1 ((7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(336*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(48*k^7) + (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(16*k^7) - (5*(7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8))/(48*k^7) + (5*(7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8))/(48*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^8)/(16*k^7) + (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^8)/(48*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^8)/(336*k^7))/k0^3
2 SeriesData[k, Infinity, {(10395*c^7)/k0^3, (-207360*c^8)/k0^3 + ((46080*I)*c^7)/k0^2, (45045*(125*c^9 - (54*I)*c^8*k0 - 6*c^7*k0^2))/(4*k0^3), 0, (-135135*(4819*c^11 - (3960*I)*c^10*k0 - 1250*c^9*k0^2 + (180*I)*c^8*k0^3 + 10*c^7*k0^4))/(16*k0^3)}, 6, 11, 1]