Fix qpms_vswf_set_reindex().
[qpms.git] / qpms / apps / hexlattice_wrongewald_altin.c
blob590406f75088e7ba8fc3ee4bd06f30895a50eaa1
1 // c99 -ggdb -O2 -DLATTICESUMS -I .. hexlattice_ewald.c ../translations.c ../bessels.c ../lrhankel_recspace_dirty.c ../gaunt.c -lm -lgsl -lblas
2 #include <stdlib.h>
3 #include <string.h>
4 #include <stddef.h>
5 #include <math.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include "kahansum.h"
9 #include "vectors.h"
10 #include <gsl/gsl_const_mksa.h>
11 #include <gsl/gsl_math.h>
12 #include "qpms_types.h"
13 #include "translations.h"
15 const double s3 = 1.732050807568877293527446341505872366942805253810380628055;
17 // IMPORTANT: lattice properties here
18 const qpms_y_t lMax = 2;
19 const double REFINDEX = 1.52;
20 const double LATTICE_H = 576e-9;
21 static const double SCUFF_OMEGAUNIT = 3e14;
22 static const double hbar = GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR;
23 static const double eV = GSL_CONST_MKSA_ELECTRON_CHARGE;
24 static const double c0 = GSL_CONST_MKSA_SPEED_OF_LIGHT;
25 static const double CC = 0.1;
27 // For sorting the points by distance from origin / radius
28 int cart2_cmpr (const void *p1, const void *p2) {
29 const cart2_t *p1t = (const cart2_t *)p1;
30 const cart2_t *p2t = (const cart2_t *)p2;
31 double r21 = cart2norm(*p1t);
32 double r22 = cart2norm(*p2t);
33 if (r21 < r22) return -1;
34 else if (r21 > r22) return 1;
35 else return 0;
38 typedef struct {
39 ptrdiff_t npoints; // number of lattice points.
40 ptrdiff_t capacity; // for how much points memory is allocated
41 double maxR; // circle radius, points <= R
42 cart2_t *points;
43 } latticepoints_circle_t;
45 void sort_cart2points_by_r(cart2_t *points, size_t nmemb) {
46 qsort(points, nmemb, sizeof(cart2_t), cart2_cmpr);
49 void latticepoints_circle_free(latticepoints_circle_t *c) {
50 free(c->points);
51 c->capacity = 0;
54 // "horizontal" orientation of the adjacent A, B points
55 latticepoints_circle_t generate_hexpoints_hor(double h, double R, cart2_t offset /* if zero, an A is in the origin */) {
56 latticepoints_circle_t lat;
57 lat.maxR = R;
58 lat.npoints = 0;
59 int nmax = R / (1.5 * h) + 2; // max no of lattice shifts in each direction (with reserve)
60 double unitcellS = s3 * 3 / 2 * h * h; // unit cell area
61 double flcapacity = 5 + 2 * (R + 5*h) * (R + 5*h) * M_PI / unitcellS; // should be enough with some random reserve
62 lat.capacity = flcapacity;
64 lat.points = malloc(lat.capacity *sizeof(cart2_t));
66 cart2_t BAoffset = {h, 0};
68 cart2_t a1 = {-1.5*h, s3/2 *h};
69 cart2_t a2 = {1.5*h, s3/2 *h};
71 for (ptrdiff_t i1 = -nmax; i1 <= nmax; ++i1)
72 for (ptrdiff_t i2 = -nmax; i2 <= nmax; ++i2) {
73 cart2_t Apoint = cart2_add(offset, cart2_add(cart2_scale(i1, a1), cart2_scale(i2, a2)));
74 if (lat.npoints >= lat.capacity)
75 printf("%zd %zd %g %g %g %g\n", lat.npoints, lat.capacity, flcapacity, R, h, unitcellS); if (cart2norm(Apoint) <= R) {
76 assert(lat.npoints < lat.capacity);
77 lat.points[lat.npoints] = Apoint;
78 lat.npoints++;
80 cart2_t Bpoint = cart2_add(Apoint, BAoffset);
81 if (cart2norm(Bpoint) <= R) {
82 assert(lat.npoints < lat.capacity);
83 lat.points[lat.npoints] = Bpoint;
84 lat.npoints++;
87 sort_cart2points_by_r(lat.points, lat.npoints);
88 return lat;
91 latticepoints_circle_t generate_tripoints_ver(double a, double R, cart2_t offset /* if zero, an A is in the origin */) {
92 double h = a / s3;
93 latticepoints_circle_t lat;
94 lat.maxR = R;
95 lat.npoints = 0;
96 int nmax = R / (1.5 * h) + 2; // max no of lattice shifts in each direction (with reserve)
97 double unitcellS = (s3 * 3) / 2 * h * h; // unit cell area
98 double flcapacity = 5 + (R + 3*a) * (R + 3*a) * M_PI / unitcellS; // should be enough with some random reserve
99 lat.capacity = flcapacity; // should be enough with some random reserve
100 lat.points = malloc(lat.capacity *sizeof(cart2_t));
102 cart2_t a1 = {-1.5*h, s3/2 *h};
103 cart2_t a2 = {1.5*h, s3/2 *h};
105 for (ptrdiff_t i1 = -nmax; i1 <= nmax; ++i1)
106 for (ptrdiff_t i2 = -nmax; i2 <= nmax; ++i2) {
107 cart2_t Apoint = cart2_add(offset, cart2_add(cart2_scale(i1, a1), cart2_scale(i2, a2)));
108 if (cart2norm(Apoint) <= R) {
109 if (lat.npoints >= lat.capacity)
110 printf("%zd %zd %g %g %g %g\n", lat.npoints, lat.capacity, flcapacity, R, a, unitcellS);
111 assert(lat.npoints < lat.capacity);
112 lat.points[lat.npoints] = Apoint;
113 lat.npoints++;
116 sort_cart2points_by_r(lat.points, lat.npoints);
117 return lat;
120 latticepoints_circle_t generate_tripoints_hor(double a, double R, cart2_t offset /* if zero, an A is in the origin */) {
121 double h = a / s3;
122 latticepoints_circle_t lat;
123 lat.maxR = R;
124 lat.npoints = 0;
125 int nmax = R / (1.5 * h) + 2; // max no of lattice shifts in each direction (with reserve)
126 double unitcellS = s3 * 3 / 2 * h * h; // unit cell area
127 double flcapacity = 5 + (R + 3*a) * (R + 3*a) * M_PI / unitcellS; // should be enough with some random reserve
128 lat.capacity = flcapacity; // should be enough with some random reserve
129 lat.points = malloc(lat.capacity *sizeof(cart2_t));
131 cart2_t a1 = {s3/2 *h, -1.5*h};
132 cart2_t a2 = {s3/2 *h, 1.5 * h};
134 for (int i1 = -nmax; i1 <= nmax; ++i1)
135 for (int i2 = -nmax; i2 <= nmax; ++i2) {
136 if (lat.npoints >= lat.capacity)
137 printf("%zd %zd %.12g %g %g %g\n", lat.npoints, lat.capacity, flcapacity, R, a, unitcellS);
138 cart2_t Apoint = cart2_add(offset, cart2_add(cart2_scale(i1, a1), cart2_scale(i2, a2)));
139 if (cart2norm(Apoint) <= R) {
140 assert(lat.npoints < lat.capacity);
141 lat.points[lat.npoints] = Apoint;
142 lat.npoints++;
145 sort_cart2points_by_r(lat.points, lat.npoints);
146 return lat;
149 int main (int argc, char **argv) {
150 const double LATTICE_A = s3*LATTICE_H;
151 const double INVLATTICE_A = 4 * M_PI / s3 / LATTICE_A;
152 const double MAXR_REAL = 100 * LATTICE_H;
153 const double MAXR_K = 100 * INVLATTICE_A;
155 if (argc < 2) abort();
157 char *omegastr = argv[1];
158 // char *kfile = argv[2]; // not used;, will be read from stdin
159 char *outprefix = argv[2];
161 double scuffomega = strtod(omegastr, NULL);
162 char *outfile = outprefix;
163 char outlongfile[strlen(outprefix)+10];
164 char outshortfile[strlen(outprefix)+10];
165 sprintf(outlongfile, "%s.long", outprefix);
166 sprintf(outshortfile, "%s.short", outprefix);
170 //cart2_t klist[MAXKCOUNT];
171 /*f = fopen(kfile, "r");
172 int kcount = 100;
173 while (fscanf(f, "%lf %lf", &(klist[kcount].x), &(klist[kcount].y)) == 2) {
174 assert(kcount < MAXKCOUNT);
175 ++kcount;
177 fclose(f);
180 const double refindex = REFINDEX;
181 const double h = LATTICE_H;
182 const double a = h * s3;
183 const double rec_a = 4*M_PI/s3/a;
185 // generation of the real-space lattices
186 const cart2_t cart2_0 = {0, 0};
187 const cart2_t ABoffset = {h, 0};
188 const cart2_t BAoffset = {-h, 0};
189 //const cart2_t ab_particle_offsets[2][2] = {{ {0, 0}, {h, 0} }, {-h, 0}, {0, 0}};
191 // THIS IS THE LATTICE OF r_b
192 latticepoints_circle_t lattice_0offset = generate_tripoints_ver(a, MAXR_REAL, cart2_0);
193 // these have to have the same point order, therefore we must make the offset verision manually to avoid sorting;
194 latticepoints_circle_t lattice_ABoffset, lattice_BAoffset;
195 lattice_ABoffset.points = malloc(lattice_0offset.npoints * sizeof(cart2_t));
196 lattice_ABoffset.capacity = lattice_0offset.npoints * sizeof(cart2_t);
197 lattice_ABoffset.npoints = lattice_ABoffset.capacity;
198 lattice_BAoffset.points = malloc(lattice_0offset.npoints * sizeof(cart2_t));
199 lattice_BAoffset.capacity = lattice_0offset.npoints * sizeof(cart2_t);
200 lattice_BAoffset.npoints = lattice_BAoffset.capacity;
201 for (int i = 0; i < lattice_0offset.npoints; ++i) {
202 lattice_ABoffset.points[i] = cart2_add(lattice_0offset.points[i], ABoffset);
203 lattice_BAoffset.points[i] = cart2_add(lattice_0offset.points[i], BAoffset);
206 // reciprocal lattice, without offset – DON'T I NEED REFINDEX HERE? (I DON'T THINK SO.)
207 latticepoints_circle_t reclattice = generate_tripoints_hor(rec_a, MAXR_K, cart2_0);
209 qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_POWER_CS);
211 FILE *out = fopen(outfile, "w");
212 FILE *outlong = fopen(outlongfile, "w");
213 FILE *outshort = fopen(outshortfile, "w");
215 // as in eq. (5) in my notes
216 double WL_prefactor = 4*M_PI/(a*a)/s3 / /*??*/ (4*M_PI*M_PI);
218 //double scuffomega = scuffomegas[omegai];
219 double omega = scuffomega * SCUFF_OMEGAUNIT;
220 double EeV = omega * hbar / eV;
221 double k0_vac = omega / c0;
222 double k0_eff = k0_vac * refindex; // this one will be used with the real x geometries
223 double cv = CC * k0_eff;
225 complex double Abuf[c->nelem][c->nelem], Bbuf[c->nelem][c->nelem];
226 // indices : destpart (A/B-particle), srcpart (A/B-particle), coeff type (A/B- type), desty, srcy
227 complex double WS[2][2][2][c->nelem][c->nelem];
228 complex double WS_comp[2][2][2][c->nelem][c->nelem];
229 complex double WL[2][2][2][c->nelem][c->nelem];
230 complex double WL_comp[2][2][2][c->nelem][c->nelem];
232 //for (int ki = 0; ki < kcount; ++ki) {
233 // cart2_t k = klist[ki];
234 cart2_t k;
235 while(scanf("%lf %lf", &(k.x), &(k.y)) == 2) {
236 memset(WS, 0, sizeof(WS));
237 memset(WS_comp, 0, sizeof(WS_comp));
238 memset(WL, 0, sizeof(WL));
239 memset(WL_comp, 0, sizeof(WL_comp));
241 for (int bi = 0; bi < lattice_0offset.npoints; ++bi) {
242 cart2_t point0 = lattice_0offset.points[bi];
243 double phase = cart2_dot(k,point0);
244 complex double phasefac = cexp(I*phase);
246 if (point0.x || point0.y) { // skip the singular point
247 qpms_trans_calculator_get_shortrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
248 cart22sph(cart2_scale(k0_eff,lattice_0offset.points[bi])), 3, 2, 5, CC);
249 for (int desty = 0; desty < c->nelem; ++desty)
250 for (int srcy = 0; srcy < c->nelem; ++srcy) {
251 ckahanadd(&(WS[0][0][0][desty][srcy]),&(WS_comp[0][0][0][desty][srcy]),Abuf[desty][srcy] * phasefac);
252 ckahanadd(&(WS[0][0][1][desty][srcy]),&(WS_comp[0][0][1][desty][srcy]),Bbuf[desty][srcy] * phasefac);
255 qpms_trans_calculator_get_shortrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
256 cart22sph(cart2_scale(k0_eff,lattice_ABoffset.points[bi])), 3, 2, 5, CC);
257 for (int desty = 0; desty < c->nelem; ++desty)
258 for (int srcy = 0; srcy < c->nelem; ++srcy) {
259 ckahanadd(&(WS[0][1][0][desty][srcy]),&(WS_comp[0][1][0][desty][srcy]),Abuf[desty][srcy] * phasefac);
260 ckahanadd(&(WS[0][1][1][desty][srcy]),&(WS_comp[0][1][1][desty][srcy]),Bbuf[desty][srcy] * phasefac);
263 qpms_trans_calculator_get_shortrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
264 cart22sph(cart2_scale(k0_eff,lattice_BAoffset.points[bi])), 3, 2, 5, CC);
265 for (int desty = 0; desty < c->nelem; ++desty)
266 for (int srcy = 0; srcy < c->nelem; ++srcy) {
267 ckahanadd(&(WS[1][0][0][desty][srcy]),&(WS_comp[1][0][0][desty][srcy]),Abuf[desty][srcy] * phasefac);
268 ckahanadd(&(WS[1][0][1][desty][srcy]),&(WS_comp[1][0][1][desty][srcy]),Bbuf[desty][srcy] * phasefac);
270 // WS[1][1] is the same as WS[0][0], so copy in the end rather than double-summing
272 for (int desty = 0; desty < c->nelem; ++desty)
273 for (int srcy = 0; srcy < c->nelem; ++srcy)
274 for (int ctype = 0; ctype < 2; ctype++)
275 WS[1][1][ctype][desty][srcy] = WS[0][0][ctype][desty][srcy];
276 // WS DONE
277 for (int Ki = 0; Ki < reclattice.npoints; ++Ki) {
278 cart2_t K = reclattice.points[Ki];
279 cart2_t k_K = cart2_substract(k, K);
280 double phase_AB =
281 #ifdef SWAPSIGN1
283 #endif
284 cart2_dot(k_K, ABoffset); // And maybe the sign is excactly opposite!!! FIXME TODO CHECK
285 complex double phasefacs[2][2];
286 phasefacs[0][0] = phasefacs[1][1] = 1;
287 phasefacs[1][0] = cexp(I * phase_AB); // sign???
288 phasefacs[0][1] = cexp(- I * phase_AB); // sign???
290 // FIXME should I skip something (such as the origin?)
291 qpms_trans_calculator_get_2DFT_longrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
292 cart22sph(k_K), 3, 2, 5, cv, k0_eff);
293 for (int dp = 0; dp < 2; dp++)
294 for (int sp = 0; sp < 2; sp++)
295 for (int dy = 0; dy < c->nelem; dy++)
296 for (int sy = 0; sy < c->nelem; sy++) {
297 ckahanadd(&(WL[dp][sp][0][dy][sy]), &(WL_comp[dp][sp][0][dy][sy]), phasefacs[dp][sp] * Abuf[dy][sy] * WL_prefactor);
298 ckahanadd(&(WL[dp][sp][1][dy][sy]), &(WL_comp[dp][sp][1][dy][sy]), phasefacs[dp][sp] * Bbuf[dy][sy] * WL_prefactor);
301 fprintf(outshort, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
302 scuffomega, EeV, k0_eff, k.x, k.y);
303 fprintf(outlong, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
304 scuffomega, EeV, k0_eff, k.x, k.y);
305 fprintf(out, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
306 scuffomega, EeV, k0_eff, k.x, k.y);
307 size_t totalelems = sizeof(WL) / sizeof(complex double);
308 for (int i = 0; i < totalelems; ++i) {
309 complex double ws = ((complex double *)WS)[i];
310 complex double wl = ((complex double *)WL)[i];
311 complex double w = ws+wl;
312 fprintf(outshort, "%.16g\t%.16g\t", creal(ws), cimag(ws));
313 fprintf(outlong, "%.16g\t%.16g\t", creal(wl), cimag(wl));
314 fprintf(out, "%.16g\t%.16g\t", creal(w), cimag(w));
316 fputc('\n', outshort);
317 fputc('\n', outlong);
318 fputc('\n', out);
319 fflush(outshort);
320 fflush(outlong);
321 fflush(out);
323 fclose(out);
324 fclose(outlong);
325 fclose(outshort);
332 #if 0
333 int main (int argc, char **argv) {
334 cart2_t offset = {0,0};
336 latticepoints_circle_t lat = generate_tripoints_ver(1, 200, offset);
337 for (int i = 0; i < lat.npoints; ++i)
338 printf("%g %g %g\n", lat.points[i].x, lat.points[i].y, cart2norm(lat.points[i]));
339 latticepoints_circle_free(&lat);
341 #endif