr
.p_filesz
= vma_dump_size(vma
);
2426 offset
+= phdr
.p_filesz
;
2427 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
2428 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
2429 if (vma
->vma_flags
& PROT_WRITE
)
2430 phdr
.p_flags
|= PF_W
;
2431 if (vma
->vma_flags
& PROT_EXEC
)
2432 phdr
.p_flags
|= PF_X
;
2433 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2435 dump_write(fd
, &phdr
, sizeof (phdr
));
2439 * Next we write notes just after program headers. No
2440 * alignment needed here.
2442 if (write_note_info(&info
, fd
) < 0)
2445 /* align data to page boundary */
2446 data_offset
= lseek(fd
, 0, SEEK_CUR
);
2447 data_offset
= TARGET_PAGE_ALIGN(data_offset
);
2448 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
2452 * Finally we can dump process memory into corefile as well.
2454 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2458 end
= vma
->vma_start
+ vma_dump_size(vma
);
2460 for (addr
= vma
->vma_start
; addr
< end
;
2461 addr
+= TARGET_PAGE_SIZE
) {
2462 char page
[TARGET_PAGE_SIZE
];
2466 * Read in page from target process memory and
2467 * write it to coredump file.
2469 error
= copy_from_user(page
, addr
, sizeof (page
));
2471 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
2476 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
2482 free_note_info(&info
);
2491 #endif /* USE_ELF_CORE_DUMP */
2493 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
2495 init_thread(regs
, infop
);