2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
26 #if !defined(CONFIG_SOFTMMU)
38 #include <sys/ucontext.h>
42 #if defined(__sparc__) && !defined(HOST_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
45 #define env cpu_single_env
48 int tb_invalidated_flag
;
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState
*env
)
55 return cpu_has_work(env
);
58 void cpu_loop_exit(void)
60 /* NOTE: the register at this point must be saved by hand because
61 longjmp restore them */
63 longjmp(env
->jmp_env
, 1);
66 /* exit the current TB from a signal handler. The host registers are
67 restored in a state compatible with the CPU emulator
69 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
71 #if !defined(CONFIG_SOFTMMU)
73 struct ucontext
*uc
= puc
;
74 #elif defined(__OpenBSD__)
75 struct sigcontext
*uc
= puc
;
81 /* XXX: restore cpu registers saved in host registers */
83 #if !defined(CONFIG_SOFTMMU)
85 /* XXX: use siglongjmp ? */
87 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
88 #elif defined(__OpenBSD__)
89 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
93 env
->exception_index
= -1;
94 longjmp(env
->jmp_env
, 1);
97 /* Execute the code without caching the generated code. An interpreter
98 could be used if available. */
99 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
101 unsigned long next_tb
;
102 TranslationBlock
*tb
;
104 /* Should never happen.
105 We only end up here when an existing TB is too long. */
106 if (max_cycles
> CF_COUNT_MASK
)
107 max_cycles
= CF_COUNT_MASK
;
109 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
111 env
->current_tb
= tb
;
112 /* execute the generated code */
113 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
115 if ((next_tb
& 3) == 2) {
116 /* Restore PC. This may happen if async event occurs before
117 the TB starts executing. */
118 cpu_pc_from_tb(env
, tb
);
120 tb_phys_invalidate(tb
, -1);
124 static TranslationBlock
*tb_find_slow(target_ulong pc
,
125 target_ulong cs_base
,
128 TranslationBlock
*tb
, **ptb1
;
130 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
132 tb_invalidated_flag
= 0;
134 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
136 /* find translated block using physical mappings */
137 phys_pc
= get_phys_addr_code(env
, pc
);
138 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
140 h
= tb_phys_hash_func(phys_pc
);
141 ptb1
= &tb_phys_hash
[h
];
147 tb
->page_addr
[0] == phys_page1
&&
148 tb
->cs_base
== cs_base
&&
149 tb
->flags
== flags
) {
150 /* check next page if needed */
151 if (tb
->page_addr
[1] != -1) {
152 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
154 phys_page2
= get_phys_addr_code(env
, virt_page2
);
155 if (tb
->page_addr
[1] == phys_page2
)
161 ptb1
= &tb
->phys_hash_next
;
164 /* if no translated code available, then translate it now */
165 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
168 /* we add the TB in the virtual pc hash table */
169 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
173 static inline TranslationBlock
*tb_find_fast(void)
175 TranslationBlock
*tb
;
176 target_ulong cs_base
, pc
;
179 /* we record a subset of the CPU state. It will
180 always be the same before a given translated block
182 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
183 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
184 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
185 tb
->flags
!= flags
)) {
186 tb
= tb_find_slow(pc
, cs_base
, flags
);
191 static CPUDebugExcpHandler
*debug_excp_handler
;
193 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
195 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
197 debug_excp_handler
= handler
;
201 static void cpu_handle_debug_exception(CPUState
*env
)
205 if (!env
->watchpoint_hit
)
206 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
207 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
209 if (debug_excp_handler
)
210 debug_excp_handler(env
);
213 /* main execution loop */
215 int cpu_exec(CPUState
*env1
)
217 #define DECLARE_HOST_REGS 1
218 #include "hostregs_helper.h"
219 int ret
, interrupt_request
;
220 TranslationBlock
*tb
;
222 unsigned long next_tb
;
224 if (cpu_halted(env1
) == EXCP_HALTED
)
227 cpu_single_env
= env1
;
229 /* first we save global registers */
230 #define SAVE_HOST_REGS 1
231 #include "hostregs_helper.h"
235 #if defined(TARGET_I386)
236 /* put eflags in CPU temporary format */
237 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
238 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
239 CC_OP
= CC_OP_EFLAGS
;
240 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
241 #elif defined(TARGET_SPARC)
242 #elif defined(TARGET_M68K)
243 env
->cc_op
= CC_OP_FLAGS
;
244 env
->cc_dest
= env
->sr
& 0xf;
245 env
->cc_x
= (env
->sr
>> 4) & 1;
246 #elif defined(TARGET_ALPHA)
247 #elif defined(TARGET_ARM)
248 #elif defined(TARGET_PPC)
249 #elif defined(TARGET_MICROBLAZE)
250 #elif defined(TARGET_MIPS)
251 #elif defined(TARGET_SH4)
252 #elif defined(TARGET_CRIS)
253 #elif defined(TARGET_Z80)
256 #error unsupported target CPU
258 env
->exception_index
= -1;
260 /* prepare setjmp context for exception handling */
262 if (setjmp(env
->jmp_env
) == 0) {
263 #if defined(__sparc__) && !defined(HOST_SOLARIS)
265 env
= cpu_single_env
;
266 #define env cpu_single_env
268 env
->current_tb
= NULL
;
269 /* if an exception is pending, we execute it here */
270 if (env
->exception_index
>= 0) {
271 if (env
->exception_index
>= EXCP_INTERRUPT
) {
272 /* exit request from the cpu execution loop */
273 ret
= env
->exception_index
;
274 if (ret
== EXCP_DEBUG
)
275 cpu_handle_debug_exception(env
);
278 #if defined(CONFIG_USER_ONLY)
279 /* if user mode only, we simulate a fake exception
280 which will be handled outside the cpu execution
282 #if defined(TARGET_I386)
283 do_interrupt_user(env
->exception_index
,
284 env
->exception_is_int
,
286 env
->exception_next_eip
);
287 /* successfully delivered */
288 env
->old_exception
= -1;
290 ret
= env
->exception_index
;
293 #if defined(TARGET_I386)
294 /* simulate a real cpu exception. On i386, it can
295 trigger new exceptions, but we do not handle
296 double or triple faults yet. */
297 do_interrupt(env
->exception_index
,
298 env
->exception_is_int
,
300 env
->exception_next_eip
, 0);
301 /* successfully delivered */
302 env
->old_exception
= -1;
303 #elif defined(TARGET_PPC)
305 #elif defined(TARGET_MICROBLAZE)
307 #elif defined(TARGET_MIPS)
309 #elif defined(TARGET_SPARC)
311 #elif defined(TARGET_ARM)
313 #elif defined(TARGET_SH4)
315 #elif defined(TARGET_ALPHA)
317 #elif defined(TARGET_CRIS)
319 #elif defined(TARGET_M68K)
324 env
->exception_index
= -1;
327 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0 && env
->exit_request
== 0) {
329 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
330 ret
= kqemu_cpu_exec(env
);
331 /* put eflags in CPU temporary format */
332 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
333 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
334 CC_OP
= CC_OP_EFLAGS
;
335 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
338 longjmp(env
->jmp_env
, 1);
339 } else if (ret
== 2) {
340 /* softmmu execution needed */
342 if (env
->interrupt_request
!= 0 || env
->exit_request
!= 0) {
343 /* hardware interrupt will be executed just after */
345 /* otherwise, we restart */
346 longjmp(env
->jmp_env
, 1);
354 longjmp(env
->jmp_env
, 1);
357 next_tb
= 0; /* force lookup of first TB */
359 interrupt_request
= env
->interrupt_request
;
360 if (unlikely(interrupt_request
)) {
361 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
362 /* Mask out external interrupts for this step. */
363 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
368 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
369 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
370 env
->exception_index
= EXCP_DEBUG
;
373 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
374 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
375 defined(TARGET_MICROBLAZE)
376 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
377 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
379 env
->exception_index
= EXCP_HLT
;
383 #if defined(TARGET_I386)
384 if (env
->hflags2
& HF2_GIF_MASK
) {
385 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
386 !(env
->hflags
& HF_SMM_MASK
)) {
387 svm_check_intercept(SVM_EXIT_SMI
);
388 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
391 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
392 !(env
->hflags2
& HF2_NMI_MASK
)) {
393 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
394 env
->hflags2
|= HF2_NMI_MASK
;
395 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
397 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
398 (((env
->hflags2
& HF2_VINTR_MASK
) &&
399 (env
->hflags2
& HF2_HIF_MASK
)) ||
400 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
401 (env
->eflags
& IF_MASK
&&
402 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
404 svm_check_intercept(SVM_EXIT_INTR
);
405 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
406 intno
= cpu_get_pic_interrupt(env
);
407 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
408 #if defined(__sparc__) && !defined(HOST_SOLARIS)
410 env
= cpu_single_env
;
411 #define env cpu_single_env
413 do_interrupt(intno
, 0, 0, 0, 1);
414 /* ensure that no TB jump will be modified as
415 the program flow was changed */
417 #if !defined(CONFIG_USER_ONLY)
418 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
419 (env
->eflags
& IF_MASK
) &&
420 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
422 /* FIXME: this should respect TPR */
423 svm_check_intercept(SVM_EXIT_VINTR
);
424 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
425 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
426 do_interrupt(intno
, 0, 0, 0, 1);
427 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
432 #elif defined(TARGET_PPC)
434 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
438 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
439 ppc_hw_interrupt(env
);
440 if (env
->pending_interrupts
== 0)
441 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
444 #elif defined(TARGET_MICROBLAZE)
445 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
446 && (env
->sregs
[SR_MSR
] & MSR_IE
)
447 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
448 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
449 env
->exception_index
= EXCP_IRQ
;
453 #elif defined(TARGET_MIPS)
454 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
455 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
456 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
457 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
458 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
459 !(env
->hflags
& MIPS_HFLAG_DM
)) {
461 env
->exception_index
= EXCP_EXT_INTERRUPT
;
466 #elif defined(TARGET_SPARC)
467 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
469 int pil
= env
->interrupt_index
& 15;
470 int type
= env
->interrupt_index
& 0xf0;
472 if (((type
== TT_EXTINT
) &&
473 (pil
== 15 || pil
> env
->psrpil
)) ||
475 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
476 env
->exception_index
= env
->interrupt_index
;
478 env
->interrupt_index
= 0;
479 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
484 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
485 //do_interrupt(0, 0, 0, 0, 0);
486 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
488 #elif defined(TARGET_ARM)
489 if (interrupt_request
& CPU_INTERRUPT_FIQ
490 && !(env
->uncached_cpsr
& CPSR_F
)) {
491 env
->exception_index
= EXCP_FIQ
;
495 /* ARMv7-M interrupt return works by loading a magic value
496 into the PC. On real hardware the load causes the
497 return to occur. The qemu implementation performs the
498 jump normally, then does the exception return when the
499 CPU tries to execute code at the magic address.
500 This will cause the magic PC value to be pushed to
501 the stack if an interrupt occured at the wrong time.
502 We avoid this by disabling interrupts when
503 pc contains a magic address. */
504 if (interrupt_request
& CPU_INTERRUPT_HARD
505 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
506 || !(env
->uncached_cpsr
& CPSR_I
))) {
507 env
->exception_index
= EXCP_IRQ
;
511 #elif defined(TARGET_SH4)
512 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
516 #elif defined(TARGET_ALPHA)
517 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
521 #elif defined(TARGET_CRIS)
522 if (interrupt_request
& CPU_INTERRUPT_HARD
523 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
524 env
->exception_index
= EXCP_IRQ
;
528 if (interrupt_request
& CPU_INTERRUPT_NMI
529 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
530 env
->exception_index
= EXCP_NMI
;
534 #elif defined(TARGET_M68K)
535 if (interrupt_request
& CPU_INTERRUPT_HARD
536 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
537 < env
->pending_level
) {
538 /* Real hardware gets the interrupt vector via an
539 IACK cycle at this point. Current emulated
540 hardware doesn't rely on this, so we
541 provide/save the vector when the interrupt is
543 env
->exception_index
= env
->pending_vector
;
547 #elif defined(TARGET_Z80)
548 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
549 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
550 /* TODO: Add support for NMIs */
554 /* Don't use the cached interupt_request value,
555 do_interrupt may have updated the EXITTB flag. */
556 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
557 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
558 /* ensure that no TB jump will be modified as
559 the program flow was changed */
563 if (unlikely(env
->exit_request
)) {
564 env
->exit_request
= 0;
565 env
->exception_index
= EXCP_INTERRUPT
;
569 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
570 /* restore flags in standard format */
572 #if defined(TARGET_I386)
573 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
574 log_cpu_state(env
, X86_DUMP_CCOP
);
575 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
576 #elif defined(TARGET_ARM)
577 log_cpu_state(env
, 0);
578 #elif defined(TARGET_SPARC)
579 log_cpu_state(env
, 0);
580 #elif defined(TARGET_PPC)
581 log_cpu_state(env
, 0);
582 #elif defined(TARGET_M68K)
583 cpu_m68k_flush_flags(env
, env
->cc_op
);
584 env
->cc_op
= CC_OP_FLAGS
;
585 env
->sr
= (env
->sr
& 0xffe0)
586 | env
->cc_dest
| (env
->cc_x
<< 4);
587 log_cpu_state(env
, 0);
588 #elif defined(TARGET_MICROBLAZE)
589 log_cpu_state(env
, 0);
590 #elif defined(TARGET_MIPS)
591 log_cpu_state(env
, 0);
592 #elif defined(TARGET_SH4)
593 log_cpu_state(env
, 0);
594 #elif defined(TARGET_ALPHA)
595 log_cpu_state(env
, 0);
596 #elif defined(TARGET_CRIS)
597 log_cpu_state(env
, 0);
598 #elif defined(TARGET_Z80)
599 log_cpu_state(env
, 0);
601 #error unsupported target CPU
607 /* Note: we do it here to avoid a gcc bug on Mac OS X when
608 doing it in tb_find_slow */
609 if (tb_invalidated_flag
) {
610 /* as some TB could have been invalidated because
611 of memory exceptions while generating the code, we
612 must recompute the hash index here */
614 tb_invalidated_flag
= 0;
617 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
618 (long)tb
->tc_ptr
, tb
->pc
,
619 lookup_symbol(tb
->pc
));
621 /* see if we can patch the calling TB. When the TB
622 spans two pages, we cannot safely do a direct
627 (env
->kqemu_enabled
!= 2) &&
629 tb
->page_addr
[1] == -1) {
630 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
633 spin_unlock(&tb_lock
);
634 env
->current_tb
= tb
;
636 /* cpu_interrupt might be called while translating the
637 TB, but before it is linked into a potentially
638 infinite loop and becomes env->current_tb. Avoid
639 starting execution if there is a pending interrupt. */
640 if (unlikely (env
->exit_request
))
641 env
->current_tb
= NULL
;
643 while (env
->current_tb
) {
645 /* execute the generated code */
646 #if defined(__sparc__) && !defined(HOST_SOLARIS)
648 env
= cpu_single_env
;
649 #define env cpu_single_env
651 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
652 env
->current_tb
= NULL
;
653 if ((next_tb
& 3) == 2) {
654 /* Instruction counter expired. */
656 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
658 cpu_pc_from_tb(env
, tb
);
659 insns_left
= env
->icount_decr
.u32
;
660 if (env
->icount_extra
&& insns_left
>= 0) {
661 /* Refill decrementer and continue execution. */
662 env
->icount_extra
+= insns_left
;
663 if (env
->icount_extra
> 0xffff) {
666 insns_left
= env
->icount_extra
;
668 env
->icount_extra
-= insns_left
;
669 env
->icount_decr
.u16
.low
= insns_left
;
671 if (insns_left
> 0) {
672 /* Execute remaining instructions. */
673 cpu_exec_nocache(insns_left
, tb
);
675 env
->exception_index
= EXCP_INTERRUPT
;
681 /* reset soft MMU for next block (it can currently
682 only be set by a memory fault) */
683 #if defined(CONFIG_KQEMU)
684 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
685 if (kqemu_is_ok(env
) &&
686 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
697 #if defined(TARGET_I386)
698 /* restore flags in standard format */
699 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
700 #elif defined(TARGET_ARM)
701 /* XXX: Save/restore host fpu exception state?. */
702 #elif defined(TARGET_SPARC)
703 #elif defined(TARGET_PPC)
704 #elif defined(TARGET_M68K)
705 cpu_m68k_flush_flags(env
, env
->cc_op
);
706 env
->cc_op
= CC_OP_FLAGS
;
707 env
->sr
= (env
->sr
& 0xffe0)
708 | env
->cc_dest
| (env
->cc_x
<< 4);
709 #elif defined(TARGET_MICROBLAZE)
710 #elif defined(TARGET_MIPS)
711 #elif defined(TARGET_SH4)
712 #elif defined(TARGET_ALPHA)
713 #elif defined(TARGET_CRIS)
714 #elif defined(TARGET_Z80)
717 #error unsupported target CPU
720 /* restore global registers */
721 #include "hostregs_helper.h"
723 /* fail safe : never use cpu_single_env outside cpu_exec() */
724 cpu_single_env
= NULL
;
728 /* must only be called from the generated code as an exception can be
730 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
732 /* XXX: cannot enable it yet because it yields to MMU exception
733 where NIP != read address on PowerPC */
735 target_ulong phys_addr
;
736 phys_addr
= get_phys_addr_code(env
, start
);
737 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
741 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
743 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
745 CPUX86State
*saved_env
;
749 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
751 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
752 (selector
<< 4), 0xffff, 0);
754 helper_load_seg(seg_reg
, selector
);
759 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
761 CPUX86State
*saved_env
;
766 helper_fsave(ptr
, data32
);
771 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
773 CPUX86State
*saved_env
;
778 helper_frstor(ptr
, data32
);
783 #endif /* TARGET_I386 */
785 #if !defined(CONFIG_SOFTMMU)
787 #if defined(TARGET_I386)
789 /* 'pc' is the host PC at which the exception was raised. 'address' is
790 the effective address of the memory exception. 'is_write' is 1 if a
791 write caused the exception and otherwise 0'. 'old_set' is the
792 signal set which should be restored */
793 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
794 int is_write
, sigset_t
*old_set
,
797 TranslationBlock
*tb
;
801 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
802 #if defined(DEBUG_SIGNAL)
803 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
804 pc
, address
, is_write
, *(unsigned long *)old_set
);
806 /* XXX: locking issue */
807 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
811 /* see if it is an MMU fault */
812 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
814 return 0; /* not an MMU fault */
816 return 1; /* the MMU fault was handled without causing real CPU fault */
817 /* now we have a real cpu fault */
820 /* the PC is inside the translated code. It means that we have
821 a virtual CPU fault */
822 cpu_restore_state(tb
, env
, pc
, puc
);
826 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
827 env
->eip
, env
->cr
[2], env
->error_code
);
829 /* we restore the process signal mask as the sigreturn should
830 do it (XXX: use sigsetjmp) */
831 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
832 raise_exception_err(env
->exception_index
, env
->error_code
);
834 /* activate soft MMU for this block */
835 env
->hflags
|= HF_SOFTMMU_MASK
;
836 cpu_resume_from_signal(env
, puc
);
838 /* never comes here */
842 #elif defined(TARGET_ARM)
843 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
844 int is_write
, sigset_t
*old_set
,
847 TranslationBlock
*tb
;
851 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
852 #if defined(DEBUG_SIGNAL)
853 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
854 pc
, address
, is_write
, *(unsigned long *)old_set
);
856 /* XXX: locking issue */
857 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
860 /* see if it is an MMU fault */
861 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
863 return 0; /* not an MMU fault */
865 return 1; /* the MMU fault was handled without causing real CPU fault */
866 /* now we have a real cpu fault */
869 /* the PC is inside the translated code. It means that we have
870 a virtual CPU fault */
871 cpu_restore_state(tb
, env
, pc
, puc
);
873 /* we restore the process signal mask as the sigreturn should
874 do it (XXX: use sigsetjmp) */
875 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
877 /* never comes here */
880 #elif defined(TARGET_SPARC)
881 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
882 int is_write
, sigset_t
*old_set
,
885 TranslationBlock
*tb
;
889 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
890 #if defined(DEBUG_SIGNAL)
891 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
892 pc
, address
, is_write
, *(unsigned long *)old_set
);
894 /* XXX: locking issue */
895 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
898 /* see if it is an MMU fault */
899 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
901 return 0; /* not an MMU fault */
903 return 1; /* the MMU fault was handled without causing real CPU fault */
904 /* now we have a real cpu fault */
907 /* the PC is inside the translated code. It means that we have
908 a virtual CPU fault */
909 cpu_restore_state(tb
, env
, pc
, puc
);
911 /* we restore the process signal mask as the sigreturn should
912 do it (XXX: use sigsetjmp) */
913 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
915 /* never comes here */
918 #elif defined (TARGET_PPC)
919 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
920 int is_write
, sigset_t
*old_set
,
923 TranslationBlock
*tb
;
927 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
928 #if defined(DEBUG_SIGNAL)
929 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
930 pc
, address
, is_write
, *(unsigned long *)old_set
);
932 /* XXX: locking issue */
933 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
937 /* see if it is an MMU fault */
938 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
940 return 0; /* not an MMU fault */
942 return 1; /* the MMU fault was handled without causing real CPU fault */
944 /* now we have a real cpu fault */
947 /* the PC is inside the translated code. It means that we have
948 a virtual CPU fault */
949 cpu_restore_state(tb
, env
, pc
, puc
);
953 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
954 env
->nip
, env
->error_code
, tb
);
956 /* we restore the process signal mask as the sigreturn should
957 do it (XXX: use sigsetjmp) */
958 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
961 /* activate soft MMU for this block */
962 cpu_resume_from_signal(env
, puc
);
964 /* never comes here */
968 #elif defined(TARGET_M68K)
969 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
970 int is_write
, sigset_t
*old_set
,
973 TranslationBlock
*tb
;
977 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
978 #if defined(DEBUG_SIGNAL)
979 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
980 pc
, address
, is_write
, *(unsigned long *)old_set
);
982 /* XXX: locking issue */
983 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
986 /* see if it is an MMU fault */
987 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
989 return 0; /* not an MMU fault */
991 return 1; /* the MMU fault was handled without causing real CPU fault */
992 /* now we have a real cpu fault */
995 /* the PC is inside the translated code. It means that we have
996 a virtual CPU fault */
997 cpu_restore_state(tb
, env
, pc
, puc
);
999 /* we restore the process signal mask as the sigreturn should
1000 do it (XXX: use sigsetjmp) */
1001 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1003 /* never comes here */
1007 #elif defined (TARGET_MIPS)
1008 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1009 int is_write
, sigset_t
*old_set
,
1012 TranslationBlock
*tb
;
1016 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1017 #if defined(DEBUG_SIGNAL)
1018 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1019 pc
, address
, is_write
, *(unsigned long *)old_set
);
1021 /* XXX: locking issue */
1022 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1026 /* see if it is an MMU fault */
1027 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1029 return 0; /* not an MMU fault */
1031 return 1; /* the MMU fault was handled without causing real CPU fault */
1033 /* now we have a real cpu fault */
1034 tb
= tb_find_pc(pc
);
1036 /* the PC is inside the translated code. It means that we have
1037 a virtual CPU fault */
1038 cpu_restore_state(tb
, env
, pc
, puc
);
1042 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1043 env
->PC
, env
->error_code
, tb
);
1045 /* we restore the process signal mask as the sigreturn should
1046 do it (XXX: use sigsetjmp) */
1047 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1050 /* activate soft MMU for this block */
1051 cpu_resume_from_signal(env
, puc
);
1053 /* never comes here */
1057 #elif defined (TARGET_MICROBLAZE)
1058 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1059 int is_write
, sigset_t
*old_set
,
1062 TranslationBlock
*tb
;
1066 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1067 #if defined(DEBUG_SIGNAL)
1068 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1069 pc
, address
, is_write
, *(unsigned long *)old_set
);
1071 /* XXX: locking issue */
1072 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1076 /* see if it is an MMU fault */
1077 ret
= cpu_mb_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1079 return 0; /* not an MMU fault */
1081 return 1; /* the MMU fault was handled without causing real CPU fault */
1083 /* now we have a real cpu fault */
1084 tb
= tb_find_pc(pc
);
1086 /* the PC is inside the translated code. It means that we have
1087 a virtual CPU fault */
1088 cpu_restore_state(tb
, env
, pc
, puc
);
1092 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1093 env
->PC
, env
->error_code
, tb
);
1095 /* we restore the process signal mask as the sigreturn should
1096 do it (XXX: use sigsetjmp) */
1097 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1100 /* activate soft MMU for this block */
1101 cpu_resume_from_signal(env
, puc
);
1103 /* never comes here */
1107 #elif defined (TARGET_SH4)
1108 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1109 int is_write
, sigset_t
*old_set
,
1112 TranslationBlock
*tb
;
1116 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1117 #if defined(DEBUG_SIGNAL)
1118 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1119 pc
, address
, is_write
, *(unsigned long *)old_set
);
1121 /* XXX: locking issue */
1122 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1126 /* see if it is an MMU fault */
1127 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1129 return 0; /* not an MMU fault */
1131 return 1; /* the MMU fault was handled without causing real CPU fault */
1133 /* now we have a real cpu fault */
1134 tb
= tb_find_pc(pc
);
1136 /* the PC is inside the translated code. It means that we have
1137 a virtual CPU fault */
1138 cpu_restore_state(tb
, env
, pc
, puc
);
1141 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1142 env
->nip
, env
->error_code
, tb
);
1144 /* we restore the process signal mask as the sigreturn should
1145 do it (XXX: use sigsetjmp) */
1146 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1148 /* never comes here */
1152 #elif defined (TARGET_ALPHA)
1153 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1154 int is_write
, sigset_t
*old_set
,
1157 TranslationBlock
*tb
;
1161 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1162 #if defined(DEBUG_SIGNAL)
1163 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1164 pc
, address
, is_write
, *(unsigned long *)old_set
);
1166 /* XXX: locking issue */
1167 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1171 /* see if it is an MMU fault */
1172 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1174 return 0; /* not an MMU fault */
1176 return 1; /* the MMU fault was handled without causing real CPU fault */
1178 /* now we have a real cpu fault */
1179 tb
= tb_find_pc(pc
);
1181 /* the PC is inside the translated code. It means that we have
1182 a virtual CPU fault */
1183 cpu_restore_state(tb
, env
, pc
, puc
);
1186 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1187 env
->nip
, env
->error_code
, tb
);
1189 /* we restore the process signal mask as the sigreturn should
1190 do it (XXX: use sigsetjmp) */
1191 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1193 /* never comes here */
1196 #elif defined (TARGET_CRIS)
1197 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1198 int is_write
, sigset_t
*old_set
,
1201 TranslationBlock
*tb
;
1205 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1206 #if defined(DEBUG_SIGNAL)
1207 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1208 pc
, address
, is_write
, *(unsigned long *)old_set
);
1210 /* XXX: locking issue */
1211 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1215 /* see if it is an MMU fault */
1216 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1218 return 0; /* not an MMU fault */
1220 return 1; /* the MMU fault was handled without causing real CPU fault */
1222 /* now we have a real cpu fault */
1223 tb
= tb_find_pc(pc
);
1225 /* the PC is inside the translated code. It means that we have
1226 a virtual CPU fault */
1227 cpu_restore_state(tb
, env
, pc
, puc
);
1229 /* we restore the process signal mask as the sigreturn should
1230 do it (XXX: use sigsetjmp) */
1231 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1233 /* never comes here */
1238 #error unsupported target CPU
1241 #if defined(__i386__)
1243 #if defined(__APPLE__)
1244 # include <sys/ucontext.h>
1246 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1247 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1248 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1249 # define MASK_sig(context) ((context)->uc_sigmask)
1250 #elif defined(__OpenBSD__)
1251 # define EIP_sig(context) ((context)->sc_eip)
1252 # define TRAP_sig(context) ((context)->sc_trapno)
1253 # define ERROR_sig(context) ((context)->sc_err)
1254 # define MASK_sig(context) ((context)->sc_mask)
1256 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1257 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1258 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1259 # define MASK_sig(context) ((context)->uc_sigmask)
1262 int cpu_signal_handler(int host_signum
, void *pinfo
,
1265 siginfo_t
*info
= pinfo
;
1266 #if defined(__OpenBSD__)
1267 struct sigcontext
*uc
= puc
;
1269 struct ucontext
*uc
= puc
;
1278 #define REG_TRAPNO TRAPNO
1281 trapno
= TRAP_sig(uc
);
1282 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1284 (ERROR_sig(uc
) >> 1) & 1 : 0,
1285 &MASK_sig(uc
), puc
);
1288 #elif defined(__x86_64__)
1291 #define PC_sig(context) _UC_MACHINE_PC(context)
1292 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
1293 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
1294 #define MASK_sig(context) ((context)->uc_sigmask)
1295 #elif defined(__OpenBSD__)
1296 #define PC_sig(context) ((context)->sc_rip)
1297 #define TRAP_sig(context) ((context)->sc_trapno)
1298 #define ERROR_sig(context) ((context)->sc_err)
1299 #define MASK_sig(context) ((context)->sc_mask)
1301 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
1302 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1303 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1304 #define MASK_sig(context) ((context)->uc_sigmask)
1307 int cpu_signal_handler(int host_signum
, void *pinfo
,
1310 siginfo_t
*info
= pinfo
;
1313 ucontext_t
*uc
= puc
;
1314 #elif defined(__OpenBSD__)
1315 struct sigcontext
*uc
= puc
;
1317 struct ucontext
*uc
= puc
;
1321 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1322 TRAP_sig(uc
) == 0xe ?
1323 (ERROR_sig(uc
) >> 1) & 1 : 0,
1324 &MASK_sig(uc
), puc
);
1327 #elif defined(_ARCH_PPC)
1329 /***********************************************************************
1330 * signal context platform-specific definitions
1334 /* All Registers access - only for local access */
1335 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1336 /* Gpr Registers access */
1337 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1338 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1339 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1340 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1341 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1342 # define LR_sig(context) REG_sig(link, context) /* Link register */
1343 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1344 /* Float Registers access */
1345 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1346 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1347 /* Exception Registers access */
1348 # define DAR_sig(context) REG_sig(dar, context)
1349 # define DSISR_sig(context) REG_sig(dsisr, context)
1350 # define TRAP_sig(context) REG_sig(trap, context)
1354 # include <sys/ucontext.h>
1355 typedef struct ucontext SIGCONTEXT
;
1356 /* All Registers access - only for local access */
1357 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1358 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1359 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1360 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1361 /* Gpr Registers access */
1362 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1363 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1364 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1365 # define CTR_sig(context) REG_sig(ctr, context)
1366 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1367 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1368 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1369 /* Float Registers access */
1370 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1371 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1372 /* Exception Registers access */
1373 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1374 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1375 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1376 #endif /* __APPLE__ */
1378 int cpu_signal_handler(int host_signum
, void *pinfo
,
1381 siginfo_t
*info
= pinfo
;
1382 struct ucontext
*uc
= puc
;
1390 if (DSISR_sig(uc
) & 0x00800000)
1393 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1396 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1397 is_write
, &uc
->uc_sigmask
, puc
);
1400 #elif defined(__alpha__)
1402 int cpu_signal_handler(int host_signum
, void *pinfo
,
1405 siginfo_t
*info
= pinfo
;
1406 struct ucontext
*uc
= puc
;
1407 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1408 uint32_t insn
= *pc
;
1411 /* XXX: need kernel patch to get write flag faster */
1412 switch (insn
>> 26) {
1427 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1428 is_write
, &uc
->uc_sigmask
, puc
);
1430 #elif defined(__sparc__)
1432 int cpu_signal_handler(int host_signum
, void *pinfo
,
1435 siginfo_t
*info
= pinfo
;
1438 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1439 uint32_t *regs
= (uint32_t *)(info
+ 1);
1440 void *sigmask
= (regs
+ 20);
1441 /* XXX: is there a standard glibc define ? */
1442 unsigned long pc
= regs
[1];
1445 struct sigcontext
*sc
= puc
;
1446 unsigned long pc
= sc
->sigc_regs
.tpc
;
1447 void *sigmask
= (void *)sc
->sigc_mask
;
1448 #elif defined(__OpenBSD__)
1449 struct sigcontext
*uc
= puc
;
1450 unsigned long pc
= uc
->sc_pc
;
1451 void *sigmask
= (void *)(long)uc
->sc_mask
;
1455 /* XXX: need kernel patch to get write flag faster */
1457 insn
= *(uint32_t *)pc
;
1458 if ((insn
>> 30) == 3) {
1459 switch((insn
>> 19) & 0x3f) {
1483 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1484 is_write
, sigmask
, NULL
);
1487 #elif defined(__arm__)
1489 int cpu_signal_handler(int host_signum
, void *pinfo
,
1492 siginfo_t
*info
= pinfo
;
1493 struct ucontext
*uc
= puc
;
1497 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1498 pc
= uc
->uc_mcontext
.gregs
[R15
];
1500 pc
= uc
->uc_mcontext
.arm_pc
;
1502 /* XXX: compute is_write */
1504 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1506 &uc
->uc_sigmask
, puc
);
1509 #elif defined(__mc68000)
1511 int cpu_signal_handler(int host_signum
, void *pinfo
,
1514 siginfo_t
*info
= pinfo
;
1515 struct ucontext
*uc
= puc
;
1519 pc
= uc
->uc_mcontext
.gregs
[16];
1520 /* XXX: compute is_write */
1522 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1524 &uc
->uc_sigmask
, puc
);
1527 #elif defined(__ia64)
1530 /* This ought to be in <bits/siginfo.h>... */
1531 # define __ISR_VALID 1
1534 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1536 siginfo_t
*info
= pinfo
;
1537 struct ucontext
*uc
= puc
;
1541 ip
= uc
->uc_mcontext
.sc_ip
;
1542 switch (host_signum
) {
1548 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1549 /* ISR.W (write-access) is bit 33: */
1550 is_write
= (info
->si_isr
>> 33) & 1;
1556 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1558 &uc
->uc_sigmask
, puc
);
1561 #elif defined(__s390__)
1563 int cpu_signal_handler(int host_signum
, void *pinfo
,
1566 siginfo_t
*info
= pinfo
;
1567 struct ucontext
*uc
= puc
;
1571 pc
= uc
->uc_mcontext
.psw
.addr
;
1572 /* XXX: compute is_write */
1574 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1575 is_write
, &uc
->uc_sigmask
, puc
);
1578 #elif defined(__mips__)
1580 int cpu_signal_handler(int host_signum
, void *pinfo
,
1583 siginfo_t
*info
= pinfo
;
1584 struct ucontext
*uc
= puc
;
1585 greg_t pc
= uc
->uc_mcontext
.pc
;
1588 /* XXX: compute is_write */
1590 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1591 is_write
, &uc
->uc_sigmask
, puc
);
1594 #elif defined(__hppa__)
1596 int cpu_signal_handler(int host_signum
, void *pinfo
,
1599 struct siginfo
*info
= pinfo
;
1600 struct ucontext
*uc
= puc
;
1604 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1605 /* FIXME: compute is_write */
1607 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1609 &uc
->uc_sigmask
, puc
);
1614 #error host CPU specific signal handler needed
1618 #endif /* !defined(CONFIG_SOFTMMU) */