1 (* Content-type: application/vnd.wolfram.mathematica *)
3 (*** Wolfram Notebook File ***)
4 (* http://www.wolfram.com/nb *)
6 (* CreatedBy='Mathematica 11.1' *)
9 (* Internal cache information:
10 NotebookFileLineBreakTest
11 NotebookFileLineBreakTest
12 NotebookDataPosition[ 158, 7]
13 NotebookDataLength[ 124133, 3523]
14 NotebookOptionsPosition[ 113111, 3255]
15 NotebookOutlinePosition[ 113451, 3270]
16 CellTagsIndexPosition[ 113408, 3267]
19 (* Beginning of Notebook Content *)
25 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
32 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
33 RowBox[{"Binomial", "[",
34 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
35 RowBox[{"k", "^", "n"}], " ",
38 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
41 RowBox[{"2", "^", "n"}], " ",
42 RowBox[{"k0", "^", "q"}], " ",
46 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
47 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
49 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
50 RowBox[{"Hypergeometric2F1Regularized", "[",
54 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
57 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
58 RowBox[{"1", "+", "n"}], ",",
61 RowBox[{"k", "^", "2"}]}], "/",
65 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
66 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}]}], "]"}]}], ",",
68 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
70 CellChangeTimes->{{3.714278242480448*^9, 3.714278386121441*^9}, {
71 3.7142784362242203`*^9, 3.71427845192585*^9}, {3.714278623956832*^9,
72 3.714278766471459*^9}, {3.71427939685915*^9,
73 3.714279406485059*^9}},ExpressionUUID->"11f718af-721d-4530-8d00-\
80 RowBox[{"c", "=", "0.1"}], ";"}], "\[IndentingNewLine]",
82 RowBox[{"\[Kappa]", "=", "4"}], ";"}], "\[IndentingNewLine]",
84 RowBox[{"k0", "=", "1"}], ";"}], "\[IndentingNewLine]",
86 RowBox[{"k", "=", "3"}], ";"}], "\[IndentingNewLine]",
87 RowBox[{"NIntegrate", "[",
92 RowBox[{"k0", " ", "x"}], ")"}], "^",
94 RowBox[{"-", "2"}], ")"}]}], " ",
96 RowBox[{"I", " ", "k0", " ", "x"}], "]"}], " ", "x", " ",
97 RowBox[{"BesselJ", "[",
98 RowBox[{"0", ",", " ",
99 RowBox[{"k", " ", "x"}]}], "]"}], " ",
105 RowBox[{"-", "c"}], " ", "x"}], "]"}]}], ")"}], "^", "\[Kappa]"}]}],
108 RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}], "Input",
109 CellChangeTimes->{{3.714275713710395*^9, 3.714275854008779*^9}, {
110 3.714275901119227*^9, 3.7142759040182943`*^9}, 3.7142759848256273`*^9,
111 3.7142760852880793`*^9, 3.714279521167551*^9,
112 3.714376642974696*^9},ExpressionUUID->"60b62416-1732-4228-8f52-\
117 RowBox[{"-", "2.30129960224205`*^-6"}], "+",
118 RowBox[{"5.475415847841633`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
119 CellChangeTimes->{3.71427895383304*^9, 3.7142794125837593`*^9,
120 3.71427952256045*^9},ExpressionUUID->"e1c0326f-b1f0-4ebb-9de3-0d92c1b9201a"]
126 RowBox[{"NLimit", "[", " ",
129 RowBox[{"q", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}], "]"}],
131 RowBox[{"q", "\[Rule]", "2"}]}], "]"}]], "Input",
132 CellChangeTimes->{{3.7142789625057173`*^9, 3.714279028798195*^9}, {
133 3.714279076797824*^9, 3.7142790779849653`*^9}, {3.714279432152557*^9,
134 3.714279471232699*^9},
135 3.714279515514453*^9},ExpressionUUID->"9bf951ee-4aec-4260-9ddf-\
139 RowBox[{"NLimit", "[",
145 RowBox[{"0.4`", "\[VeryThinSpace]", "-",
146 RowBox[{"1.`", " ", "\[ImaginaryI]"}]}], ")"}],
148 RowBox[{"-", "2"}], "+", "q"}]], " ",
149 RowBox[{"Gamma", "[",
150 RowBox[{"2", "-", "q"}], "]"}], " ",
151 RowBox[{"Hypergeometric2F1Regularized", "[",
154 RowBox[{"2", "-", "q"}], "2"], ",",
156 RowBox[{"3", "-", "q"}], "2"], ",", "1", ",",
157 RowBox[{"5.618311533888228`", "\[VeryThinSpace]", "-",
158 RowBox[{"5.35077288941736`", " ", "\[ImaginaryI]"}]}]}], "]"}]}], "-",
162 RowBox[{"0.30000000000000004`", "\[VeryThinSpace]", "-",
163 RowBox[{"1.`", " ", "\[ImaginaryI]"}]}], ")"}],
165 RowBox[{"-", "2"}], "+", "q"}]], " ",
166 RowBox[{"Gamma", "[",
167 RowBox[{"2", "-", "q"}], "]"}], " ",
168 RowBox[{"Hypergeometric2F1Regularized", "[",
171 RowBox[{"2", "-", "q"}], "2"], ",",
173 RowBox[{"3", "-", "q"}], "2"], ",", "1", ",",
174 RowBox[{"6.893359144853127`", "\[VeryThinSpace]", "-",
175 RowBox[{"4.545071963639424`", " ", "\[ImaginaryI]"}]}]}], "]"}]}],
180 RowBox[{"0.2`", "\[VeryThinSpace]", "-",
181 RowBox[{"1.`", " ", "\[ImaginaryI]"}]}], ")"}],
183 RowBox[{"-", "2"}], "+", "q"}]], " ",
184 RowBox[{"Gamma", "[",
185 RowBox[{"2", "-", "q"}], "]"}], " ",
186 RowBox[{"Hypergeometric2F1Regularized", "[",
189 RowBox[{"2", "-", "q"}], "2"], ",",
191 RowBox[{"3", "-", "q"}], "2"], ",", "1", ",",
192 RowBox[{"7.988165680473372`", "\[VeryThinSpace]", "-",
193 RowBox[{"3.328402366863905`", " ", "\[ImaginaryI]"}]}]}], "]"}]}],
198 RowBox[{"0.1`", "\[VeryThinSpace]", "-",
199 RowBox[{"1.`", " ", "\[ImaginaryI]"}]}], ")"}],
201 RowBox[{"-", "2"}], "+", "q"}]], " ",
202 RowBox[{"Gamma", "[",
203 RowBox[{"2", "-", "q"}], "]"}], " ",
204 RowBox[{"Hypergeometric2F1Regularized", "[",
207 RowBox[{"2", "-", "q"}], "2"], ",",
209 RowBox[{"3", "-", "q"}], "2"], ",", "1", ",",
210 RowBox[{"8.734437800215666`", "\[VeryThinSpace]", "-",
211 RowBox[{"1.7645328889324576`", " ", "\[ImaginaryI]"}]}]}], "]"}]}],
216 RowBox[{"0.`", "\[VeryThinSpace]", "-",
217 RowBox[{"1.`", " ", "\[ImaginaryI]"}]}], ")"}],
219 RowBox[{"-", "2"}], "+", "q"}]], " ",
220 RowBox[{"Gamma", "[",
221 RowBox[{"2", "-", "q"}], "]"}], " ",
222 RowBox[{"Hypergeometric2F1Regularized", "[",
225 RowBox[{"2", "-", "q"}], "2"], ",",
227 RowBox[{"3", "-", "q"}], "2"], ",", "1", ",",
228 RowBox[{"9.`", "\[VeryThinSpace]", "+",
229 RowBox[{"0.`", " ", "\[ImaginaryI]"}]}]}], "]"}]}]}], ",",
230 RowBox[{"q", "\[Rule]", "2"}]}], "]"}]], "Output",
232 3.714279029382543*^9, 3.714279078535823*^9, {3.714279413783884*^9,
233 3.714279471673715*^9},
234 3.7142795169295053`*^9},ExpressionUUID->"d2edfa46-cbb3-4c0a-a2db-\
242 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
244 CellChangeTimes->{{3.714279109599843*^9, 3.7142791553425417`*^9}, {
245 3.714279476280341*^9, 3.714279528351893*^9}, {3.714280043246078*^9,
246 3.7142800433806467`*^9}, 3.714282592755178*^9,
247 3.714287530121619*^9},ExpressionUUID->"8a8a5ec5-4164-415c-a832-\
252 RowBox[{"-", "2.310140985173348`*^-6"}], "+",
253 RowBox[{"5.469690737114341`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
254 CellChangeTimes->{{3.714279116795315*^9, 3.714279156067604*^9},
255 3.714279415135985*^9, {3.71427947721791*^9, 3.714279528810555*^9},
256 3.714280043970068*^9, 3.71428259343073*^9,
257 3.714287530995831*^9},ExpressionUUID->"e6a4d50f-a64a-4c92-bccd-\
265 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
272 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
273 RowBox[{"Binomial", "[",
274 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
275 RowBox[{"k", "^", "n"}], " ",
277 RowBox[{"Gamma", "[",
278 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
281 RowBox[{"2", "^", "n"}], " ",
282 RowBox[{"k0", "^", "q"}], " ",
286 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
287 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
289 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
290 RowBox[{"(", "\[IndentingNewLine]",
292 RowBox[{"\[Pi]", " ",
298 RowBox[{"k", "^", "2"}], "/",
302 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
303 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
308 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
310 RowBox[{"Gamma", "[",
313 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
315 RowBox[{"Gamma", "[",
316 RowBox[{"1", "+", "n", "-",
319 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}]}], "]"}]}],
320 "\[IndentingNewLine]", " ",
321 RowBox[{"Hypergeometric2F1Regularized", "[",
325 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
328 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
329 RowBox[{"1", "/", "2"}], ",",
335 RowBox[{"\[Sigma]", " ", "c"}], "-",
336 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
337 RowBox[{"k", "^", "2"}]}]}], "]"}]}], "\[IndentingNewLine]", "-",
338 RowBox[{"\[Pi]", " ",
344 RowBox[{"k", "^", "2"}], "/",
348 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
349 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
354 RowBox[{"3", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
356 RowBox[{"Gamma", "[",
359 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
361 RowBox[{"Gamma", "[",
362 RowBox[{"1", "+", "n", "-",
365 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}]}], "]"}]}],
366 "\[IndentingNewLine]", " ",
367 RowBox[{"Hypergeometric2F1Regularized", "[",
371 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
374 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
375 RowBox[{"3", "/", "2"}], ",",
381 RowBox[{"\[Sigma]", " ", "c"}], "-",
382 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
383 RowBox[{"k", "^", "2"}]}]}], "]"}]}]}], ")"}]}],
384 "\[IndentingNewLine]", ",",
386 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
389 3.714279590035865*^9, {3.714279690818611*^9, 3.714280013752778*^9}, {
390 3.714280457778509*^9,
391 3.714280466589781*^9}},ExpressionUUID->"15978efa-9e1d-46b2-b638-\
398 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
400 CellChangeTimes->{{3.714280030611827*^9, 3.714280038522109*^9},
401 3.7142819318470097`*^9,
402 3.7142875347922573`*^9},ExpressionUUID->"bd9bb75c-aa2f-4771-820c-\
407 RowBox[{"-", "2.310138938810269`*^-6"}], "+",
408 RowBox[{"5.469690733006516`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
409 CellChangeTimes->{3.7142874547141237`*^9, 3.714287535713789*^9,
410 3.714288543501436*^9},ExpressionUUID->"fdc37902-4c0f-48d5-b1f9-\
418 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
420 RowBox[{"\[Pi]", " ",
426 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
427 RowBox[{"Binomial", "[",
428 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
429 RowBox[{"k", "^", "n"}], " ",
431 RowBox[{"Gamma", "[",
432 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
435 RowBox[{"2", "^", "n"}], " ",
436 RowBox[{"k0", "^", "q"}], " ",
440 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
441 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
443 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
444 RowBox[{"(", "\[IndentingNewLine]", " ",
452 RowBox[{"k", "^", "2"}], "/",
456 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
457 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
463 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
465 RowBox[{"Gamma", "[",
468 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
470 RowBox[{"Gamma", "[",
473 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
474 "\[IndentingNewLine]", " ",
475 RowBox[{"Hypergeometric2F1Regularized", "[",
479 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
482 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
483 RowBox[{"1", "/", "2"}], ",",
489 RowBox[{"\[Sigma]", " ", "c"}], "-",
490 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
491 RowBox[{"k", "^", "2"}]}]}], "]"}]}], "\[IndentingNewLine]", "-",
499 RowBox[{"k", "^", "2"}], "/",
503 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
504 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
510 RowBox[{"3", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
512 RowBox[{"Gamma", "[",
515 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
517 RowBox[{"Gamma", "[",
520 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}], "]"}]}],
521 "\[IndentingNewLine]", " ",
522 RowBox[{"Hypergeometric2F1Regularized", "[",
526 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
529 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
530 RowBox[{"3", "/", "2"}], ",",
536 RowBox[{"\[Sigma]", " ", "c"}], "-",
537 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
538 RowBox[{"k", "^", "2"}]}]}], "]"}]}]}], ")"}]}],
539 "\[IndentingNewLine]", ",",
541 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
544 3.714279590035865*^9, {3.714279690818611*^9, 3.714280013752778*^9}, {
545 3.714280457778509*^9, 3.714280466589781*^9}, {3.7142886263091793`*^9,
546 3.714288674654853*^9}},ExpressionUUID->"0270ff41-5dea-48e1-8e61-\
553 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
555 CellChangeTimes->{{3.714280030611827*^9, 3.714280038522109*^9},
556 3.7142819318470097`*^9, 3.7142875347922573`*^9,
557 3.71428862964427*^9},ExpressionUUID->"dc1bf119-f620-4298-9861-\
562 RowBox[{"-", "2.31013872655064`*^-6"}], "+",
563 RowBox[{"5.469690734266986`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
565 3.7142874547141237`*^9, 3.714287535713789*^9, 3.714288543501436*^9, {
566 3.714288633087429*^9,
567 3.714288676731587*^9}},ExpressionUUID->"502ca379-4501-4726-b8a3-\
575 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
582 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
583 RowBox[{"Binomial", "[",
584 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
587 RowBox[{"q", "-", "2"}], ")"}]}], " ",
588 RowBox[{"Gamma", "[",
589 RowBox[{"2", "-", "q", "+", "n"}], "]"}],
591 RowBox[{"Gamma", "[",
592 RowBox[{"1", "+", "n"}], "]"}], "\[IndentingNewLine]", "/",
595 RowBox[{"2", "^", "n"}], " ",
596 RowBox[{"k0", "^", "q"}], " ",
600 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
601 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
604 RowBox[{"3", "/", "2"}],
606 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], ")"}]}]}], ")"}]}],
607 "\[IndentingNewLine]", " ",
609 RowBox[{"Pochhammer", "[",
613 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
617 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}]}], "]"}],
619 RowBox[{"Pochhammer", "[",
621 RowBox[{"1", "+", "n"}], ",",
624 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], "]"}]}],
625 "\[IndentingNewLine]",
626 RowBox[{"Hypergeometric2F1", "[",
630 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
633 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
634 RowBox[{"1", "/", "2"}], ",",
639 RowBox[{"\[Sigma]", "-",
640 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
641 RowBox[{"k", "^", "2"}]}]}], "]"}]}], "\[IndentingNewLine]", ",",
643 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
645 CellChangeTimes->{{3.7142805171206827`*^9, 3.7142805173125057`*^9}, {
646 3.714281212013117*^9, 3.7142812678804617`*^9}, {3.714281315212207*^9,
647 3.71428145933329*^9}},ExpressionUUID->"7bdc1e3b-21a7-4b53-8781-\
654 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
656 CellChangeTimes->{{3.714281486641721*^9,
657 3.714281487161277*^9}},ExpressionUUID->"e99ec6cf-d99f-42bb-b94e-\
661 RowBox[{"0.0005961271568821758`", "\[VeryThinSpace]", "-",
662 RowBox[{"0.0005802053412378161`", " ", "\[ImaginaryI]"}]}]], "Output",
664 3.7142814876849213`*^9},ExpressionUUID->"9defb7fc-3a2a-4372-b667-\
672 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
679 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
680 RowBox[{"Binomial", "[",
681 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
683 RowBox[{"k", "^", "n"}], " ", "/",
684 RowBox[{"Gamma", "[",
685 RowBox[{"1", "+", "n"}], "]"}]}], " ",
687 RowBox[{"Gamma", "[",
688 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
691 RowBox[{"2", "^", "n"}], " ",
692 RowBox[{"k0", "^", "q"}], " ",
696 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
697 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
699 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
700 RowBox[{"Hypergeometric2F1", "[",
704 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
707 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
708 RowBox[{"1", "+", "n"}], ",",
711 RowBox[{"k", "^", "2"}]}], "/",
715 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
716 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}]}], "]"}]}], ",",
718 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
720 CellChangeTimes->{{3.714281823698204*^9, 3.71428186208356*^9},
721 3.714281944086228*^9},ExpressionUUID->"c903db13-544e-45bc-b87f-\
728 RowBox[{"2.001", ",", "2", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
730 CellChangeTimes->{3.7142818741710377`*^9,
731 3.714281937081643*^9},ExpressionUUID->"c75220ed-031f-49e5-9467-\
735 RowBox[{"3.3634365526058474`*^-6", "-",
736 RowBox[{"8.613661063167077`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
738 3.714281874941059*^9, {3.71428193770849*^9,
739 3.71428194777015*^9}},ExpressionUUID->"2ca46fac-dce2-4111-be04-\
747 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
754 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
755 RowBox[{"Binomial", "[",
756 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
759 RowBox[{"q", "-", "2"}], ")"}]}], " ",
761 RowBox[{"Gamma", "[",
762 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/", "\[IndentingNewLine]",
765 RowBox[{"2", "^", "n"}], " ",
766 RowBox[{"k0", "^", "q"}], " ",
770 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
771 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
774 RowBox[{"3", "/", "2"}],
776 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], ")"}]}], " ",
777 RowBox[{"Gamma", "[",
778 RowBox[{"1", "+", "n"}], "]"}]}], ")"}]}], "\[IndentingNewLine]",
780 RowBox[{"Pochhammer", "[",
784 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
788 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}]}], "]"}],
790 RowBox[{"Pochhammer", "[",
792 RowBox[{"1", "+", "n"}], ",",
796 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}]}], "]"}]}],
797 "\[IndentingNewLine]",
798 RowBox[{"Hypergeometric2F1", "[",
802 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
805 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
806 RowBox[{"1", "/", "2"}], ",",
812 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
813 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
814 RowBox[{"k", "^", "2"}]}]}], "]"}]}], "\[IndentingNewLine]", ",",
816 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
819 3.714282098516695*^9, {3.714282130447603*^9, 3.7142821401345367`*^9}, {
820 3.714282216920789*^9, 3.7142823384310217`*^9}, {3.7142824377107773`*^9,
821 3.714282439156217*^9}, {3.714282477583288*^9,
822 3.7142824926773233`*^9}},ExpressionUUID->"91fb5021-708e-4953-92bf-\
829 RowBox[{"2.000", ",", "2", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
831 CellChangeTimes->{3.714282348723709*^9,
832 3.714282689741394*^9},ExpressionUUID->"1d288674-7aa8-40c7-ad24-\
837 RowBox[{"-", "0.013915081934793683`"}], "-",
838 RowBox[{"0.003057622531865256`", " ", "\[ImaginaryI]"}]}]], "Output",
839 CellChangeTimes->{3.7142823493744793`*^9, 3.714282440942499*^9,
840 3.714282494600651*^9,
841 3.714282690480345*^9},ExpressionUUID->"d5266c94-5c79-4a80-a294-\
849 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
858 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
859 RowBox[{"Binomial", "[",
860 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
864 RowBox[{"-", "2"}], "+", "q", "-",
865 RowBox[{"2", "s"}]}], ")"}]}], " ",
866 RowBox[{"Gamma", "[",
867 RowBox[{"2", "-", "q", "+", "n"}], "]"}],
868 RowBox[{"\[Pi]", "/", "\[IndentingNewLine]",
871 RowBox[{"2", "^", "n"}], " ",
872 RowBox[{"k0", "^", "q"}]}], " ", ")"}]}],
873 RowBox[{"(", "\[IndentingNewLine]", " ",
876 RowBox[{"Pochhammer", "[",
880 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
883 RowBox[{"Pochhammer", "[",
887 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
888 "s"}], "]"}], "\[IndentingNewLine]", " ", "/", " ",
891 RowBox[{"Gamma", "[",
894 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}],
895 RowBox[{"Gamma", "[",
898 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}],
899 RowBox[{"Gamma", "[",
901 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}], " ",
902 RowBox[{"s", "!"}]}], ")"}]}]}], "\[IndentingNewLine]", "-",
904 RowBox[{"Pochhammer", "[",
908 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
911 RowBox[{"Pochhammer", "[",
915 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
916 "s"}], "]"}], "\[IndentingNewLine]", " ", "/", " ",
919 RowBox[{"Gamma", "[",
922 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}],
923 RowBox[{"Gamma", "[",
926 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}], "]"}],
927 RowBox[{"Gamma", "[",
929 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}], " ",
930 RowBox[{"s", "!"}]}], ")"}]}], "\[IndentingNewLine]", " ",
935 RowBox[{"-", "\[Sigma]"}], " ", "c"}], "-",
936 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}]}]}],
937 "\[IndentingNewLine]", "\[IndentingNewLine]", ")"}]}],
938 "\[IndentingNewLine]", ",",
940 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}], "]"}], ",",
942 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}]], "Input",
943 CellChangeTimes->{{3.714286486428625*^9, 3.714286510862175*^9}, {
944 3.714286599838471*^9, 3.7142866149002047`*^9}, {3.7142866461705503`*^9,
945 3.714286660781233*^9}, {3.714286693444262*^9, 3.7142866951275806`*^9}, {
946 3.714286729608942*^9, 3.714286737178653*^9}, {3.714286770356913*^9,
947 3.714286967963607*^9}},ExpressionUUID->"35e0146b-a88e-4958-9a81-\
954 RowBox[{"2.1", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
956 CellChangeTimes->{{3.714286986468603*^9, 3.714286989151475*^9}, {
957 3.714287136219614*^9,
958 3.714287149633726*^9}},ExpressionUUID->"ee4e143e-b867-4930-86b6-\
962 RowBox[{"8.847276454415696`*^-15", "-",
963 RowBox[{"5.680986655414175`*^-16", " ", "\[ImaginaryI]"}]}]], "Output",
965 3.714286989900689*^9, {3.714287138803092*^9,
966 3.7142871522134933`*^9}},ExpressionUUID->"e7215961-ce53-448f-a9e3-\
974 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
976 RowBox[{"\[Pi]", " ",
982 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
983 RowBox[{"Binomial", "[",
984 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
985 RowBox[{"k", "^", "n"}], " ",
987 RowBox[{"Gamma", "[",
988 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
991 RowBox[{"2", "^", "n"}], " ",
992 RowBox[{"k0", "^", "q"}], " ",
996 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
997 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
999 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
1000 RowBox[{"(", "\[IndentingNewLine]", " ",
1008 RowBox[{"k", "^", "2"}], "/",
1012 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
1013 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
1019 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
1021 RowBox[{"Gamma", "[",
1024 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1026 RowBox[{"Gamma", "[",
1029 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1030 "\[IndentingNewLine]", " ",
1031 RowBox[{"Hypergeometric2F1Regularized", "[",
1035 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1038 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1039 RowBox[{"1", "/", "2"}], ",",
1045 RowBox[{"\[Sigma]", " ", "c"}], "-",
1046 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
1047 RowBox[{"k", "^", "2"}]}]}], "]"}]}], "\[IndentingNewLine]", "-",
1055 RowBox[{"k", "^", "2"}], "/",
1059 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
1060 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
1066 RowBox[{"3", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
1068 RowBox[{"Gamma", "[",
1071 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1073 RowBox[{"Gamma", "[",
1076 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}], "]"}]}],
1077 "\[IndentingNewLine]", " ",
1078 RowBox[{"Hypergeometric2F1Regularized", "[",
1082 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1085 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1086 RowBox[{"3", "/", "2"}], ",",
1092 RowBox[{"\[Sigma]", " ", "c"}], "-",
1093 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
1094 RowBox[{"k", "^", "2"}]}]}], "]"}]}]}], ")"}]}],
1095 "\[IndentingNewLine]", ",",
1097 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
1098 "]"}]}]}]], "Input",
1100 3.714279590035865*^9, {3.714279690818611*^9, 3.714280013752778*^9}, {
1101 3.714280457778509*^9, 3.714280466589781*^9}, 3.714287233376712*^9, {
1102 3.7142872781308537`*^9, 3.7142873155616083`*^9}, {3.714287408146644*^9,
1103 3.714287430524211*^9}, {3.7142883819535217`*^9, 3.714288384252969*^9}, {
1104 3.714288757815189*^9, 3.714288776382951*^9}, {3.714288865962365*^9,
1105 3.7142888667854*^9}},ExpressionUUID->"a95bd250-d811-48c2-87a5-\
1108 Cell[CellGroupData[{
1111 RowBox[{"Hs21", "[",
1112 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
1114 CellChangeTimes->{{3.714280030611827*^9, 3.714280038522109*^9},
1115 3.7142819318470097`*^9, 3.714287234837658*^9, 3.7142874635342197`*^9,
1116 3.714288808579112*^9},ExpressionUUID->"2ea68715-88f5-4465-af14-\
1121 RowBox[{"-", "2.31013872655064`*^-6"}], "+",
1122 RowBox[{"5.469690734266986`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
1123 CellChangeTimes->{{3.714280031311132*^9, 3.714280039292564*^9},
1124 3.714280469107683*^9, 3.714281932658917*^9, 3.71428257860351*^9, {
1125 3.714287436217915*^9, 3.714287464439518*^9}, 3.714287540141326*^9,
1126 3.714288385713441*^9, 3.714288548425488*^9, {3.714288760252366*^9,
1127 3.71428877881402*^9}, 3.714288809246872*^9,
1128 3.714288869829924*^9},ExpressionUUID->"a7f32ea2-344b-47e7-80d7-\
1134 RowBox[{"Hs3a", "[",
1136 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
1138 RowBox[{"\[Pi]", " ",
1144 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
1145 RowBox[{"Binomial", "[",
1146 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
1147 RowBox[{"k", "^", "n"}], " ",
1149 RowBox[{"Gamma", "[",
1150 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
1153 RowBox[{"2", "^", "n"}], " ",
1154 RowBox[{"k0", "^", "q"}], " ",
1158 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
1159 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1161 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
1162 RowBox[{"Sum", "[", "\[IndentingNewLine]", " ",
1171 RowBox[{"k", "^", "2"}], "/",
1175 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
1176 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
1181 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
1183 RowBox[{"Gamma", "[",
1186 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1188 RowBox[{"Gamma", "[",
1191 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1192 "\[IndentingNewLine]", " ",
1193 RowBox[{"Pochhammer", "[",
1197 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1201 RowBox[{"Pochhammer", "[",
1205 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1207 RowBox[{"Gamma", "[",
1209 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}]}], "/",
1210 RowBox[{"s", "!"}]}], "\[IndentingNewLine]", "\t",
1218 RowBox[{"\[Sigma]", " ", "c"}], "-",
1219 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
1220 RowBox[{"k", "^", "2"}]}], ")"}], "^", "s"}]}],
1221 "\[IndentingNewLine]", "-", " ",
1228 RowBox[{"k", "^", "2"}], "/",
1232 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
1233 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
1238 RowBox[{"3", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
1240 RowBox[{"Gamma", "[",
1243 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1245 RowBox[{"Gamma", "[",
1248 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}], "]"}]}],
1249 "\[IndentingNewLine]", " ",
1250 RowBox[{"Pochhammer", "[",
1254 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1258 RowBox[{"Pochhammer", "[",
1262 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1264 RowBox[{"Gamma", "[",
1266 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
1267 RowBox[{"s", "!"}]}], "\[IndentingNewLine]", "\t",
1275 RowBox[{"\[Sigma]", " ", "c"}], "-",
1276 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
1277 RowBox[{"k", "^", "2"}]}], ")"}], "^", "s"}]}]}], ",",
1278 "\[IndentingNewLine]",
1280 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}],
1281 "\[IndentingNewLine]", ",",
1283 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
1284 "]"}]}]}]], "Input",
1285 CellChangeTimes->{{3.7142893672643137`*^9, 3.714289382815003*^9}, {
1286 3.7142894295982018`*^9, 3.714289459307962*^9}, {3.714289498065723*^9,
1287 3.714289626198709*^9}, {3.714289980275403*^9, 3.714290000381897*^9}, {
1288 3.7142903246351557`*^9, 3.714290331819459*^9}, {3.714290378125929*^9,
1289 3.714290401543976*^9}},ExpressionUUID->"3d8bffca-d6ac-482a-b1a2-\
1292 Cell[CellGroupData[{
1295 RowBox[{"Hs3a", "[",
1296 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
1298 CellChangeTimes->{{3.7142896421583853`*^9, 3.714289642998307*^9}, {
1299 3.714289675624762*^9, 3.714289675800159*^9},
1300 3.714289898236577*^9},ExpressionUUID->"1abff5df-c88c-4949-93d7-\
1305 RowBox[{"-", "2.310138190814039`*^-6"}], "+",
1306 RowBox[{"5.4696907326974446`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
1307 CellChangeTimes->{3.714289734734824*^9, 3.714289825697638*^9,
1308 3.714289971009247*^9, 3.7142902647769127`*^9,
1309 3.714290462593569*^9},ExpressionUUID->"69027225-5785-4f7e-9ff2-\
1315 RowBox[{"oto\[CHacek]en\[EAcute]", " ", "po\[RHacek]ad\[IAcute]", " ",
1316 RowBox[{"sumy", ":"}]}]}]], "Input",
1317 CellChangeTimes->{{3.714290586711878*^9,
1318 3.714290599100697*^9}},ExpressionUUID->"d5926fc0-c5a2-4b56-894e-\
1323 RowBox[{"Hs3b", "[",
1325 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
1327 RowBox[{"\[Pi]", " ",
1328 RowBox[{"Sum", "[", " ",
1335 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
1336 RowBox[{"Binomial", "[",
1337 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
1338 RowBox[{"k", "^", "n"}], " ",
1340 RowBox[{"Gamma", "[",
1341 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
1344 RowBox[{"2", "^", "n"}], " ",
1345 RowBox[{"k0", "^", "q"}], " ",
1349 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
1350 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1352 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
1353 RowBox[{"(", "\[IndentingNewLine]", " ",
1361 RowBox[{"k", "^", "2"}], "/",
1365 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
1366 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}],
1372 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
1374 RowBox[{"Gamma", "[",
1377 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1379 RowBox[{"Gamma", "[",
1382 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1383 "\[IndentingNewLine]", " ",
1384 RowBox[{"Pochhammer", "[",
1388 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1392 RowBox[{"Pochhammer", "[",
1396 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1398 RowBox[{"Gamma", "[",
1400 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}]}], "/",
1401 RowBox[{"s", "!"}]}], "\[IndentingNewLine]", "\t",
1409 RowBox[{"\[Sigma]", " ", "c"}], "-",
1410 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
1411 RowBox[{"k", "^", "2"}]}], ")"}], "^", "s"}]}],
1412 "\[IndentingNewLine]", "-", " ",
1419 RowBox[{"k", "^", "2"}], "/",
1423 RowBox[{"\[Sigma]", " ", "c"}], " ", "-",
1424 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}],
1430 RowBox[{"3", "-", "q", "+", "n"}], ")"}]}], "/", "2"}],
1432 RowBox[{"Gamma", "[",
1435 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1437 RowBox[{"Gamma", "[",
1440 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}], "]"}]}],
1441 "\[IndentingNewLine]", " ",
1442 RowBox[{"Pochhammer", "[",
1446 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1450 RowBox[{"Pochhammer", "[",
1454 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1456 RowBox[{"Gamma", "[",
1458 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
1459 RowBox[{"s", "!"}]}], "\[IndentingNewLine]", "\t",
1467 RowBox[{"\[Sigma]", " ", "c"}], "-",
1468 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], "/",
1469 RowBox[{"k", "^", "2"}]}], ")"}], "^", "s"}]}]}],
1470 "\[IndentingNewLine]", ")"}]}], "\[IndentingNewLine]", ",",
1472 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}], "]"}],
1473 "\[IndentingNewLine]", ",",
1475 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}],
1476 "]"}]}]}]], "Input",
1477 CellChangeTimes->{{3.7142893672643137`*^9, 3.714289382815003*^9}, {
1478 3.7142894295982018`*^9, 3.714289459307962*^9}, {3.714289498065723*^9,
1479 3.714289626198709*^9}, {3.714289980275403*^9, 3.714290000381897*^9}, {
1480 3.714290037095689*^9, 3.714290082714675*^9}, {3.714290420096354*^9,
1481 3.7142904284034443`*^9}, {3.714290545669217*^9,
1482 3.7142905464623137`*^9}},ExpressionUUID->"5e62d660-2944-47ca-8ee0-\
1485 Cell[CellGroupData[{
1488 RowBox[{"Hs3b", "[",
1489 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
1491 CellChangeTimes->{{3.7142896421583853`*^9, 3.714289642998307*^9}, {
1492 3.714289675624762*^9, 3.714289675800159*^9}, 3.714289898236577*^9,
1493 3.7142900408710833`*^9},ExpressionUUID->"ac03b840-c27b-4fe3-bb0b-\
1498 RowBox[{"-", "2.3101401399657503`*^-6"}], "+",
1499 RowBox[{"5.469690735905011`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
1500 CellChangeTimes->{3.7142903189715757`*^9, 3.714290502891795*^9,
1501 3.7142906073604593`*^9},ExpressionUUID->"e5d1f184-d264-4d0a-af52-\
1507 RowBox[{"Hs4a", "[",
1509 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
1511 RowBox[{"\[Pi]", " ",
1517 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
1518 RowBox[{"Binomial", "[",
1519 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
1520 RowBox[{"k", "^", "n"}], " ",
1522 RowBox[{"Gamma", "[",
1523 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/",
1526 RowBox[{"2", "^", "n"}], " ",
1527 RowBox[{"k0", "^", "q"}], " ",
1531 RowBox[{"\[Sigma]", " ", "c"}], " ", "-", " ",
1532 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1534 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
1540 RowBox[{"-", "1"}], ")"}], "^", "s"}],
1541 RowBox[{"(", "\[IndentingNewLine]", " ",
1544 RowBox[{"Pochhammer", "[",
1548 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1554 RowBox[{"Pochhammer", "[",
1558 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1559 "s"}], "]"}], "\[IndentingNewLine]", "/",
1560 RowBox[{"Gamma", "[",
1562 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}]}], "/",
1563 RowBox[{"s", "!"}]}], "/",
1564 RowBox[{"Gamma", "[",
1567 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}],
1569 RowBox[{"Gamma", "[",
1572 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1573 "\[IndentingNewLine]",
1577 RowBox[{"-", "2"}], "+", "q", "-", "n", "-",
1578 RowBox[{"2", "s"}]}], ")"}]}],
1582 RowBox[{"\[Sigma]", " ", "c"}], "-",
1583 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1585 RowBox[{"2", "-", "q", "+", "n", "+",
1586 RowBox[{"2", "s"}]}], ")"}]}]}], "\[IndentingNewLine]", "-",
1589 RowBox[{"Pochhammer", "[",
1593 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1599 RowBox[{"Pochhammer", "[",
1603 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1604 "s"}], "]"}], "\[IndentingNewLine]", "/",
1605 RowBox[{"Gamma", "[",
1607 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
1608 RowBox[{"s", "!"}]}], "/",
1609 RowBox[{"Gamma", "[",
1612 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}],
1614 RowBox[{"Gamma", "[",
1617 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}], "]"}]}],
1618 "\[IndentingNewLine]", " ",
1622 RowBox[{"-", "3"}], "+", "q", "-", "n", "-",
1623 RowBox[{"2", "s"}]}], ")"}]}],
1627 RowBox[{"\[Sigma]", " ", "c"}], "-",
1628 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1630 RowBox[{"3", "-", "q", "+", "n", "+",
1631 RowBox[{"2", "s"}]}], ")"}]}]}]}], "\[IndentingNewLine]",
1634 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}],
1635 "\[IndentingNewLine]", ",",
1637 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
1638 "]"}]}]}]], "Input",
1639 CellChangeTimes->{{3.7142893672643137`*^9, 3.714289382815003*^9}, {
1640 3.7142894295982018`*^9, 3.714289459307962*^9}, {3.714289498065723*^9,
1641 3.714289626198709*^9}, {3.714289980275403*^9, 3.714290000381897*^9}, {
1642 3.7142903246351557`*^9, 3.714290331819459*^9}, {3.714290378125929*^9,
1643 3.714290401543976*^9}, {3.71429065707089*^9, 3.714290657857644*^9}, {
1644 3.714290726660638*^9, 3.714290781397086*^9}, {3.714290812028606*^9,
1645 3.7142909334348288`*^9}},ExpressionUUID->"4ab261b6-0c49-491c-9869-\
1648 Cell[CellGroupData[{
1651 RowBox[{"Hs4a", "[",
1652 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
1654 CellChangeTimes->{{3.714290670918292*^9, 3.7142906716436872`*^9},
1655 3.714291273201295*^9},ExpressionUUID->"28a7cebd-2387-4639-b462-\
1660 RowBox[{"-", "2.3101399766027096`*^-6"}], "+",
1661 RowBox[{"5.4696907340925925`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
1663 3.714290941279868*^9},ExpressionUUID->"408303d5-6eab-465e-b43c-\
1669 RowBox[{"Hs4b", "[",
1671 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
1673 RowBox[{"\[Pi]", " ",
1679 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
1680 RowBox[{"Binomial", "[",
1681 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}], " ",
1683 RowBox[{"Gamma", "[",
1684 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/", "\[IndentingNewLine]",
1688 RowBox[{"2", "^", "n"}], " ",
1689 RowBox[{"k0", "^", "q"}]}], ")"}]}], "\[IndentingNewLine]",
1695 RowBox[{"-", "1"}], ")"}], "^", "s"}],
1696 RowBox[{"(", "\[IndentingNewLine]", " ",
1699 RowBox[{"Pochhammer", "[",
1703 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1709 RowBox[{"Pochhammer", "[",
1713 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1714 "s"}], "]"}], "\[IndentingNewLine]", "/",
1715 RowBox[{"Gamma", "[",
1717 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}]}], "/",
1718 RowBox[{"s", "!"}]}], "/",
1719 RowBox[{"Gamma", "[",
1722 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}],
1724 RowBox[{"Gamma", "[",
1727 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
1728 "\[IndentingNewLine]",
1732 RowBox[{"-", "2"}], "+", "q", "-",
1733 RowBox[{"2", "s"}]}], ")"}]}],
1737 RowBox[{"\[Sigma]", " ", "c"}], "-",
1738 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1740 RowBox[{"2", "s"}], ")"}]}]}], "\[IndentingNewLine]", "-", " ",
1743 RowBox[{"Pochhammer", "[",
1747 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1753 RowBox[{"Pochhammer", "[",
1757 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1758 "s"}], "]"}], "\[IndentingNewLine]", "/",
1759 RowBox[{"Gamma", "[",
1761 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
1762 RowBox[{"s", "!"}]}], "/",
1763 RowBox[{"Gamma", "[",
1766 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}],
1768 RowBox[{"Gamma", "[",
1771 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}], "]"}]}],
1772 "\[IndentingNewLine]", " ",
1776 RowBox[{"-", "3"}], "+", "q", "-",
1777 RowBox[{"2", "s"}]}], ")"}]}],
1781 RowBox[{"\[Sigma]", " ", "c"}], "-",
1782 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1785 RowBox[{"2", "s"}]}], ")"}]}]}]}], "\[IndentingNewLine]",
1788 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}],
1789 "\[IndentingNewLine]", ",",
1791 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
1792 "]"}]}]}]], "Input",
1793 CellChangeTimes->{{3.7142893672643137`*^9, 3.714289382815003*^9}, {
1794 3.7142894295982018`*^9, 3.714289459307962*^9}, {3.714289498065723*^9,
1795 3.714289626198709*^9}, {3.714289980275403*^9, 3.714290000381897*^9}, {
1796 3.7142903246351557`*^9, 3.714290331819459*^9}, {3.714290378125929*^9,
1797 3.714290401543976*^9}, {3.71429065707089*^9, 3.714290657857644*^9}, {
1798 3.714290726660638*^9, 3.714290781397086*^9}, {3.714290812028606*^9,
1799 3.7142909334348288`*^9}, {3.714291024637805*^9, 3.7142912095547323`*^9},
1800 3.714291266458826*^9},ExpressionUUID->"a0aeba62-9dcc-4486-a26f-\
1803 Cell[CellGroupData[{
1806 RowBox[{"Hs4b", "[",
1807 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
1809 CellChangeTimes->{{3.714291278032549*^9,
1810 3.7142912786096277`*^9}},ExpressionUUID->"959e5694-67a4-4fb4-a01a-\
1815 RowBox[{"-", "2.310140512339311`*^-6"}], "+",
1816 RowBox[{"5.469690733307822`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
1818 3.714291278895607*^9},ExpressionUUID->"b6a40e5c-36ec-408f-a622-\
1824 RowBox[{"Hs4c", "[",
1826 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
1828 RowBox[{"\[Pi]", " ",
1834 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
1835 RowBox[{"Binomial", "[",
1836 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}], " ",
1838 RowBox[{"Gamma", "[",
1839 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/", "\[IndentingNewLine]",
1843 RowBox[{"2", "^", "n"}], " ",
1844 RowBox[{"k0", "^", "q"}]}], ")"}]}], "\[IndentingNewLine]",
1850 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
1854 RowBox[{"-", "2"}], "+", "q", "-",
1855 RowBox[{"2", "s"}]}], ")"}]}],
1859 RowBox[{"\[Sigma]", " ", "c"}], "-",
1860 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
1862 RowBox[{"2", "s"}], ")"}]}],
1863 RowBox[{"(", "\[IndentingNewLine]", " ",
1867 RowBox[{"Pochhammer", "[",
1871 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1877 RowBox[{"Pochhammer", "[",
1881 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1882 "s"}], "]"}], "\[IndentingNewLine]", "/",
1883 RowBox[{"Gamma", "[",
1885 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}]}], "/",
1886 RowBox[{"s", "!"}]}], "/",
1887 RowBox[{"Gamma", "[",
1890 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}],
1892 RowBox[{"Gamma", "[",
1895 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}]}], ")"}],
1896 "\[IndentingNewLine]", "-", " ",
1900 RowBox[{"Pochhammer", "[",
1904 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
1910 RowBox[{"Pochhammer", "[",
1914 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
1915 "s"}], "]"}], "\[IndentingNewLine]", "/",
1916 RowBox[{"Gamma", "[",
1918 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
1919 RowBox[{"s", "!"}]}], "/",
1920 RowBox[{"Gamma", "[",
1923 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}],
1925 RowBox[{"Gamma", "[",
1928 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}],
1929 "]"}]}]}], ")"}], "\[IndentingNewLine]", " ",
1933 RowBox[{"\[Sigma]", " ", "c"}], "-",
1934 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}]}]}],
1935 "\[IndentingNewLine]", ")"}]}], ",",
1937 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}],
1938 "\[IndentingNewLine]", ",",
1940 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
1941 "]"}]}]}]], "Input",
1942 CellChangeTimes->{{3.7142893672643137`*^9, 3.714289382815003*^9}, {
1943 3.7142894295982018`*^9, 3.714289459307962*^9}, {3.714289498065723*^9,
1944 3.714289626198709*^9}, {3.714289980275403*^9, 3.714290000381897*^9}, {
1945 3.7142903246351557`*^9, 3.714290331819459*^9}, {3.714290378125929*^9,
1946 3.714290401543976*^9}, {3.71429065707089*^9, 3.714290657857644*^9}, {
1947 3.714290726660638*^9, 3.714290781397086*^9}, {3.714290812028606*^9,
1948 3.7142909334348288`*^9}, {3.714291024637805*^9, 3.7142912095547323`*^9},
1949 3.714291266458826*^9, {3.714291313707507*^9, 3.714291314301175*^9}, {
1950 3.714291530771325*^9, 3.7142916010936403`*^9}, {3.71429179054211*^9,
1951 3.714291821418215*^9}},ExpressionUUID->"811cd081-362a-41a3-bd5d-\
1954 Cell[CellGroupData[{
1957 RowBox[{"Hs4c", "[",
1958 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
1960 CellChangeTimes->{{3.71429161488424*^9,
1961 3.714291615400077*^9}},ExpressionUUID->"dc6edbc3-0394-4cd5-be4f-\
1966 RowBox[{"-", "2.3101419409702477`*^-6"}], "+",
1967 RowBox[{"5.4696907333950185`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
1968 CellChangeTimes->{3.714291617372395*^9,
1969 3.714291829663458*^9},ExpressionUUID->"d1aa622a-f7c6-4b70-a80c-\
1975 RowBox[{"Hs4d", "[",
1977 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
1979 RowBox[{"\[Pi]", " ",
1985 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
1986 RowBox[{"Binomial", "[",
1987 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}], " ",
1989 RowBox[{"Gamma", "[",
1990 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/", "\[IndentingNewLine]",
1994 RowBox[{"2", "^", "n"}], " ",
1995 RowBox[{"k0", "^", "q"}]}], ")"}]}], "\[IndentingNewLine]",
2001 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2005 RowBox[{"-", "2"}], "+", "q", "-",
2006 RowBox[{"2", "s"}]}], ")"}]}],
2010 RowBox[{"\[Sigma]", " ", "c"}], "-",
2011 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
2013 RowBox[{"2", "s"}], ")"}]}],
2014 RowBox[{"(", "\[IndentingNewLine]", " ",
2018 RowBox[{"Pochhammer", "[",
2022 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
2028 RowBox[{"Pochhammer", "[",
2032 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
2033 "s"}], "]"}], "\[IndentingNewLine]", "/",
2034 RowBox[{"Gamma", "[",
2036 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}]}], "/",
2037 RowBox[{"s", "!"}]}], "/",
2038 RowBox[{"Gamma", "[",
2041 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}],
2043 RowBox[{"Gamma", "[",
2046 RowBox[{"q", "+", "n"}], ")"}], "/", "2"}], "]"}]}]}], ")"}],
2047 "\[IndentingNewLine]", "-", " ",
2051 RowBox[{"Pochhammer", "[",
2055 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
2061 RowBox[{"Pochhammer", "[",
2065 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
2066 "s"}], "]"}], "\[IndentingNewLine]", "/",
2067 RowBox[{"Gamma", "[",
2069 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
2070 RowBox[{"s", "!"}]}], "/",
2071 RowBox[{"Gamma", "[",
2074 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}],
2076 RowBox[{"Gamma", "[",
2079 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}],
2080 "]"}]}]}], ")"}], "\[IndentingNewLine]", " ",
2084 RowBox[{"\[Sigma]", " ", "c"}], "-",
2085 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}]}]}],
2086 "\[IndentingNewLine]", ")"}]}], ",",
2089 RowBox[{"Ceiling", "[",
2090 RowBox[{"\[Kappa]", "/", "2"}], "]"}], ",", "\[Infinity]"}],
2091 "}"}]}], "]"}]}], "\[IndentingNewLine]", ",",
2093 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2094 "]"}]}]}]], "Input",
2095 CellChangeTimes->{{3.714291934746553*^9, 3.7142919359793797`*^9}, {
2096 3.714291966225366*^9, 3.714291969149551*^9}, {3.714296445383353*^9,
2097 3.7142964457053547`*^9}, 3.714296507945154*^9, {3.71429655564856*^9,
2098 3.714296567006785*^9},
2099 3.714304904564191*^9},ExpressionUUID->"747e5737-fbc4-443f-8253-\
2102 Cell[CellGroupData[{
2105 RowBox[{"Hs4d", "[",
2106 RowBox[{"2.00001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
2108 CellChangeTimes->{3.7142964324128847`*^9, 3.7143050627984667`*^9,
2109 3.7143052251049547`*^9},ExpressionUUID->"69f1a251-919e-4400-b0c2-\
2114 RowBox[{"-", "2.3014227810251192`*^-6"}], "+",
2115 RowBox[{"5.4753586632338605`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
2116 CellChangeTimes->{{3.714296432738432*^9, 3.714296451646615*^9},
2117 3.714296512203021*^9, 3.7142965693207006`*^9, 3.714305064845126*^9,
2118 3.714305227033358*^9},ExpressionUUID->"8b2e58e7-5d5a-4697-824a-\
2122 Cell[CellGroupData[{
2128 RowBox[{"Gamma", "[",
2130 RowBox[{"1", "/", "2"}]}], "]"}],
2135 RowBox[{"-", "1"}], ")"}], "^", "s"}], "/",
2138 RowBox[{"1", "/", "2"}]}], ")"}]}], "/",
2139 RowBox[{"s", "!"}]}],
2140 RowBox[{"x", "^", "s"}]}], ",",
2142 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input",
2143 CellChangeTimes->{{3.714302231995471*^9, 3.714302249139989*^9}, {
2144 3.714302307582074*^9, 3.714302355910602*^9}, 3.714302660798676*^9, {
2145 3.714302710981365*^9,
2146 3.714302719324584*^9}},ExpressionUUID->"c015003f-0699-49e2-b866-\
2152 SqrtBox["\[Pi]"], " ",
2153 RowBox[{"ArcSinh", "[",
2154 SqrtBox["x"], "]"}]}],
2155 SqrtBox["x"]]], "Output",
2157 3.714302357238738*^9, {3.7143027140973*^9,
2158 3.7143027212700253`*^9}},ExpressionUUID->"b5efa070-aee7-4251-898d-\
2162 Cell[CellGroupData[{
2165 RowBox[{"Gamma", "[",
2166 RowBox[{"1", "/", "2"}], "]"}]], "Input",
2167 CellChangeTimes->{{3.7143026654616632`*^9,
2168 3.7143026672066393`*^9}},ExpressionUUID->"65bc3149-1111-4cfb-a506-\
2172 SqrtBox["\[Pi]"]], "Output",
2174 3.7143026674794493`*^9},ExpressionUUID->"385fc41d-508e-4bcc-87ce-\
2178 Cell[CellGroupData[{
2181 RowBox[{"Plot", "[",
2183 RowBox[{"ArcSinh", "[",
2184 RowBox[{"1", "/", "x"}], "]"}], ",",
2186 RowBox[{"x", ",", "0", ",", "200"}], "}"}]}], "]"}]], "Input",
2187 CellChangeTimes->{{3.714303154749318*^9, 3.7143031551135693`*^9}, {
2188 3.714303200349794*^9,
2189 3.7143032278424473`*^9}},ExpressionUUID->"fbdde755-24a3-46b6-b157-\
2193 GraphicsBox[{{{}, {},
2195 {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
2196 1.], LineBox[CompressedData["
2197 1:eJwVz3c81Ysfx3FJqdRNUri53SRyrOwkfD6OERlZld0x4iuEfO2jDoVEkXHQ
2198 yco69qqEFG5SKisqSaUk67pGGZX8/P54P17/PP95izh5m5/m5ODgiFzd/9tr
2199 BVpyJnIYckbmQLxjBXB9kPPsNJVDN58JZbpdBdy65tbulSyHz8a65++/K4cP
2200 //ZGFe+SR/ukJwV/jJWBdWnFiqikAg5eVdwpLl0KaKWRynNYAWc+Saps4SsF
2201 Ca5nsnOGCji+aZC+b7EEFm1H7Fu8FNB7zN9r6FEJMHn+uk+rUsBLiz+eR9FK
2202 4OWZK0EZqopYHeLez59dDMaU0zM7jyjhgrvA0mGNIvgR698weEIJ9Wc2YSml
2203 CNhTkZF5rkrYRx94oLazCLhuFwgpRCmhCD4xrvqPDfWao1rGrUq4/fcIdTmX
2204 DeKWHokXtZXxqoBoxettbOC44Ks4DSpo2yft+52jEMqHwpfvHlPBlkIT4dvT
2205 BWCrk9gWdkoF2+McymM+FsDdjTW2PBdUsHVbx+OgpgLwTP52UfyBCvJmNtxy
2206 DC+A/qLAXjv1gzj4TCZIhbsAqnvD/J+qqiI75zb1iUg+sCNdnD4ZqOLQrwzL
2207 cb58yFQxPPbTRhXfN4driXDlw5U0QYpMmCoOxlUuPx/JA2e7mncJzao4sEHf
2208 UqAsD/iHR7Wtjh5CynJSuoVGHgTMWfB9tVXDpPOh+o4eueCZp7ay4qmG04kJ
2209 tj0OueB0XGRS8LwanhU1yLEwzwWT2qnWo9lqaPlu9kjUoVzYHxoTXD6shk5v
2210 M4rZG3LhDefDj/5eh7E2t5LzSdEtOMwnWcF1QR1dbSSdquZzoGONzdMX8eo4
2211 SzMcFJ3MAdpMzGdmtjoWG8TdvTWUA5e6xgQoLeo48/GDdOvzVX+tiGG8TgPr
2212 6wf7buSueh6KOTNWA49dW/o70GLVc0l835+miZv7rLi9GrJh57eTW2fYmph+
2213 0LRdpzob2J+jKfV1mii2QfeqeFE2vGj5am80oIka0RPd3KmrPrzwsc9uwOxm
2214 9RTwy4aiZfG0ujxAa44VjwCZbHD7mZiRb4W4/7m1vopZFiSbTP4TTEPssHZc
2215 0KRmQVOO7rgxgbix8PPkccUsENRfVJkPROSMmLcu35EFT5Ltu/RSEdNEN/Nw
2216 D2QCRVZi7WgfYp7jf/f0iEyYoDUSkhZa+OB7wK+wuAzwfvxVscKYipXyhyIp
2217 iyxowlIP6RNUrJWeDzw4wQLeBp/cIgcqFjGSaGbvWVBZscSX501Fh0VaN/sR
2218 C2bTeGbTrlMxPT/Mffg6CwI8DlRG9FFx/nVFCkOWBXTeQOkT9tqYR7mT9dn7
2219 BlyxWS+27KmDK22HGHa86aApt3l+jNTBnoVhLFyfDjPr+Npe0XWwWKri4tKv
2220 NLCq+su9Mk4HKzqHPW+PpYHYBuUy51IddM5hDUb8kwZNd5yV2yd0kPX4j6GQ
2221 oDSY523WTT2ji29CnahZX1PBuS3UVZ7Qw32ZZZp/9TPBRV3cZN5bD5VCR7WV
2222 upngWtWl3BCoh75n1ZtNnzKBYImt043Ww7az8Vtu1DHhrHdnrlWBHl6WUDT1
2223 usGEEAHRoQvDeviv/UjlNnsmJLq123bQjuCmLs0f0iMp0MwtZOZhrY+R/bXx
2224 N9engPw2BnOMPIrq8v0W49ZJQJvTkDbxNMLRRw/M1NYmQk5mq/DCVRO0De4R
2225 Tm5OgJpragM95qbY8kjf3dw+Hsh6DdMMIzPUHaLpBaVdhYft+bMxtub4wYjB
2226 uPc5FtyPHGp0t7JArlB6hGzgFbjJlr/jccYSHa1O5f/eHgPX5xrDfQKPoy6v
2227 1taG/mgYKfYPIM6dQN3guOv8nVHwSC8xLSLiJD7jZbYItUXCmmNvP8UzrPBq
2228 pqS0yZdLwKF1d012sDVO3XdSXid0CS4LLBj3RNtg9ZSfoJXRRfCxcW5ZuGiL
2229 1MtU/nBWBAyFK7lAih36maW03hgLB/6k9LcxOfZYmqE14nEkHAp4JYPbWA6Y
2230 3rs0LlHPgOZzf+vuLzmFPKn2615KMiBzT7awhiUNX/kZvX1lcwEa6T84iC4a
2231 3vMYHzb0Ow8ihty/RE86okuPcnNNVBjc7qTE9vc6Yqb6z764u3SIe/xbbo+9
2232 E+pKtg8HD4VCkt/YGdo7JzT4Mqd/SiwU6Dt2b91r7Yz8vyaYJwJCoIiyrp38
2233 6Iys5svdsi3BsP7bGqFmBxfUFdtnE7I3GArlqs5nfnXBZNmy8YmwIKA4FZss
2234 e53GtvREXpvhQBgwqKs+PnEaRdayd9fbBkJPbogM+LlipzdXullHACzWmKnv
2235 nXXFT3tWxpRMA2Dl3rk7UWfdUGFNyL2mfn8wlNPTpX93w671A/UlDv7QZn/A
2236 3cOPwLqNjQasaRL4nImGDH8CA3c1faqbIsGByNnSFUhg45x8z5tJEubPba9W
2237 ohPoMMl1W2CMhH2XF34sXyJwB+M9I32IBEb1w7gEJoF95AGpsh4S1LhNK+/U
2238 ETgp4buX/w4JUZtjOEcbCNwj9dpOo4aE7m0tln8+IHBB7eW4axUJhLDS0vmW
2239 VR+ttKahjIRUeUGq/jMCd1fI7nArIOGb7ceXb98RKFhW9bgjlQR0FBLf8oHA
2240 MONdcsspJMS6mgfBEIHB6fUTUskk7PV9JJz3hUBtKW3rKwkkmEWxT3tNETiT
2241 J8xjGEPCzdih2qxpAkffvlxLjyZhNOHPTT2zBMb6bjcpi1z9w4orV1kgUKS0
2242 7xVvBAnPs1s53JcIzLWS2aHNIEGg4Lc56yeB0wG1ef7nSXAqOZj/YplAqUyH
2243 SDadhPJKn4WVFQI5vbbUDoSQ8D/LoOWh
2245 Annotation[#, "Charting`Private`Tag$637069#1"]& ]}, {}, {}},
2246 AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
2248 AxesLabel->{None, None},
2249 AxesOrigin->{0, 0.0049999792689405815`},
2250 DisplayFunction->Identity,
2251 Frame->{{False, False}, {False, False}},
2252 FrameLabel->{{None, None}, {None, None}},
2253 FrameTicks->{{Automatic,
2254 Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
2255 Charting`ScaledFrameTicks[{Identity, Identity}]}},
2256 GridLines->{None, None},
2257 GridLinesStyle->Directive[
2258 GrayLevel[0.5, 0.4]],
2261 "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
2262 AbsolutePointSize[6], "ScalingFunctions" -> None,
2263 "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
2267 Part[#, 2]]}& ), "CopiedValueFunction" -> ({
2272 PlotRange->{{0, 200}, {0.0049999792689405815`, 0.06129119349380559}},
2273 PlotRangeClipping->True,
2274 PlotRangePadding->{{
2279 Ticks->{Automatic, Automatic}]], "Output",
2280 CellChangeTimes->{{3.714303214207242*^9,
2281 3.7143032295013943`*^9}},ExpressionUUID->"f3bbc0c5-f6fc-4fd8-ade3-\
2287 RowBox[{"HsSq2n0a", "[",
2289 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
2291 RowBox[{"\[Pi]", " ",
2297 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
2298 RowBox[{"Binomial", "[",
2299 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}], " ",
2301 RowBox[{"Gamma", "[",
2302 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/", "\[IndentingNewLine]",
2306 RowBox[{"2", "^", "n"}], " ",
2307 RowBox[{"k0", "^", "q"}]}], ")"}]}], "\[IndentingNewLine]",
2313 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2317 RowBox[{"-", "2"}], "+", "q", "-",
2318 RowBox[{"2", "s"}]}], ")"}]}],
2322 RowBox[{"\[Sigma]", " ", "c"}], "-",
2323 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
2325 RowBox[{"2", "s"}], ")"}]}],
2326 RowBox[{"(", "\[IndentingNewLine]",
2331 RowBox[{"Pochhammer", "[",
2335 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
2341 RowBox[{"Pochhammer", "[",
2345 RowBox[{"3", "-", "q", "-", "n"}], ")"}], "/", "2"}], ",",
2346 "s"}], "]"}], "\[IndentingNewLine]", "/",
2347 RowBox[{"Gamma", "[",
2349 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
2350 RowBox[{"s", "!"}]}], "/",
2351 RowBox[{"Gamma", "[",
2354 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}],
2356 RowBox[{"Gamma", "[",
2359 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}],
2360 "]"}]}]}], ")"}]}], "\[IndentingNewLine]", " ",
2364 RowBox[{"\[Sigma]", " ", "c"}], "-",
2365 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}]}],
2366 "\[IndentingNewLine]", ")"}]}], ",",
2369 RowBox[{"Ceiling", "[",
2370 RowBox[{"\[Kappa]", "/", "2"}], "]"}], ",", "\[Infinity]"}],
2371 "}"}]}], "]"}]}], "\[IndentingNewLine]", ",",
2373 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2374 "]"}]}]}]], "Input",
2375 CellChangeTimes->{{3.714304912719702*^9, 3.714304968618021*^9},
2376 3.7143050430084667`*^9,
2377 3.7143051086652327`*^9},ExpressionUUID->"e139a925-f883-4746-b86a-\
2380 Cell[CellGroupData[{
2383 RowBox[{"HsSq2n0a", "[",
2384 RowBox[{"2.00001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
2386 CellChangeTimes->{{3.714304973552258*^9, 3.7143050024644413`*^9},
2387 3.714305067340577*^9, 3.7143051099639606`*^9,
2388 3.714305218174539*^9},ExpressionUUID->"7c490700-b77f-4e41-bc26-\
2393 RowBox[{"-", "2.301284530022639`*^-6"}], "+",
2394 RowBox[{"5.475391561810337`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
2396 3.714304974643896*^9, {3.714305044802492*^9, 3.714305068681655*^9},
2397 3.714305112750959*^9,
2398 3.714305219521511*^9},ExpressionUUID->"2ec8c9bc-264b-4c99-966f-\
2404 RowBox[{"HsSq2n0b", "[",
2406 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
2408 RowBox[{"\[Pi]", " ",
2414 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
2415 RowBox[{"Binomial", "[",
2416 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}], " ",
2418 RowBox[{"Gamma", "[",
2419 RowBox[{"2", "-", "q", "+", "n"}], "]"}], "/", "\[IndentingNewLine]",
2422 RowBox[{"k0", "^", "2"}], ")"}]}], "\[IndentingNewLine]",
2428 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2432 RowBox[{"-", "2"}], "s"}], ")"}]}],
2436 RowBox[{"\[Sigma]", " ", "c"}], "-",
2437 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
2439 RowBox[{"2", "s"}], ")"}]}],
2440 RowBox[{"(", "\[IndentingNewLine]",
2445 RowBox[{"Pochhammer", "[",
2447 RowBox[{"1", "/", "2"}], ",", "s"}], "]"}],
2452 RowBox[{"Pochhammer", "[",
2454 RowBox[{"1", "/", "2"}], ",", "s"}], "]"}],
2455 "\[IndentingNewLine]", "/",
2456 RowBox[{"Gamma", "[",
2458 RowBox[{"3", "/", "2"}], "+", "s"}], "]"}]}], "/",
2459 RowBox[{"s", "!"}]}], "/",
2460 RowBox[{"Gamma", "[",
2463 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}],
2465 RowBox[{"Gamma", "[",
2468 RowBox[{"q", "+", "n", "-", "1"}], ")"}], "/", "2"}],
2469 "]"}]}]}], ")"}]}], "\[IndentingNewLine]", " ",
2473 RowBox[{"\[Sigma]", " ", "c"}], "-",
2474 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}]}],
2475 "\[IndentingNewLine]", ")"}]}], ",",
2478 RowBox[{"Ceiling", "[",
2479 RowBox[{"\[Kappa]", "/", "2"}], "]"}], ",", "\[Infinity]"}],
2480 "}"}]}], "]"}]}], "\[IndentingNewLine]", ",",
2482 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2483 "]"}]}]}]], "Input",
2484 CellChangeTimes->{{3.714304912719702*^9, 3.714304968618021*^9},
2485 3.7143050430084667`*^9, {3.714305120462102*^9, 3.714305193734703*^9}, {
2486 3.714305245188303*^9, 3.714305261703126*^9}, {3.714305292783976*^9,
2487 3.714305309384357*^9}, 3.7143053988421583`*^9, 3.714305635760743*^9, {
2488 3.714306069224308*^9,
2489 3.714306090556497*^9}},ExpressionUUID->"03b0ced6-4edd-459d-b511-\
2492 Cell[CellGroupData[{
2495 RowBox[{"HsSq2n0b", "[",
2496 RowBox[{"2.00001", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "3"}],
2498 CellChangeTimes->{{3.714304973552258*^9, 3.7143050024644413`*^9},
2499 3.714305067340577*^9, 3.714305123688612*^9,
2500 3.714305212337887*^9},ExpressionUUID->"56fbb4e1-8f74-4c7e-a055-\
2505 RowBox[{"-", "2.3013287572355085`*^-6"}], "+",
2506 RowBox[{"5.475485310843043`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
2508 3.714304974643896*^9, {3.714305044802492*^9, 3.714305068681655*^9},
2509 3.714305144735292*^9, {3.714305175923616*^9, 3.714305214276556*^9}, {
2510 3.71430608320949*^9,
2511 3.714306092338118*^9}},ExpressionUUID->"ccc74805-25fc-4b7a-92ea-\
2517 RowBox[{"HsSpecq2n0f", "[",
2518 RowBox[{"\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=",
2521 RowBox[{"Sqrt", "[", "\[Pi]", "]"}]}],
2524 RowBox[{"-", "2"}], ")"}]}],
2527 RowBox[{"-", "2"}], ")"}]}],
2533 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
2534 RowBox[{"Binomial", "[",
2535 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}], "\[IndentingNewLine]",
2536 "\[IndentingNewLine]",
2540 RowBox[{"\[Sigma]", " ", "c"}], "-",
2541 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}], " ",
2542 RowBox[{"ArcSinh", "[",
2547 RowBox[{"\[Sigma]", " ", "c"}], "-",
2548 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}], ")"}], "]"}]}], ",",
2551 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2552 "]"}]}]}]], "Input",
2553 CellChangeTimes->{{3.7143046021467648`*^9, 3.7143047956060467`*^9}, {
2554 3.714304881641884*^9,
2555 3.714304885767686*^9}},ExpressionUUID->"fdc5165f-652c-4553-b7d6-\
2558 Cell[CellGroupData[{
2561 RowBox[{"HsSpecq2nf", "[",
2562 RowBox[{"4", ",", "0.1", ",", "1", ",", "3"}], "]"}]], "Input",
2563 CellChangeTimes->{{3.7143048200786963`*^9, 3.714304826231525*^9},
2564 3.714304888515621*^9},ExpressionUUID->"14bbf919-b4de-4582-b295-\
2568 RowBox[{"7.331304077260176`*^-6", "-",
2569 RowBox[{"0.000019758518864176108`", " ", "\[ImaginaryI]"}]}]], "Output",
2571 3.7143048268370647`*^9},ExpressionUUID->"6f771c74-3b2b-4814-8148-\
2577 RowBox[{"HsSq2n0c", "[",
2578 RowBox[{"\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=",
2585 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
2586 RowBox[{"Binomial", "[",
2587 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
2591 RowBox[{"k0", "^", "2"}]}], ")"}]}],
2597 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2602 RowBox[{"-", "2"}], "s"}], "-", "1"}], ")"}]}],
2606 RowBox[{"\[Sigma]", " ", "c"}], "-",
2607 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
2610 RowBox[{"2", "s"}], "+", "1"}], ")"}]}],
2612 RowBox[{"Gamma", "[",
2614 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}], "/",
2617 RowBox[{"Sqrt", "[", "\[Pi]", "]"}],
2620 RowBox[{"1", "/", "2"}], "+", "s"}], ")"}],
2621 RowBox[{"s", "!"}]}], ")"}]}]}], ",",
2623 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}], ",",
2625 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2626 "]"}]}]}]], "Input",
2627 CellChangeTimes->{{3.714305404306922*^9, 3.714305411057556*^9}, {
2628 3.714305459942329*^9, 3.714305642256468*^9}, {3.714305723102551*^9,
2629 3.714305821193959*^9}, {3.714305899344687*^9, 3.714305911930727*^9}, {
2630 3.7143061445366173`*^9, 3.714306145331019*^9}, {3.714306226374571*^9,
2631 3.714306240825282*^9}, {3.714306276550058*^9,
2632 3.714306281792178*^9}},ExpressionUUID->"4fe8906e-3924-4127-922e-\
2635 Cell[CellGroupData[{
2638 RowBox[{"HsSq2n0c", "[",
2639 RowBox[{"4", ",", "0.1", ",", "1", ",", "3"}], "]"}]], "Input",
2640 CellChangeTimes->{{3.714305847713162*^9, 3.714305852616592*^9}, {
2641 3.7143061491190643`*^9,
2642 3.714306149598337*^9}},ExpressionUUID->"314b1bc8-d2f0-41e7-a76a-\
2647 RowBox[{"-", "2.3012995221394217`*^-6"}], "+",
2648 RowBox[{"5.475415753075641`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
2650 3.714305853642666*^9, {3.714305901201582*^9, 3.7143059145741863`*^9},
2651 3.714306025296417*^9, 3.714306151971169*^9, 3.714306242862033*^9,
2652 3.7143062840848217`*^9},ExpressionUUID->"a7a1768d-8381-468e-9182-\
2658 RowBox[{"HsSq2n0d", "[",
2659 RowBox[{"\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=",
2666 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
2670 RowBox[{"\[Sigma]", " ", "c"}], "-",
2671 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}], " ",
2672 RowBox[{"Binomial", "[",
2673 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
2677 RowBox[{"k0", "^", "2"}]}], ")"}]}],
2683 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2689 RowBox[{"\[Sigma]", " ", "c"}], "-",
2690 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}], ")"}], "^",
2692 RowBox[{"2", "s"}], ")"}]}],
2694 RowBox[{"Gamma", "[",
2696 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}], "/",
2699 RowBox[{"Sqrt", "[", "\[Pi]", "]"}],
2702 RowBox[{"1", "/", "2"}], "+", "s"}], ")"}],
2703 RowBox[{"s", "!"}]}], ")"}]}]}], ",",
2705 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}], ",",
2707 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2708 "]"}]}]}]], "Input",
2709 CellChangeTimes->{{3.714306470931181*^9,
2710 3.714306530662891*^9}},ExpressionUUID->"1b478334-5bf6-4ef1-a489-\
2713 Cell[CellGroupData[{
2716 RowBox[{"HsSq2n0d", "[",
2717 RowBox[{"4", ",", "0.1", ",", "1", ",", "3"}], "]"}]], "Input",
2718 CellChangeTimes->{{3.71430647467421*^9,
2719 3.71430647483814*^9}},ExpressionUUID->"e3c36c04-d161-4900-98a4-\
2724 RowBox[{"-", "2.3012995221394217`*^-6"}], "+",
2725 RowBox[{"5.475415753075641`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
2727 3.714306532722279*^9},ExpressionUUID->"fed7bff7-9bbc-40e2-8c1c-\
2733 RowBox[{"HsSq2n0e", "[",
2734 RowBox[{"\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=",
2741 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
2742 RowBox[{"Binomial", "[",
2743 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
2747 RowBox[{"k0", "^", "2"}]}], ")"}]}],
2753 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2759 RowBox[{"\[Sigma]", " ", "c"}], "-",
2760 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}], ")"}], "^",
2763 RowBox[{"2", "s"}], "+", "1"}], ")"}]}],
2765 RowBox[{"Gamma", "[",
2767 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}], "/",
2770 RowBox[{"Sqrt", "[", "\[Pi]", "]"}],
2773 RowBox[{"1", "/", "2"}], "+", "s"}], ")"}],
2774 RowBox[{"s", "!"}]}], ")"}]}]}], ",",
2776 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}], ",",
2778 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2779 "]"}]}]}]], "Input",
2780 CellChangeTimes->{{3.714306470931181*^9, 3.714306530662891*^9},
2781 3.714306564507558*^9, {3.714306624898449*^9, 3.7143066749187202`*^9}, {
2782 3.714306734732802*^9,
2783 3.714306738819399*^9}},ExpressionUUID->"5d9b2d82-846d-4549-b840-\
2786 Cell[CellGroupData[{
2789 RowBox[{"HsSq2n0e", "[",
2790 RowBox[{"4", ",", "0.1", ",", "1", ",", "3"}], "]"}]], "Input",
2791 CellChangeTimes->{{3.71430647467421*^9, 3.71430647483814*^9},
2792 3.714306561660407*^9, {3.714306701599392*^9,
2793 3.7143067030037622`*^9}},ExpressionUUID->"d9d5283f-d204-4f19-83d0-\
2798 RowBox[{"-", "2.3012995221394217`*^-6"}], "+",
2799 RowBox[{"5.475415753075641`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
2801 3.714306532722279*^9, {3.714306715505674*^9,
2802 3.714306740900689*^9}},ExpressionUUID->"09894aad-397c-465b-b0aa-\
2808 RowBox[{"HsSq2n0f", "[",
2809 RowBox[{"\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}], "]"}], ":=",
2816 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
2817 RowBox[{"Binomial", "[",
2818 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
2820 RowBox[{"k0", "^", "2"}]}],
2821 RowBox[{"ArcSinh", "[",
2825 RowBox[{"\[Sigma]", " ", "c"}], "-",
2826 RowBox[{"I", " ", "k0"}]}], ")"}], "/", "k"}], "]"}]}], ",",
2828 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
2829 "]"}]}]}]], "Input",
2830 CellChangeTimes->{{3.714306470931181*^9, 3.714306530662891*^9},
2831 3.714306564507558*^9, {3.714306624898449*^9, 3.7143066749187202`*^9}, {
2832 3.714306734732802*^9, 3.714306738819399*^9}, {3.714306872540366*^9,
2833 3.714306920827626*^9}},ExpressionUUID->"8d01b7f4-1b47-4870-bd56-\
2836 Cell[CellGroupData[{
2839 RowBox[{"HsSq2n0f", "[",
2840 RowBox[{"4", ",", "0.1", ",", "1", ",", "3"}], "]"}]], "Input",
2841 CellChangeTimes->{{3.71430647467421*^9, 3.71430647483814*^9},
2842 3.714306561660407*^9, {3.714306701599392*^9, 3.7143067030037622`*^9},
2843 3.7143068783028393`*^9, {3.714376564639735*^9,
2844 3.714376573666842*^9}},ExpressionUUID->"ef81724d-7599-4fc6-bc9f-\
2849 RowBox[{"-", "2.3012995221671773`*^-6"}], "+",
2850 RowBox[{"5.475415752242974`*^-6", " ", "\[ImaginaryI]"}]}]], "Output",
2852 3.714306532722279*^9, {3.714306715505674*^9, 3.714306740900689*^9}, {
2853 3.714306911904702*^9,
2854 3.714306922534258*^9}},ExpressionUUID->"97867d61-9c01-430e-8d6c-\
2858 Cell[CellGroupData[{
2866 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2868 RowBox[{"(", "x", ")"}], "^",
2871 RowBox[{"2", "s"}], "+", "1"}], ")"}]}],
2873 RowBox[{"Gamma", "[",
2875 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}], "/",
2878 RowBox[{"Sqrt", "[", "\[Pi]", "]"}],
2881 RowBox[{"1", "/", "2"}], "+", "s"}], ")"}],
2882 RowBox[{"s", "!"}]}], ")"}]}]}], ",",
2884 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input",
2886 3.714306848086981*^9},ExpressionUUID->"5f8eaeab-440b-4126-be6a-\
2891 RowBox[{"ArcSinh", "[", "x", "]"}]}]], "Output",
2893 3.714306848733506*^9},ExpressionUUID->"a05d118b-1aed-4f6a-99b1-\
2897 Cell[CellGroupData[{
2905 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
2909 RowBox[{"2", "s"}], "+", "1"}], ")"}]}],
2911 RowBox[{"Gamma", "[",
2913 RowBox[{"1", "/", "2"}], "+", "s"}], "]"}], "/",
2916 RowBox[{"Sqrt", "[", "\[Pi]", "]"}],
2919 RowBox[{"1", "/", "2"}], "+", "s"}], ")"}],
2920 RowBox[{"s", "!"}]}], ")"}]}]}], ",",
2922 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input",
2923 CellChangeTimes->{{3.714306359943676*^9,
2924 3.714306410548779*^9}},ExpressionUUID->"ebafb28b-1247-44b5-b0f7-\
2929 RowBox[{"ArcSinh", "[", "x", "]"}]}]], "Output",
2930 CellChangeTimes->{{3.714306340973686*^9,
2931 3.7143064115016193`*^9}},ExpressionUUID->"be3bbbd4-9c45-4351-a1ef-\
2935 Cell[CellGroupData[{
2938 RowBox[{"HsSq2n0f", "[",
2939 RowBox[{"2", ",", "0.1", ",", "1", ",", "1.5"}], "]"}]], "Input",
2940 CellChangeTimes->{{3.714376580704068*^9, 3.714376581601132*^9},
2941 3.714376625541174*^9},ExpressionUUID->"6ed44f78-9dea-4e9b-9c6f-\
2945 RowBox[{"0.0022397494137522678`", "\[VeryThinSpace]", "-",
2946 RowBox[{"0.006513830114918795`", " ", "\[ImaginaryI]"}]}]], "Output",
2947 CellChangeTimes->{{3.714376584263612*^9, 3.714376626111169*^9},
2948 3.71437672167714*^9},ExpressionUUID->"7b8e4d31-ecf7-4029-83ce-\
2954 RowBox[{"NInt", "[",
2956 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
2958 RowBox[{"NIntegrate", "[",
2963 RowBox[{"k0", " ", "x"}], ")"}], "^",
2965 RowBox[{"-", "q"}], ")"}]}], " ",
2967 RowBox[{"I", " ", "k0", " ", "x"}], "]"}], " ", "x", " ",
2968 RowBox[{"BesselJ", "[",
2969 RowBox[{"n", ",", " ",
2970 RowBox[{"k", " ", "x"}]}], "]"}], " ",
2976 RowBox[{"-", "c"}], " ", "x"}], "]"}]}], ")"}], "^", "\[Kappa]"}]}],
2979 RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}]], "Input",
2980 CellChangeTimes->{{3.714376655892346*^9, 3.714376704247987*^9}, {
2981 3.714376741559724*^9,
2982 3.7143767467815313`*^9}},ExpressionUUID->"c67c7bd2-b642-48af-8f40-\
2985 Cell[CellGroupData[{
2988 RowBox[{"NInt", "[",
2989 RowBox[{"2", ",", "0", ",", "2", ",", "0.1", ",", "1", ",", "1.5"}],
2991 CellChangeTimes->{{3.714376729806518*^9,
2992 3.7143767633704863`*^9}},ExpressionUUID->"614cd318-0372-4398-a331-\
2996 RowBox[{"0.0022397494137648237`", "\[VeryThinSpace]", "-",
2997 RowBox[{"0.006513830114925522`", " ", "\[ImaginaryI]"}]}]], "Output",
2999 3.714376763959959*^9},ExpressionUUID->"88930c3e-c93e-4369-838f-\
3003 Cell["Small k, q +n <= 2", "Input",
3004 CellChangeTimes->{{3.7144498543190403`*^9, 3.7144498940773487`*^9}},
3006 "TextForm",ExpressionUUID->"bb88952d-82d8-40c6-9199-8918ec79cfd3"],
3010 RowBox[{"HsShortPoly2", "[",
3012 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
3018 RowBox[{"1", "-", "q"}], ")"}]}], "/",
3019 RowBox[{"Sqrt", "[", "Pi", "]"}]}],
3020 RowBox[{"Sum", "[", "\[IndentingNewLine]",
3025 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
3026 RowBox[{"Binomial", "[",
3027 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
3029 RowBox[{"k", "^", "n"}], "/",
3032 RowBox[{"k0", "^", "q"}], " ",
3036 RowBox[{"\[Sigma]", " ", "c"}], "-",
3037 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
3039 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
3042 RowBox[{"Gamma", "[",
3043 RowBox[{"1", "+", "n"}], "]"}], "/",
3044 RowBox[{"Gamma", "[",
3047 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}], "/",
3048 RowBox[{"Gamma", "[",
3051 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "]"}]}],
3052 "\[IndentingNewLine]",
3058 RowBox[{"-", "1"}], ")"}], "^", "s"}], " ",
3059 RowBox[{"Binomial", "[",
3063 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",", "s"}],
3066 RowBox[{"Pochhammer", "[",
3070 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], ",",
3072 RowBox[{"Pochhammer", "[",
3074 RowBox[{"1", "+", "n"}], ",", "s"}], "]"}]}],
3075 "\[IndentingNewLine]",
3080 RowBox[{"k", "^", "2"}]}], "/",
3084 RowBox[{"\[Sigma]", " ", "c"}], "-",
3085 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
3088 RowBox[{"s", ",", "0", ",",
3091 RowBox[{"2", "-", "q", "-", "n"}], ")"}], "/", "2"}]}], "}"}]}],
3092 "]"}]}], "\[IndentingNewLine]", ",",
3094 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
3095 "]"}]}]}]], "Input",
3096 CellChangeTimes->{{3.714449900855444*^9, 3.7144500244598913`*^9}, {
3097 3.714450128012027*^9, 3.714450333156262*^9}, {3.714450377234408*^9,
3098 3.714450397809031*^9}},ExpressionUUID->"e172db1f-c3c1-45a5-8f3d-\
3101 Cell[CellGroupData[{
3104 RowBox[{"NInt", "[",
3105 RowBox[{"4", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "0.3"}],
3107 CellChangeTimes->{{3.7144503464873953`*^9, 3.7144503490025454`*^9}, {
3108 3.714450463247095*^9, 3.7144504716236067`*^9},
3109 3.71445099306275*^9},ExpressionUUID->"01a283df-a1fc-43b5-8a97-\
3114 RowBox[{"-", "0.00009725705172330959`"}], "+",
3115 RowBox[{"0.0000461397932493922`", " ", "\[ImaginaryI]"}]}]], "Output",
3117 3.714450349678749*^9, 3.71445039986479*^9, {3.714450465787138*^9,
3118 3.714450473110091*^9}},ExpressionUUID->"7b3fee15-7f5e-46f7-b9ab-\
3122 Cell[CellGroupData[{
3125 RowBox[{"HsShortPoly2", "[",
3126 RowBox[{"4", ",", "0", ",", "4", ",", "0.1", ",", "1", ",", "1.5"}],
3128 CellChangeTimes->{{3.714450354720892*^9, 3.7144503587185497`*^9}, {
3129 3.714450476468595*^9,
3130 3.714450482001546*^9}},ExpressionUUID->"4ee267c3-1395-4600-9e0d-\
3134 RowBox[{"0.`", "\[VeryThinSpace]", "+",
3135 RowBox[{"0.`", " ", "\[ImaginaryI]"}]}]], "Output",
3136 CellChangeTimes->{3.714450359651774*^9, 3.714450400523344*^9,
3137 3.714450482387801*^9},ExpressionUUID->"33105fcb-ed74-4431-9f6c-\
3143 RowBox[{"HsShort", "[",
3145 "q_", ",", "n_", ",", "\[Kappa]_", ",", "c_", ",", "k0_", ",", "k_"}],
3151 RowBox[{"1", "-", "q"}], ")"}]}], "/",
3152 RowBox[{"Sqrt", "[", "Pi", "]"}]}],
3153 RowBox[{"Sum", "[", "\[IndentingNewLine]",
3158 RowBox[{"-", "1"}], ")"}], "^", "\[Sigma]"}], " ",
3159 RowBox[{"Binomial", "[",
3160 RowBox[{"\[Kappa]", ",", "\[Sigma]"}], "]"}],
3162 RowBox[{"k", "^", "n"}], "/",
3165 RowBox[{"k0", "^", "q"}], " ",
3169 RowBox[{"\[Sigma]", " ", "c"}], "-",
3170 RowBox[{"I", " ", "k0"}]}], ")"}], "^",
3172 RowBox[{"2", "-", "q", "+", "n"}], ")"}]}]}], ")"}]}],
3173 "\[IndentingNewLine]",
3177 RowBox[{"Gamma", "[",
3181 RowBox[{"2", "-", "q", "+", "n"}], ")"}], "/", "2"}], "+", "s"}],
3185 RowBox[{"Gamma", "[",
3189 RowBox[{"3", "-", "q", "+", "n"}], ")"}], "/", "2"}], "+",
3191 RowBox[{"Gamma", "[",
3192 RowBox[{"1", "+", "n", "+", "s"}], "]"}]}], "/",
3193 RowBox[{"s", "!"}]}], "\[IndentingNewLine]",
3198 RowBox[{"k", "^", "2"}]}], "/",
3202 RowBox[{"\[Sigma]", " ", "c"}], "-",
3203 RowBox[{"I", " ", "k0"}]}], ")"}], "^", "2"}]}], ")"}], "^",
3206 RowBox[{"s", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}],
3207 "\[IndentingNewLine]", ",",
3209 RowBox[{"\[Sigma]", ",", "0", ",", "\[Kappa]"}], "}"}]}],
3210 "]"}]}]}]], "Input",
3211 CellChangeTimes->{{3.714450806482028*^9, 3.714450835238635*^9}, {
3212 3.7144509062431183`*^9, 3.71445098397077*^9}, {3.714451423639358*^9,
3213 3.7144514249172487`*^9}},ExpressionUUID->"f9b1d3e1-f9e3-47df-b296-\
3216 Cell[CellGroupData[{
3219 RowBox[{"HsShort", "[",
3220 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.8", ",", "1", ",", "0.3"}],
3222 CellChangeTimes->{{3.714450997511832*^9, 3.7144510807692423`*^9}, {
3223 3.714451517185413*^9,
3224 3.714451521313496*^9}},ExpressionUUID->"deb85449-1242-4878-b97a-\
3229 RowBox[{"-", "0.20418154673151268`"}], "+",
3230 RowBox[{"0.09043780287300669`", " ", "\[ImaginaryI]"}]}]], "Output",
3232 3.714451521584096*^9},ExpressionUUID->"ecbc543a-2554-49e6-9782-\
3236 Cell[CellGroupData[{
3239 RowBox[{"NInt", "[",
3240 RowBox[{"2.001", ",", "0", ",", "4", ",", "0.8", ",", "1", ",", "0.3"}],
3242 CellChangeTimes->{{3.714451442123979*^9, 3.7144514465635147`*^9}, {
3243 3.714451527937179*^9,
3244 3.714451533949725*^9}},ExpressionUUID->"b9f2e7bd-03c7-40fd-904e-\
3249 RowBox[{"-", "0.20418154496208551`"}], "+",
3250 RowBox[{"0.09043780575607874`", " ", "\[ImaginaryI]"}]}]], "Output",
3251 CellChangeTimes->{3.714451449039239*^9,
3252 3.714451535016184*^9},ExpressionUUID->"fe23d9f8-5eb2-48dd-9916-\
3256 Evaluator->"New Kernel 3",
3257 WindowMargins->{{Automatic, 173}, {187, Automatic}},
3258 FrontEndVersion->"11.1 for Linux x86 (64-bit) (April 18, 2017)",
3259 StyleDefinitions->"Default.nb"
3261 (* End of Notebook Content *)
3263 (* Internal cache information *)
3270 (*NotebookFileOutline
3272 Cell[558, 20, 1849, 53, 103, "Input", "ExpressionUUID" -> \
3273 "11f718af-721d-4530-8d00-fc136b151d2a"],
3274 Cell[CellGroupData[{
3275 Cell[2432, 77, 1236, 35, 149, "Input", "ExpressionUUID" -> \
3276 "60b62416-1732-4228-8f52-4dd7ea7c260b"],
3277 Cell[3671, 114, 288, 5, 34, "Output", "ExpressionUUID" -> \
3278 "e1c0326f-b1f0-4ebb-9de3-0d92c1b9201a"]
3280 Cell[CellGroupData[{
3281 Cell[3996, 124, 471, 11, 34, "Input", "ExpressionUUID" -> \
3282 "9bf951ee-4aec-4260-9ddf-ddd1330b6243"],
3283 Cell[4470, 137, 3564, 97, 287, "Output", "ExpressionUUID" -> \
3284 "d2edfa46-cbb3-4c0a-a2db-5b706afe5c8f"]
3286 Cell[CellGroupData[{
3287 Cell[8071, 239, 402, 8, 34, "Input", "ExpressionUUID" -> \
3288 "8a8a5ec5-4164-415c-a832-378df85c3809"],
3289 Cell[8476, 249, 412, 8, 34, "Output", "ExpressionUUID" -> \
3290 "e6a4d50f-a64a-4c92-bccd-4fd642d8ab43"]
3292 Cell[8903, 260, 4564, 131, 258, "Input", "ExpressionUUID" -> \
3293 "15978efa-9e1d-46b2-b638-930987091033"],
3294 Cell[CellGroupData[{
3295 Cell[13492, 395, 307, 7, 34, "Input", "ExpressionUUID" -> \
3296 "bd9bb75c-aa2f-4771-820c-573b5d15abe3"],
3297 Cell[13802, 404, 293, 6, 34, "Output", "ExpressionUUID" -> \
3298 "fdc37902-4c0f-48d5-b1f9-b05ced69d16b"]
3300 Cell[14110, 413, 4678, 133, 236, "Input", "ExpressionUUID" -> \
3301 "0270ff41-5dea-48e1-8e61-3ad59c8f3c77"],
3302 Cell[CellGroupData[{
3303 Cell[18813, 550, 329, 7, 34, "Input", "ExpressionUUID" -> \
3304 "dc1bf119-f620-4298-9861-0bebd50af39b"],
3305 Cell[19145, 559, 346, 8, 34, "Output", "ExpressionUUID" -> \
3306 "502ca379-4501-4726-b8a3-a6d4743d21cf"]
3308 Cell[19506, 570, 2609, 77, 148, "Input", "ExpressionUUID" -> \
3309 "7bdc1e3b-21a7-4b53-8781-12296dcb7e43"],
3310 Cell[CellGroupData[{
3311 Cell[22140, 651, 254, 6, 34, "Input", "ExpressionUUID" -> \
3312 "e99ec6cf-d99f-42bb-b94e-4c6feeaefe2f"],
3313 Cell[22397, 659, 251, 5, 32, "Output", "ExpressionUUID" -> \
3314 "9defb7fc-3a2a-4372-b667-e589fcb6d801"]
3316 Cell[22663, 667, 1813, 54, 125, "Input", "ExpressionUUID" -> \
3317 "c903db13-544e-45bc-b87f-4a3b87557ce7"],
3318 Cell[CellGroupData[{
3319 Cell[24501, 725, 254, 6, 34, "Input", "ExpressionUUID" -> \
3320 "c75220ed-031f-49e5-9467-d46ac941cb11"],
3321 Cell[24758, 733, 278, 6, 34, "Output", "ExpressionUUID" -> \
3322 "2ca46fac-dce2-4111-be04-222479370c7c"]
3324 Cell[25051, 742, 2762, 80, 125, "Input", "ExpressionUUID" -> \
3325 "91fb5021-708e-4953-92bf-e65236c1db92"],
3326 Cell[CellGroupData[{
3327 Cell[27838, 826, 252, 6, 34, "Input", "ExpressionUUID" -> \
3328 "1d288674-7aa8-40c7-ad24-caf62a39a091"],
3329 Cell[28093, 834, 316, 7, 32, "Output", "ExpressionUUID" -> \
3330 "d5266c94-5c79-4a80-a294-09b967a31d30"]
3332 Cell[28424, 844, 3937, 103, 258, "Input", "ExpressionUUID" -> \
3333 "35e0146b-a88e-4958-9a81-4af639dd5abb"],
3334 Cell[CellGroupData[{
3335 Cell[32386, 951, 301, 7, 34, "Input", "ExpressionUUID" -> \
3336 "ee4e143e-b867-4930-86b6-de913836ba38"],
3337 Cell[32690, 960, 283, 6, 34, "Output", "ExpressionUUID" -> \
3338 "e7215961-ce53-448f-a9e3-0eda8cc30a4d"]
3340 Cell[32988, 969, 4903, 136, 236, "Input", "ExpressionUUID" -> \
3341 "a95bd250-d811-48c2-87a5-6e237d1225d7"],
3342 Cell[CellGroupData[{
3343 Cell[37916, 1109, 352, 7, 34, "Input", "ExpressionUUID" -> \
3344 "2ea68715-88f5-4465-af14-0b3fcd58d31b"],
3345 Cell[38271, 1118, 553, 10, 34, "Output", "ExpressionUUID" -> \
3346 "a7f32ea2-344b-47e7-80d7-9ffb74f31a08"]
3348 Cell[38839, 1131, 5709, 158, 282, "Input", "ExpressionUUID" -> \
3349 "3d8bffca-d6ac-482a-b1a2-b2e45fd6aca8"],
3350 Cell[CellGroupData[{
3351 Cell[44573, 1293, 330, 7, 34, "Input", "ExpressionUUID" -> \
3352 "1abff5df-c88c-4949-93d7-b00aaf2d034c"],
3353 Cell[44906, 1302, 341, 7, 34, "Output", "ExpressionUUID" -> \
3354 "69027225-5785-4f7e-9ff2-0a3cee3e176d"]
3356 Cell[45262, 1312, 269, 6, 32, "Input", "ExpressionUUID" -> \
3357 "d5926fc0-c5a2-4b56-894e-116ee99824aa"],
3358 Cell[45534, 1320, 6000, 162, 347, "Input", "ExpressionUUID" -> \
3359 "5e62d660-2944-47ca-8ee0-e6a553ed7d63"],
3360 Cell[CellGroupData[{
3361 Cell[51559, 1486, 354, 7, 34, "Input", "ExpressionUUID" -> \
3362 "ac03b840-c27b-4fe3-bb0b-82daba30770b"],
3363 Cell[51916, 1495, 296, 6, 34, "Output", "ExpressionUUID" -> \
3364 "e5d1f184-d264-4d0a-af52-34362b04d2b6"]
3366 Cell[52227, 1504, 5350, 141, 259, "Input", "ExpressionUUID" -> \
3367 "4ab261b6-0c49-491c-9869-75df5adc999d"],
3368 Cell[CellGroupData[{
3369 Cell[57602, 1649, 280, 6, 34, "Input", "ExpressionUUID" -> \
3370 "28a7cebd-2387-4639-b462-54326a81706f"],
3371 Cell[57885, 1657, 249, 6, 34, "Output", "ExpressionUUID" -> \
3372 "408303d5-6eab-465e-b43c-43bc1a3b6810"]
3374 Cell[58149, 1666, 5096, 134, 258, "Input", "ExpressionUUID" -> \
3375 "a0aeba62-9dcc-4486-a26f-5ef44b8b7a21"],
3376 Cell[CellGroupData[{
3377 Cell[63270, 1804, 257, 6, 34, "Input", "ExpressionUUID" -> \
3378 "959e5694-67a4-4fb4-a01a-51c9949a29f0"],
3379 Cell[63530, 1812, 247, 6, 34, "Output", "ExpressionUUID" -> \
3380 "b6a40e5c-36ec-408f-a622-54079303243a"]
3382 Cell[63792, 1821, 5074, 130, 236, "Input", "ExpressionUUID" -> \
3383 "811cd081-362a-41a3-bd5d-f77c96ca788c"],
3384 Cell[CellGroupData[{
3385 Cell[68891, 1955, 254, 6, 34, "Input", "ExpressionUUID" -> \
3386 "dc6edbc3-0394-4cd5-be4f-23c469fcc0bb"],
3387 Cell[69148, 1963, 271, 6, 34, "Output", "ExpressionUUID" -> \
3388 "d1aa622a-f7c6-4b70-a80c-c09426523c9d"]
3390 Cell[69434, 1972, 4740, 127, 236, "Input", "ExpressionUUID" -> \
3391 "747e5737-fbc4-443f-8253-54d4a139ee63"],
3392 Cell[CellGroupData[{
3393 Cell[74199, 2103, 283, 6, 34, "Input", "ExpressionUUID" -> \
3394 "69f1a251-919e-4400-b0c2-e2d5db4dccff"],
3395 Cell[74485, 2111, 368, 7, 34, "Output", "ExpressionUUID" -> \
3396 "8b2e58e7-5d5a-4697-824a-0a411cb068bf"]
3398 Cell[CellGroupData[{
3399 Cell[74890, 2123, 768, 23, 34, "Input", "ExpressionUUID" -> \
3400 "c015003f-0699-49e2-b866-714eb92d5c6f"],
3401 Cell[75661, 2148, 311, 10, 63, "Output", "ExpressionUUID" -> \
3402 "b5efa070-aee7-4251-898d-4ad75f8ee655"]
3404 Cell[CellGroupData[{
3405 Cell[76009, 2163, 211, 5, 32, "Input", "ExpressionUUID" -> \
3406 "65bc3149-1111-4cfb-a506-bc566f00020a"],
3407 Cell[76223, 2170, 147, 4, 35, "Output", "ExpressionUUID" -> \
3408 "385fc41d-508e-4bcc-87ce-366fda2afa16"]
3410 Cell[CellGroupData[{
3411 Cell[76407, 2179, 380, 10, 34, "Input", "ExpressionUUID" -> \
3412 "fbdde755-24a3-46b6-b157-f28e6b6a8022"],
3413 Cell[76790, 2191, 4401, 90, 230, "Output", "ExpressionUUID" -> \
3414 "f3bbc0c5-f6fc-4fd8-ade3-1015c944f07e"]
3416 Cell[81206, 2284, 3362, 93, 191, "Input", "ExpressionUUID" -> \
3417 "e139a925-f883-4746-b86a-c2602253404c"],
3418 Cell[CellGroupData[{
3419 Cell[84593, 2381, 336, 7, 34, "Input", "ExpressionUUID" -> \
3420 "7c490700-b77f-4e41-bc26-5314e7de681a"],
3421 Cell[84932, 2390, 345, 8, 34, "Output", "ExpressionUUID" -> \
3422 "2ec8c9bc-264b-4c99-966f-0e16399c5a47"]
3424 Cell[85292, 2401, 3279, 88, 191, "Input", "ExpressionUUID" -> \
3425 "03b0ced6-4edd-459d-b511-4346ebf0b6b3"],
3426 Cell[CellGroupData[{
3427 Cell[88596, 2493, 334, 7, 34, "Input", "ExpressionUUID" -> \
3428 "56fbb4e1-8f74-4c7e-a055-064f55e0a5e4"],
3429 Cell[88933, 2502, 419, 9, 34, "Output", "ExpressionUUID" -> \
3430 "ccc74805-25fc-4b7a-92ea-ecc47f1289c3"]
3432 Cell[89367, 2514, 1338, 41, 79, "Input", "ExpressionUUID" -> \
3433 "fdc5165f-652c-4553-b7d6-e673dd5aaf0c"],
3434 Cell[CellGroupData[{
3435 Cell[90730, 2559, 259, 5, 34, "Input", "ExpressionUUID" -> \
3436 "14bbf919-b4de-4582-b295-f820ec4e1863"],
3437 Cell[90992, 2566, 233, 5, 34, "Output", "ExpressionUUID" -> \
3438 "6f771c74-3b2b-4814-8148-354f0c429799"]
3440 Cell[91240, 2574, 2075, 58, 103, "Input", "ExpressionUUID" -> \
3441 "4fe8906e-3924-4127-922e-cba66e63b281"],
3442 Cell[CellGroupData[{
3443 Cell[93340, 2636, 283, 6, 34, "Input", "ExpressionUUID" -> \
3444 "314b1bc8-d2f0-41e7-a76a-821f0a313b1d"],
3445 Cell[93626, 2644, 394, 8, 34, "Output", "ExpressionUUID" -> \
3446 "a7a1768d-8381-468e-9182-cad6264fbeb4"]
3448 Cell[94035, 2655, 1830, 55, 103, "Input", "ExpressionUUID" -> \
3449 "1b478334-5bf6-4ef1-a489-1d672116aa7a"],
3450 Cell[CellGroupData[{
3451 Cell[95890, 2714, 230, 5, 34, "Input", "ExpressionUUID" -> \
3452 "e3c36c04-d161-4900-98a4-33e7dc51e872"],
3453 Cell[96123, 2721, 248, 6, 34, "Output", "ExpressionUUID" -> \
3454 "fed7bff7-9bbc-40e2-8c1c-b16c41ea5128"]
3456 Cell[96386, 2730, 1826, 53, 103, "Input", "ExpressionUUID" -> \
3457 "5d9b2d82-846d-4549-b840-40cefa18d8c0"],
3458 Cell[CellGroupData[{
3459 Cell[98237, 2787, 305, 6, 34, "Input", "ExpressionUUID" -> \
3460 "d9d5283f-d204-4f19-83d0-7773fcf3cd30"],
3461 Cell[98545, 2795, 298, 7, 34, "Output", "ExpressionUUID" -> \
3462 "09894aad-397c-465b-b0aa-c9f601a9aec6"]
3464 Cell[98858, 2805, 1048, 28, 57, "Input", "ExpressionUUID" -> \
3465 "8d01b7f4-1b47-4870-bd56-c3d01a3b65f0"],
3466 Cell[CellGroupData[{
3467 Cell[99931, 2837, 379, 7, 34, "Input", "ExpressionUUID" -> \
3468 "ef81724d-7599-4fc6-bc9f-faa6548f8c62"],
3469 Cell[100313, 2846, 348, 8, 34, "Output", "ExpressionUUID" -> \
3470 "97867d61-9c01-430e-8d6c-36bed05cf8e4"]
3472 Cell[CellGroupData[{
3473 Cell[100698, 2859, 797, 27, 34, "Input", "ExpressionUUID" -> \
3474 "5f8eaeab-440b-4126-be6a-ecb75d7dc208"],
3475 Cell[101498, 2888, 186, 5, 32, "Output", "ExpressionUUID" -> \
3476 "a05d118b-1aed-4f6a-99b1-0d4033f8afb2"]
3478 Cell[CellGroupData[{
3479 Cell[101721, 2898, 795, 26, 34, "Input", "ExpressionUUID" -> \
3480 "ebafb28b-1247-44b5-b0f7-b0ceb9aa700d"],
3481 Cell[102519, 2926, 212, 5, 32, "Output", "ExpressionUUID" -> \
3482 "be3bbbd4-9c45-4351-a1ef-63e78194d774"]
3484 Cell[CellGroupData[{
3485 Cell[102768, 2936, 257, 5, 34, "Input", "ExpressionUUID" -> \
3486 "6ed44f78-9dea-4e9b-9c6f-054174e7e82b"],
3487 Cell[103028, 2943, 294, 5, 32, "Output", "ExpressionUUID" -> \
3488 "7b8e4d31-ecf7-4029-83ce-7d91df23700d"]
3490 Cell[103337, 2951, 1016, 31, 57, "Input", "ExpressionUUID" -> \
3491 "c67c7bd2-b642-48af-8f40-996a591698e8"],
3492 Cell[CellGroupData[{
3493 Cell[104378, 2986, 255, 6, 34, "Input", "ExpressionUUID" -> \
3494 "614cd318-0372-4398-a331-06e8a19a7a2b"],
3495 Cell[104636, 2994, 248, 5, 32, "Output", "ExpressionUUID" -> \
3496 "88930c3e-c93e-4369-838f-286f7ce31f12"]
3498 Cell[104899, 3002, 188, 3, 32, "Input", "ExpressionUUID" -> \
3499 "bb88952d-82d8-40c6-9199-8918ec79cfd3"],
3500 Cell[105090, 3007, 3046, 91, 171, "Input", "ExpressionUUID" -> \
3501 "e172db1f-c3c1-45a5-8f3d-170a7c1d9a77"],
3502 Cell[CellGroupData[{
3503 Cell[108161, 3102, 331, 7, 34, "Input", "ExpressionUUID" -> \
3504 "01a283df-a1fc-43b5-8a97-7bb7e4ef9fbe"],
3505 Cell[108495, 3111, 319, 7, 32, "Output", "ExpressionUUID" -> \
3506 "7b3fee15-7f5e-46f7-b9ab-64e2cd0009d8"]
3508 Cell[CellGroupData[{
3509 Cell[108851, 3123, 312, 7, 34, "Input", "ExpressionUUID" -> \
3510 "4ee267c3-1395-4600-9e0d-9bef997a3c6c"],
3511 Cell[109166, 3132, 255, 5, 32, "Output", "ExpressionUUID" -> \
3512 "33105fcb-ed74-4431-9f6c-898062630460"]
3514 Cell[109436, 3140, 2464, 73, 125, "Input", "ExpressionUUID" -> \
3515 "f9b1d3e1-f9e3-47df-b296-06925e64f0cf"],
3516 Cell[CellGroupData[{
3517 Cell[111925, 3217, 311, 7, 34, "Input", "ExpressionUUID" -> \
3518 "deb85449-1242-4878-b97a-2c182c410f03"],
3519 Cell[112239, 3226, 243, 6, 32, "Output", "ExpressionUUID" -> \
3520 "ecbc543a-2554-49e6-9782-90f2af4e63f3"]
3522 Cell[CellGroupData[{
3523 Cell[112519, 3237, 308, 7, 34, "Input", "ExpressionUUID" -> \
3524 "b9f2e7bd-03c7-40fd-904e-770f888fa55e"],
3525 Cell[112830, 3246, 265, 6, 32, "Output", "ExpressionUUID" -> \
3526 "fe23d9f8-5eb2-48dd-9916-622dd20f3cdb"]