Fix qpms_vswf_set_reindex().
[qpms.git] / qpms / cytranslations.pyx
blob3baa551fbdd21d04e2a5d92233a7a200d6a0122b
1 import numpy as np
2 import cmath
3 from .qpms_cdefs cimport *
4 from .cycommon import *
5 from .cybspec cimport *
6 cimport cython
7 from cython.parallel cimport parallel, prange
8 from libc.stdlib cimport malloc, free, calloc, abort
10 cdef int q_max(int m, int n, int mu, int nu):
11 return min(n,nu,(n+nu-abs(m+mu)//2))
13 """
14 Now we generate our own universal functions to be used with numpy.
16 Good way to see how this is done is to look at scipy/scipy/special/generate_ufuncs.py
17 and scipy/scipy/special/generate_ufuncs.py
19 In simple words, it works like this:
20 - Let's have a single element function. This can be function which returns or a "subroutine".
21 - Then we need a loop function; this is a wrapper that gets bunch of pointers from numpy and
22 has to properly call the single element function.
23 - From those two, we build a python object using PyUFunc_FromFuncAndData.
24 * If the ufunc is supposed to work on different kinds of input/output types,
25 then a pair of single-element and loop functions is o be provided for
26 each combination of types. However, the single-element function can be reused if
27 the corresponding loop functions do the proper casting.
28 """
30 ## as in scipy/special/_ufuncs_cxx.pyx
31 ##-------------------------------------
32 #cdef extern from "numpy/ufuncobject.h":
33 # int PyUFunc_getfperr() nogil
35 #cdef public int wrap_PyUFunc_getfperr() nogil:
36 # """
37 # Call PyUFunc_getfperr in a context where PyUFunc_API array is initialized;
39 # """
40 # return PyUFunc_getfperr()
42 #cimport sf_error
43 #-------------------------------------
46 # This one is probably not used anymore an can perhaps be removed:
47 cdef void loop_D_iiiidddii_As_D_lllldddbl(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
48 cdef np.npy_intp i, n = dims[0]
49 cdef void *func = (<void**>data)#[0]
50 #cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
51 cdef char *ip0 = args[0]
52 cdef char *ip1 = args[1]
53 cdef char *ip2 = args[2]
54 cdef char *ip3 = args[3]
55 cdef char *ip4 = args[4]
56 cdef char *ip5 = args[5]
57 cdef char *ip6 = args[6]
58 cdef char *ip7 = args[7]
59 cdef char *ip8 = args[8]
60 cdef char *op0 = args[9]
61 cdef cdouble ov0
62 for i in range(n): # iterating over dimensions
63 ov0 = (<double complex(*)(int, int, int, int, double, double, double, int, int) nogil>func)(
64 <int>(<np.npy_long*>ip0)[0],
65 <int>(<np.npy_long*>ip1)[0],
66 <int>(<np.npy_long*>ip2)[0],
67 <int>(<np.npy_long*>ip3)[0],
68 <double>(<np.npy_double*>ip4)[0],
69 <double>(<np.npy_double*>ip5)[0],
70 <double>(<np.npy_double*>ip6)[0],
71 <int>(<np.npy_bool*>ip7)[0],
72 <int>(<np.npy_long*>ip8)[0],
74 (<cdouble *>op0)[0] = <cdouble>ov0
75 ip0 += steps[0]
76 ip1 += steps[1]
77 ip2 += steps[2]
78 ip3 += steps[3]
79 ip4 += steps[4]
80 ip5 += steps[5]
81 ip6 += steps[6]
82 ip7 += steps[7]
83 ip8 += steps[8]
84 op0 += steps[9]
85 # FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
86 # sf_error.check_fpe(func_name)
91 # Module initialisation
92 # ---------------------
94 np.import_array() # not sure whether this is really needed
95 np.import_ufunc()
97 # Arrays passed to PyUFunc_FromFuncAndData()
98 # ------------------------------------------
100 # BTW, aren't there anonymous arrays in cython?
103 # types to be used for all of the single-type translation
104 # coefficient retrieval ufuncs called like
105 # coeff = func(m, n, mu, nu, r, theta, phi, r_ge_d, J)
106 # currently supported signatures: (D_lllldddbl)
107 cdef char ufunc__get_either_trans_coeff_types[10]
108 ufunc__get_either_trans_coeff_types[0] = np.NPY_LONG
109 ufunc__get_either_trans_coeff_types[1] = np.NPY_LONG
110 ufunc__get_either_trans_coeff_types[2] = np.NPY_LONG
111 ufunc__get_either_trans_coeff_types[3] = np.NPY_LONG
112 ufunc__get_either_trans_coeff_types[4] = np.NPY_DOUBLE
113 ufunc__get_either_trans_coeff_types[5] = np.NPY_DOUBLE
114 ufunc__get_either_trans_coeff_types[6] = np.NPY_DOUBLE
115 ufunc__get_either_trans_coeff_types[7] = np.NPY_BOOL
116 ufunc__get_either_trans_coeff_types[8] = np.NPY_LONG
117 ufunc__get_either_trans_coeff_types[9] = np.NPY_CDOUBLE
119 # types to be used for all of the both-type translation
120 # coefficient retrieval ufuncs called like
121 # errval = func(m, n, mu, nu, r, theta, phi, r_ge_d, J, &A, &B)
122 # currently supported signatures: (lllldddbl_DD)
123 cdef char ufunc__get_both_coeff_types[11]
124 ufunc__get_both_coeff_types[0] = np.NPY_LONG
125 ufunc__get_both_coeff_types[1] = np.NPY_LONG
126 ufunc__get_both_coeff_types[2] = np.NPY_LONG
127 ufunc__get_both_coeff_types[3] = np.NPY_LONG
128 ufunc__get_both_coeff_types[4] = np.NPY_DOUBLE
129 ufunc__get_both_coeff_types[5] = np.NPY_DOUBLE
130 ufunc__get_both_coeff_types[6] = np.NPY_DOUBLE
131 ufunc__get_both_coeff_types[7] = np.NPY_BOOL
132 ufunc__get_both_coeff_types[8] = np.NPY_LONG
133 ufunc__get_both_coeff_types[9] = np.NPY_CDOUBLE
134 ufunc__get_both_coeff_types[10] = np.NPY_CDOUBLE
138 # ---------------------------------------------
139 # Wrapper for the qpms_trans_calculator "class"
140 # ---------------------------------------------
141 ctypedef struct trans_calculator_get_X_data_t:
142 qpms_trans_calculator* c
143 void* cmethod
145 cdef void trans_calculator_loop_D_Ciiiidddii_As_D_lllldddbl(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
146 cdef np.npy_intp i, n = dims[0]
147 cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
148 #cdef cdouble (*func)(qpms_trans_calculator*, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
149 cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
150 #cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
151 cdef char *ip0 = args[0]
152 cdef char *ip1 = args[1]
153 cdef char *ip2 = args[2]
154 cdef char *ip3 = args[3]
155 cdef char *ip4 = args[4]
156 cdef char *ip5 = args[5]
157 cdef char *ip6 = args[6]
158 cdef char *ip7 = args[7]
159 cdef char *ip8 = args[8]
160 cdef char *op0 = args[9]
161 cdef cdouble ov0
162 for i in range(n): # iterating over dimensions
163 #ov0 = func(
164 ov0 = (<double complex(*)(qpms_trans_calculator*, int, int, int, int, double, double, double, int, int) nogil>func)(
166 <int>(<np.npy_long*>ip0)[0],
167 <int>(<np.npy_long*>ip1)[0],
168 <int>(<np.npy_long*>ip2)[0],
169 <int>(<np.npy_long*>ip3)[0],
170 <double>(<np.npy_double*>ip4)[0],
171 <double>(<np.npy_double*>ip5)[0],
172 <double>(<np.npy_double*>ip6)[0],
173 <int>(<np.npy_bool*>ip7)[0],
174 <int>(<np.npy_long*>ip8)[0],
176 (<cdouble *>op0)[0] = <cdouble>ov0
177 ip0 += steps[0]
178 ip1 += steps[1]
179 ip2 += steps[2]
180 ip3 += steps[3]
181 ip4 += steps[4]
182 ip5 += steps[5]
183 ip6 += steps[6]
184 ip7 += steps[7]
185 ip8 += steps[8]
186 op0 += steps[9]
187 # FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
188 # sf_error.check_fpe(func_name)
191 cdef void trans_calculator_loop_E_C_DD_iiiidddii_As_lllldddbl_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
192 # E stands for error value (int), C for qpms_trans_calculator*
193 cdef np.npy_intp i, n = dims[0]
194 cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
195 #cdef complex double (*func)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
196 cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
197 #cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
198 cdef char *ip0 = args[0]
199 cdef char *ip1 = args[1]
200 cdef char *ip2 = args[2]
201 cdef char *ip3 = args[3]
202 cdef char *ip4 = args[4]
203 cdef char *ip5 = args[5]
204 cdef char *ip6 = args[6]
205 cdef char *ip7 = args[7]
206 cdef char *ip8 = args[8]
207 cdef char *op0 = args[9]
208 cdef char *op1 = args[10]
209 cdef cdouble ov0
210 cdef int errval
211 for i in range(n): # iterating over dimensions
212 #errval = func(
213 errval = (<int(*)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil>func)(
215 <cdouble *> op0,
216 <cdouble *> op1,
217 <int>(<np.npy_long*>ip0)[0],
218 <int>(<np.npy_long*>ip1)[0],
219 <int>(<np.npy_long*>ip2)[0],
220 <int>(<np.npy_long*>ip3)[0],
221 <double>(<np.npy_double*>ip4)[0],
222 <double>(<np.npy_double*>ip5)[0],
223 <double>(<np.npy_double*>ip6)[0],
224 <int>(<np.npy_bool*>ip7)[0],
225 <int>(<np.npy_long*>ip8)[0],
227 ip0 += steps[0]
228 ip1 += steps[1]
229 ip2 += steps[2]
230 ip3 += steps[3]
231 ip4 += steps[4]
232 ip5 += steps[5]
233 ip6 += steps[6]
234 ip7 += steps[7]
235 ip8 += steps[8]
236 op0 += steps[9]
237 op1 += steps[10]
238 # TODO if (errval != 0): ...
239 # FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
240 # sf_error.check_fpe(func_name)
242 @cython.boundscheck(False)
243 @cython.wraparound(False)
244 cdef void trans_calculator_parallel_loop_E_C_DD_iiiidddii_As_lllldddbl_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
245 # E stands for error value (int), C for qpms_trans_calculator*
246 cdef np.npy_intp i, n = dims[0]
247 cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
248 #cdef complex double (*func)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
249 cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
250 #cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
252 cdef char *ip0
253 cdef char *ip1
254 cdef char *ip2
255 cdef char *ip3
256 cdef char *ip4
257 cdef char *ip5
258 cdef char *ip6
259 cdef char *ip7
260 cdef char *ip8
261 cdef char *op0
262 cdef char *op1
263 cdef int errval
264 for i in prange(n): # iterating over dimensions
265 ip0 = args[0] + i * steps[0]
266 ip1 = args[1] + i * steps[1]
267 ip2 = args[2] + i * steps[2]
268 ip3 = args[3] + i * steps[3]
269 ip4 = args[4] + i * steps[4]
270 ip5 = args[5] + i * steps[5]
271 ip6 = args[6] + i * steps[6]
272 ip7 = args[7] + i * steps[7]
273 ip8 = args[8] + i * steps[8]
274 op0 = args[9] + i * steps[9]
275 op1 = args[10] + i * steps[10]
276 #errval = func(
277 errval = (<int(*)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil>func)(
279 <cdouble *> op0,
280 <cdouble *> op1,
281 <int>(<np.npy_long*>ip0)[0],
282 <int>(<np.npy_long*>ip1)[0],
283 <int>(<np.npy_long*>ip2)[0],
284 <int>(<np.npy_long*>ip3)[0],
285 <double>(<np.npy_double*>ip4)[0],
286 <double>(<np.npy_double*>ip5)[0],
287 <double>(<np.npy_double*>ip6)[0],
288 <int>(<np.npy_bool*>ip7)[0],
289 <int>(<np.npy_long*>ip8)[0],
291 # TODO if (errval != 0): ...
292 # FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
293 # sf_error.check_fpe(func_name)
296 cdef np.PyUFuncGenericFunction trans_calculator_get_X_loop_funcs[1]
297 trans_calculator_get_X_loop_funcs[0] = trans_calculator_loop_D_Ciiiidddii_As_D_lllldddbl
299 cdef np.PyUFuncGenericFunction trans_calculator_get_AB_loop_funcs[1]
300 #trans_calculator_get_AB_loop_funcs[0] = trans_calculator_parallel_loop_E_C_DD_iiiidddii_As_lllldddbl_DD
301 trans_calculator_get_AB_loop_funcs[0] = trans_calculator_loop_E_C_DD_iiiidddii_As_lllldddbl_DD
302 cdef void *trans_calculator_get_AB_elementwise_funcs[1]
303 trans_calculator_get_AB_elementwise_funcs[0] = <void *>qpms_trans_calculator_get_AB_p_ext
306 cdef extern from "numpy/ndarrayobject.h":
307 struct PyArrayInterface:
308 int itemsize
309 np.npy_uintp *shape
310 np.npy_uintp *strides
311 void *data
318 cdef class trans_calculator:
319 cdef qpms_trans_calculator* c
320 cdef trans_calculator_get_X_data_t get_A_data[1]
321 cdef trans_calculator_get_X_data_t* get_A_data_p[1]
323 cdef trans_calculator_get_X_data_t get_B_data[1]
324 cdef trans_calculator_get_X_data_t* get_B_data_p[1]
326 cdef trans_calculator_get_X_data_t get_AB_data[1]
327 cdef trans_calculator_get_X_data_t* get_AB_data_p[1]
328 cdef public: # TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
329 # have to be cdef public in order that __init__ can set these attributes
330 object get_A, get_B, get_AB
332 def __cinit__(self, int lMax, int normalization = QPMS_NORMALISATION_DEFAULT):
333 if (lMax <= 0):
334 raise ValueError('lMax has to be greater than 0.')
335 self.c = qpms_trans_calculator_init(lMax, normalization)
336 if self.c is NULL:
337 raise MemoryError
339 def __init__(self, int lMax, int normalization = QPMS_NORMALISATION_DEFAULT):
340 if self.c is NULL:
341 raise MemoryError()
342 self.get_A_data[0].c = self.c
343 self.get_A_data[0].cmethod = <void *>qpms_trans_calculator_get_A_ext
344 self.get_A_data_p[0] = &(self.get_A_data[0])
345 self.get_A = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
346 trans_calculator_get_X_loop_funcs, # func
347 <void **>self.get_A_data_p, #data
348 ufunc__get_either_trans_coeff_types, #types
349 1, # ntypes: number of supported input types
350 9, # nin: number of input args
351 1, # nout: number of output args
352 0, # identity element, unused
353 "get_A", #name
355 TODO doc
356 """, # doc
357 0 # unused
359 self.get_B_data[0].c = self.c
360 self.get_B_data[0].cmethod = <void *>qpms_trans_calculator_get_B_ext
361 self.get_B_data_p[0] = &(self.get_B_data[0])
362 self.get_B = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
363 trans_calculator_get_X_loop_funcs, # func
364 <void **>self.get_B_data_p, #data
365 ufunc__get_either_trans_coeff_types, #types
366 1, # ntypes: number of supported input types
367 9, # nin: number of input args
368 1, # nout: number of output args
369 0, # identity element, unused
370 "get_B", #name
372 TODO doc
373 """, # doc
374 0 # unused
376 self.get_AB_data[0].c = self.c
377 self.get_AB_data[0].cmethod = <void *>qpms_trans_calculator_get_AB_p_ext
378 self.get_AB_data_p[0] = &(self.get_AB_data[0])
379 self.get_AB = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
380 trans_calculator_get_AB_loop_funcs, # func
381 <void **>self.get_AB_data_p, #data
382 ufunc__get_both_coeff_types, #types
383 1, # ntypes: number of supported input types
384 9, # nin: number of input args
385 2, # nout: number of output args
386 0, # identity element, unused
387 "get_AB", #name
389 TODO doc
390 """, # doc
391 0 # unused
393 def __dealloc__(self):
394 if self.c is not NULL:
395 qpms_trans_calculator_free(self.c)
396 # TODO Reference counts to get_A, get_B, get_AB?
398 def lMax(self):
399 return self.c[0].lMax
401 def nelem(self):
402 return self.c[0].nelem
404 # THIS FUNCTION MIGHT BE OBSOLETE; NOT SURE WHETHER IT'S WORKING ANY MORE
405 def get_AB_arrays(self, r, theta, phi, r_ge_d, int J,
406 destaxis=None, srcaxis=None, expand=True):
408 Returns arrays of translation coefficients, inserting two new nelem-sized axes
409 (corresponding to the destination and source axes of the translation matrix,
410 respectively).
412 By default (expand==True), it inserts the new axes. or it can be provided with
413 the resulting shape (with the corresponding axes dimensions equal to one).
414 The provided axes positions are for the resulting array.
416 If none axis positions are provided, destaxis and srcaxis will be the second-to-last
417 and last, respectively.
419 # TODO CHECK (and try to cast) INPUT ARRAY TYPES (now is done)
420 # BIG FIXME: make skalars valid arguments, now r, theta, phi, r_ge_d have to be ndarrays
421 cdef:
422 int daxis, saxis, smallaxis, bigaxis, resnd, i, j, d, ax, errval
423 np.npy_intp sstride, dstride, longi
424 int *local_indices
425 char *r_p
426 char *theta_p
427 char *phi_p
428 char *r_ge_d_p
429 char *a_p
430 char *b_p
431 # Process the array shapes
432 baseshape = np.broadcast(r,theta,phi,r_ge_d).shape # nope, does not work as needed
434 cdef int r_orignd = r.ndim if hasattr(r, "ndim") else 0
435 cdef int theta_orignd = theta.ndim if hasattr(theta, "ndim") else 0
436 cdef int phi_orignd = phi.ndim if hasattr(phi, "ndim") else 0
437 cdef int r_ge_d_orignd = r_ge_d.ndim if hasattr(r_ge_d, "__len__") else 0
438 cdef int basend = max(r_orignd, theta_orignd, phi_orignd, r_ge_d_orignd)
439 baseshape = list()
440 for d in range(basend):
441 baseshape.append(max(
442 r.shape[d+r_orignd-basend] if d+r_orignd-basend >= 0 else 1,
443 theta.shape[d+theta_orignd-basend] if d+theta_orignd-basend >= 0 else 1,
444 phi.shape[d+phi_orignd-basend] if d+phi_orignd-basend >= 0 else 1,
445 r_ge_d.shape[d+r_ge_d_orignd-basend] if d+r_ge_d_orignd-basend >= 0 else 1,
447 baseshape = tuple(baseshape)
449 if not expand:
450 resnd = len(baseshape)
451 if resnd < 2:
452 raise ValueError('Translation matrix arrays must have at least 2 dimensions!')
453 daxis = (resnd-2) if destaxis is None else destaxis
454 saxis = (resnd-1) if srcaxis is None else srcaxis
455 if daxis < 0:
456 daxis = resnd + daxis
457 if saxis < 0:
458 saxis = resnd + saxis
459 if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis:
460 raise ValueError('invalid axes provided (destaxis = %d, srcaxis = %d, # of axes: %d'
461 % (daxis, saxis, resnd))
462 if baseshape[daxis] != 1 or baseshape[saxis] != 1:
463 raise ValueError('dimension mismatch (input argument dimensions have to be 1 both at'
464 'destaxis (==%d) and srcaxis (==%d) but are %d and %d' %
465 (daxis, saxis, baseshape[daxis], baseshape[saxis]))
466 resultshape = list(baseshape)
467 else:
468 resnd = len(baseshape)+2
469 daxis = (resnd-2) if destaxis is None else destaxis
470 saxis = (resnd-1) if srcaxis is None else srcaxis
471 if daxis < 0:
472 daxis = resnd + daxis
473 if saxis < 0:
474 saxis = resnd + saxis
475 if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis:
476 raise ValueError('invalid axes provided') # TODO better error formulation
477 resultshape = list(baseshape)
478 if daxis > saxis:
479 smallaxis = saxis
480 bigaxis = daxis
481 else:
482 smallaxis = daxis
483 bigaxis = saxis
484 resultshape.insert(smallaxis,1)
485 resultshape.insert(bigaxis,1)
486 r = np.expand_dims(np.expand_dims(r.astype(np.float_, copy=False), smallaxis), bigaxis)
487 theta = np.expand_dims(np.expand_dims(theta.astype(np.float_, copy=False), smallaxis), bigaxis)
488 phi = np.expand_dims(np.expand_dims(phi.astype(np.float_, copy=False), smallaxis), bigaxis)
489 r_ge_d = np.expand_dims(np.expand_dims(r_ge_d.astype(np.bool_, copy=False), smallaxis), bigaxis)
491 resultshape[daxis] = self.c[0].nelem
492 resultshape[saxis] = self.c[0].nelem
493 cdef np.ndarray r_c = np.broadcast_to(r,resultshape)
494 cdef np.ndarray theta_c = np.broadcast_to(theta,resultshape)
495 cdef np.ndarray phi_c = np.broadcast_to(phi,resultshape)
496 cdef np.ndarray r_ge_d_c = np.broadcast_to(r_ge_d, resultshape)
497 cdef np.ndarray a = np.empty(resultshape, dtype=complex)
498 cdef np.ndarray b = np.empty(resultshape, dtype=complex)
499 dstride = a.strides[daxis]
500 sstride = a.strides[saxis]
501 with nogil:
502 errval = qpms_cython_trans_calculator_get_AB_arrays_loop(
503 self.c, J, resnd,
504 daxis, saxis,
505 a.data, a.shape, a.strides,
506 b.data, b.shape, b.strides,
507 r_c.data, r_c.shape, r_c.strides,
508 theta_c.data, theta_c.shape, theta_c.strides,
509 phi_c.data, phi_c.shape, phi_c.strides,
510 r_ge_d_c.data, r_ge_d_c.shape, r_ge_d_c.strides
512 return a, b
514 def get_trans_array_bspec_sph(self, BaseSpec destspec, BaseSpec srcspec,
515 kdlj, qpms_bessel_t J = QPMS_HANKEL_PLUS):
516 kdlj = np.array(kdlj)
517 if kdlj.shape != (3,):
518 raise ValueError("Array of shape (3,) with spherical coordinates of the translation expected")
519 cdef size_t destn = len(destspec)
520 cdef size_t srcn = len(srcspec)
521 cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
522 (destn, srcn), dtype=complex, order='C')
523 cdef cdouble[:,::1] target_view = target
524 cdef csph_t kdlj_sph
525 kdlj_sph.r = kdlj[0]
526 kdlj_sph.theta = kdlj[1].real
527 kdlj_sph.phi = kdlj[2].real
528 qpms_trans_calculator_get_trans_array(self.c, &target_view[0][0],
529 destspec.rawpointer(), srcn, srcspec.rawpointer(), 1,
530 kdlj_sph, False, J)
531 return target
533 def get_trans_array_bspec_c3pos(self, BaseSpec destspec, BaseSpec srcspec,
534 cdouble k, destpos, srcpos, qpms_bessel_t J = QPMS_HANKEL_PLUS):
535 destpos = np.array(destpos)
536 srcpos = np.array(srcpos)
537 if destpos.shape != (3,) or srcpos.shape != (3,):
538 raise ValueError("Array of shape (3,) with cartesian coordinates of the particle position expected")
539 cdef size_t destn = len(destspec)
540 cdef size_t srcn = len(srcspec)
541 cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
542 (destn, srcn), dtype=complex, order='C')
543 cdef cdouble[:,::1] target_view = target
544 cdef cart3_t srcp, destp
545 srcp.x = srcpos[0]
546 srcp.y = srcpos[1]
547 srcp.z = srcpos[2]
548 destp.x = destpos[0]
549 destp.y = destpos[1]
550 destp.z = destpos[2]
551 qpms_trans_calculator_get_trans_array_lc3p(self.c, &target_view[0][0],
552 destspec.rawpointer(), srcn, srcspec.rawpointer(), 1, k,
553 destp, srcp, J)
554 return target
557 # TODO make possible to access the attributes (to show normalization etc)