Fix qpms_vswf_set_reindex().
[qpms.git] / qpms / symmetries.py
blob47a7408c68f456ee43a8a280008c39f42731faad
1 import sympy
2 from sympy.combinatorics import Permutation, PermutationGroup
3 sympy.init_printing(perm_cyclic = True)
4 import cmath
5 from cmath import exp, pi
6 from math import sqrt
7 import numpy as np
8 np.set_printoptions(linewidth=200)
9 import numbers
10 import re
11 ň = None
12 from .tmatrices import zflip_tyty, xflip_tyty, yflip_tyty, zrotN_tyty, WignerD_yy_fromvector, identity_tyty, apply_ndmatrix_left
13 from .cyquaternions import IRot3
14 from .cycommon import get_mn_y
16 s3long = np.sqrt(np.longdouble(3.))
18 def grouprep_try(tdict, src, im, srcgens, imgens, immultop = None, imcmp = None):
19 tdict[src] = im
20 for i in range(len(srcgens)):
21 new_src = src * srcgens[i]
22 new_im = (im * imgens[i]) if (immultop is None) else immultop(im, imgens[i])
23 if new_src not in tdict.keys():
24 grouprep_try(tdict, new_src, new_im, srcgens, imgens, immultop, imcmp)
25 elif ((new_im != tdict[new_src]) if (imcmp is None) else (not imcmp(new_im, tdict[new_src]))): # check consistency
26 print(src, ' * ', srcgens[i], ' --> ', new_src)
27 print(im)
28 print(' * ')
29 print(imgens[i])
30 print(' --> ')
31 print(new_im)
32 print(' != ')
33 print(tdict[new_src])
34 raise ValueError("Homomorphism inconsistency detected")
35 return
37 def group_dps_try(elemlist, elem, gens):
38 '''Deterministic group depth-first search'''
39 elemlist.append(elem)
40 for i in range(len(gens)):
41 newelem = elem * gens[i]
42 if newelem not in elemlist:
43 group_dps_try(elemlist, newelem, gens)
44 return
46 class SVWFPointGroupInfo: # only for point groups, coz in svwf_rep() I use I_tyty, not I_ptypty or something alike
47 def __init__(self,
48 name,
49 permgroupgens, # permutation group generators
50 irrepgens_dict, # dictionary with irrep generators,
51 svwf_rep_gen_func, # function that generates a tuple with svwf representation generators
52 rep3d_gens = None, # 3d (quaternion) representation generators of a point group: sequence of qpms.irep3 instances
54 self.name = name
55 self.permgroupgens = permgroupgens
56 self.permgroup = PermutationGroup(*permgroupgens)
57 self.irrepgens_dict = irrepgens_dict
58 self.svwf_rep_gen_func = svwf_rep_gen_func
59 self.irreps = dict()
60 for irrepname, irrepgens in irrepgens_dict.items():
61 is1d = isinstance(irrepgens[0], (int,float,complex))
62 irrepdim = 1 if is1d else irrepgens[0].shape[0]
63 self.irreps[irrepname] = generate_grouprep(self.permgroup,
64 1 if is1d else np.eye(irrepdim),
65 permgroupgens, irrepgens,
66 immultop = None if is1d else np.dot,
67 imcmp = None if is1d else np.allclose
69 self.rep3d_gens = rep3d_gens
70 self.rep3d = None if rep3d_gens is None else generate_grouprep(
71 self.permgroup,
72 IRot3(),
73 permgroupgens, rep3d_gens,
74 immultop = None, imcmp = (lambda x, y: x.isclose(y))
77 def deterministic_elemlist(self):
78 thelist = list()
79 group_dps_try(thelist, self.permgroup.identity, self.permgroupgens)
80 return thelist
82 def svwf_rep(self, lMax, *rep_gen_func_args, **rep_gen_func_kwargs):
83 '''
84 This method generates full SVWF (reducible) representation of the group.
85 '''
86 svwfgens = self.svwf_rep_gen_func(lMax, *rep_gen_func_args, **rep_gen_func_kwargs)
87 my, ny = get_mn_y(lMax)
88 nelem = len(my)
89 I_tyty = np.moveaxis(np.eye(2)[:,:,ň,ň] * np.eye(nelem), 2,1)
90 return generate_grouprep(self.permgroup, I_tyty, self.permgroupgens, svwfgens, immultop = mmult_tyty, imcmp = np.allclose)
92 def svwf_irrep_projectors(self, lMax, *rep_gen_func_args, **rep_gen_func_kwargs):
93 return gen_point_group_svwfrep_projectors(self.permgroup, self.irreps, self.svwf_rep(lMax, *rep_gen_func_args, **rep_gen_func_kwargs))
95 # alternative, for comparison and testing; should give the same results
96 def svwf_irrep_projectors2(self, lMax, *rep_gen_func_args, **rep_gen_func_kwargs):
97 return gen_point_group_svwfrep_projectors2(self.permgroup, self.irreps, self.svwf_rep(lMax, *rep_gen_func_args, **rep_gen_func_kwargs))
99 def svwf_irrep_projectors2_w_bases(self, lMax, *rep_gen_func_args, **rep_gen_func_kwargs):
100 return gen_point_group_svwfrep_projectors2_w_bases(self.permgroup, self.irreps, self.svwf_rep(lMax, *rep_gen_func_args, **rep_gen_func_kwargs))
102 def generate_c_source(self):
104 Generates a string with a chunk of C code with a definition of a qpms_finite_group_t instance.
105 See also groups.h.
107 permlist = self.deterministic_elemlist()
108 order = len(permlist)
109 permindices = {perm: i for i, perm in enumerate(permlist)} # 'invert' permlist
110 identity = self.permgroup.identity
111 s = "{\n"
112 # char *name
113 s += ' "%s", // name\n' % self.name
114 # size_t order;
115 s += ' %d, // order\n' % order
116 # qpms_gmi_t idi
117 s += ' %d, // idi\n' % permindices[identity]
118 # qpms_gmi_t *mt
119 s += ' (qpms_gmi_t[]) { // mt\n'
120 for i in range(order):
121 ss = ', '.join([str(permindices[permlist[i]*permlist[j]]) for j in range(order)])
122 s += ' ' + ss + ',\n'
123 s += ' },\n'
124 # qpms_gmi_t *invi
125 s += ' (qpms_gmi_t[]) { // invi\n'
126 s += ' ' + ', '.join([str(permindices[permlist[j]**-1]) for j in range(order)])
127 s += '\n },\n'
128 # qpms_gmi_t *gens
129 s += ' (qpms_gmi_t[]) {' + ', '.join([str(permindices[g]) for g in self.permgroupgens]) + '}, // gens\n'
130 # int ngens
131 s += ' %d, // ngens\n' % len(self.permgroupgens)
132 # qpms_permutation_t permrep[]
133 s += ' (qpms_permutation_t[]){ // permrep\n'
134 for i in range(order):
135 s += ' "%s",\n' % str(permlist[i])
136 s += ' },\n'
137 # char **elemlabels
138 s += ' NULL, // elemlabels\n'
139 # int permrep_nelem
140 s += ' %d, // permrep_nelem\n' % self.permgroup.degree
141 # qpms_irot3_t rep3d[]
142 if self.rep3d is None:
143 s += ' NULL, // rep3d TODO!!!\n'
144 else:
145 s += ' (qpms_irot3_t[]) { // rep3d\n'
146 for i in range(order):
147 s += ' ' + self.rep3d[permlist[i]].crepr() + ',\n'
148 s += ' },\n'
149 # int nirreps
150 s += ' %d, // nirreps\n' % len(self.irreps)
151 # struct qpms_finite_grep_irrep_t irreps[]
152 s += ' (struct qpms_finite_group_irrep_t[]) { // irreps\n'
153 for irname in sorted(self.irreps.keys()):
154 irrep = self.irreps[irname]
155 s += ' {\n'
156 is1d = isinstance(irrep[identity], (int, float, complex))
157 dim = 1 if is1d else irrep[identity].shape[0]
158 # int dim
159 s += ' %d, // dim\n' % dim
160 # char name[]
161 s += ' "%s", //name\n' % re.escape(irname)
163 # complex double *m
164 if (is1d):
165 s += ' (complex double []) {' + ', '.join([str(irrep[permlist[i]]) for i in range(order)]) + '} // m\n'
166 else:
167 s += ' (complex double []) {\n'
168 for i in range(order):
169 s += ' // %s\n' % str(permlist[i])
170 for row in range(dim):
171 s += ' '
172 for col in range(dim):
173 s += '%s, ' % re.sub('j', '*I', str(irrep[permlist[i]][row,col]))
174 s += '\n'
175 mat = irrep[permlist[i]]
176 s += ' }\n'
178 #s += ' %d, // dim\n' %
179 s += ' },\n'
180 s += ' } // end of irreps\n'
181 s += '}'
182 return s
184 # srcgroup is expected to be PermutationGroup and srcgens of the TODO
185 # imcmp returns True if two elements of the image group are 'equal', otherwise False
186 def generate_grouprep(srcgroup, im_identity, srcgens, imgens, immultop = None, imcmp = None):
187 sz = srcgens[0].size
188 for g in srcgens:
189 if g.size != sz:
190 raise ValueError('All the generators must have the same "size"')
191 tdict = dict()
192 grouprep_try(tdict, Permutation(sz-1), im_identity, srcgens, imgens, immultop = immultop, imcmp = imcmp)
193 if(srcgroup.order() != len(tdict.keys())): # basic check
194 raise ValueError('The supplied "generators" failed to generate the preimage group: ',
195 srcgroup.order(), " != ", len(tdict.keys()))
196 return tdict
198 # matrices appearing in 2d representations of common groups as used in Bradley, Cracknell p. 61 (with arabic names instead of greek, because lambda is a keyword)
199 epsilon = np.eye(2)
200 alif = np.array(((-1/2,-s3long/2),(s3long/2,-1/2)))
201 bih = np.array(((-1/2,s3long/2),(-s3long/2,-1/2)))
202 kaf = np.array(((0,1),(1,0)))
203 lam = np.array(((1,0),(0,-1)))
204 ra = np.array(((0,-1),(1,0)))
205 mim = np.array(((-1/2,-s3long/2),(-s3long/2,1/2)))
206 nun = np.array(((-1/2,s3long/2),(s3long/2,1/2)))
211 def mmult_tyty(a, b):
212 return(apply_ndmatrix_left(a, b, (-4,-3)))
213 def mmult_ptypty(a, b):
214 return(apply_ndmatrix_left(a, b, (-6,-5,-4)))
216 def gen_point_group_svwfrep_irreps(permgroup, matrix_irreps_dict, sphrep_full):
218 Gives the projection operators $P_kl('\Gamma')$ from Dresselhaus (4.28)
219 for all irreps $\Gamma$ of D3h.;
220 as an array with indices [k,l,t,y,t,y]
222 Example of creating last argument:
223 sphrep_full = generate_grouprep(D3h_permgroup, I_tyty, D3h_srcgens, [C3_tyty, vfl_tyty, zfl_tyty],
224 immultop = mmult_tyty, imcmp = np.allclose)
226 order = permgroup.order()
227 sphreps = dict()
228 nelem = sphrep_full[permgroup[0]].shape[-1] # quite ugly hack
229 for repkey, matrixrep in matrix_irreps_dict.items():
230 arepmatrix = matrixrep[permgroup[0]] # just one of the matrices to get the shape etc
231 if isinstance(arepmatrix, numbers.Number):
232 dim = 1 # repre dimension
233 preprocess = lambda x: np.array([[x]])
234 elif isinstance(arepmatrix, np.ndarray):
235 if(len(arepmatrix.shape)) != 2 or arepmatrix.shape[0] != arepmatrix.shape[1]:
236 raise ValueError("Arrays representing irrep matrices must be of square shape")
237 dim = arepmatrix.shape[0]
238 preprocess = lambda x: x
239 else:
240 raise ValueError("Irrep is not a square array or number")
241 sphrep = np.zeros((dim,dim,2,nelem,2,nelem), dtype=complex)
242 for i in permgroup.elements:
243 sphrep += preprocess(matrixrep[i]).conj().transpose()[:,:,ň,ň,ň,ň] * sphrep_full[i]
244 sphrep *= dim / order
245 # clean the nonexact values here
246 for x in [0, 0.5, -0.5, 0.5j, -0.5j]:
247 sphrep[np.isclose(sphrep,x)]=x
248 sphreps[repkey] = sphrep
249 return sphreps
252 def gen_point_group_svwfrep_projectors(permgroup, matrix_irreps_dict, sphrep_full):
254 The same as gen_point_group_svwfrep_irreps, but summed over the kl diagonal, so
255 one gets single projector onto each irrep space and the arrays have indices
256 [t, y, t, y]
258 summedprojs = dict()
259 for repi, W in gen_point_group_svwfrep_irreps(permgroup, matrix_irreps_dict, sphrep_full).items():
260 irrepd = W.shape[0]
261 if irrepd == 1:
262 mat = np.reshape(W, W.shape[-4:])
263 else:
264 mat = np.zeros(W.shape[-4:], dtype=complex) # TODO the result should be real — check!
265 for d in range(irrepd):
266 mat += W[d,d]
267 if not np.allclose(mat.imag, 0):
268 raise ValueError("The imaginary part of the resulting projector should be zero, damn!")
269 else:
270 summedprojs[repi] = mat.real
271 return summedprojs
274 def gen_point_group_svwfrep_projectors2_w_bases(permgroup, matrix_irreps_dict, sphrep_full):
275 return gen_point_group_svwfrep_projectors2(permgroup, matrix_irreps_dict, sphrep_full, do_bases = True)
277 def gen_point_group_svwfrep_projectors2(permgroup, matrix_irreps_dict, sphrep_full, do_bases = False):
279 an approach as in gen_hexlattice_Kpoint_svwf_rep_projectors; for comparison and testing
281 if (do_bases):
282 bases = dict()
283 projectors = dict()
284 for repi, W in gen_point_group_svwfrep_irreps(permgroup, matrix_irreps_dict, sphrep_full).items():
285 nelem = W.shape[-1] # however, this should change between iterations
286 totalvecs = 0
287 tmplist = list()
288 for t in (0,1):
289 for y in range(nelem):
290 for ai in range(W.shape[0]):
291 for bi in range(W.shape[1]):
292 v = np.zeros((2, nelem))
293 v[t,y] = 1
294 v1 = np.tensordot(W[ai,bi], v, axes = ([-2,-1],[0,1]))
296 if not np.allclose(v1,0):
297 v1 = normalize(v1)
298 for v2 in tmplist:
299 dot = np.tensordot(v1.conjugate(),v2, axes=([-2,-1],[0,1]))
300 if not (np.allclose(dot,0)):
301 if not np.allclose(np.abs(dot),1):
302 raise ValueError('You have to fix this piece of code.')
303 break
304 else:
305 totalvecs += 1
306 tmplist.append(v1)
307 theprojector = np.zeros((2,nelem, 2, nelem), dtype = float)
308 if do_bases:
309 thebasis = np.zeros((len(tmplist), 2, nelem), dtype=complex)
310 for i, v in enumerate(tmplist):
311 thebasis[i] = v
312 bases[repi] = thebasis
313 for v in tmplist:
314 theprojector += (v[:,:,ň,ň] * v.conjugate()[ň,ň,:,:]).real
315 for x in [0, 1, -1, sqrt(.5), -sqrt(.5), .5, -.5]:
316 theprojector[np.isclose(theprojector,x)] = x
317 projectors[repi] = theprojector
318 if do_bases:
319 return projectors, bases
320 else:
321 return projectors
324 # Group D3h; mostly legacy code (kept because of the the honeycomb lattice K-point code, whose generalised version not yet implemented)
325 # Note that the size argument of permutations is necessary, otherwise e.g. c*c and b*b would not be evaluated equal
326 # N.B. the weird elements as Permutation(N) – it means identity permutation of size N+1.
327 rot3_perm = Permutation(0,1,2, size=5) # C3 rotation
328 xflip_perm = Permutation(0,2, size=5) # vertical mirror
329 zflip_perm = Permutation(3,4, size=5) # horizontal mirror
330 D3h_srcgens = [rot3_perm,xflip_perm,zflip_perm]
331 D3h_permgroup = PermutationGroup(*D3h_srcgens) # D3h
333 D3h_irreps = {
334 # Bradley, Cracknell p. 61
335 "E'" : generate_grouprep(D3h_permgroup, epsilon, D3h_srcgens, [alif, lam, epsilon], immultop = np.dot, imcmp = np.allclose),
336 "E''" : generate_grouprep(D3h_permgroup, epsilon, D3h_srcgens, [alif, lam, -epsilon], immultop = np.dot, imcmp = np.allclose),
337 # Bradley, Cracknell p. 59, or Dresselhaus, Table A.14 (p. 482)
338 "A1'" : generate_grouprep(D3h_permgroup, 1, D3h_srcgens, [1,1,1]),
339 "A2'" : generate_grouprep(D3h_permgroup, 1, D3h_srcgens, [1,-1,1]),
340 "A1''" : generate_grouprep(D3h_permgroup, 1, D3h_srcgens, [1,-1,-1]),
341 "A2''" : generate_grouprep(D3h_permgroup, 1, D3h_srcgens, [1,1,-1]),
344 #TODO lepší název fce; legacy, use group_info['D3h'].generate_grouprep() instead
345 def gen_point_D3h_svwf_rep(lMax, vflip = 'x'):
347 Gives the projection operators $P_kl('\Gamma')$ from Dresselhaus (4.28)
348 for all irreps $\Gamma$ of D3h.;
349 as an array with indices [k,l,t,y,t,y]
352 my, ny = get_mn_y(lMax)
353 nelem = len(my)
354 C3_yy = WignerD_yy_fromvector(lMax, np.array([0,0,2*pi/3]))
355 C3_tyty = np.moveaxis(np.eye(2)[:,:,ň,ň] * C3_yy, 2,1)
356 zfl_tyty = zflip_tyty(lMax)
357 #yfl_tyty = yflip_tyty(lMax)
358 #xfl_tyty = xflip_tyty(lMax)
359 vfl_tyty = yflip_tyty(lMax) if vflip == 'y' else xflip_tyty(lMax)
360 I_tyty = np.moveaxis(np.eye(2)[:,:,ň,ň] * np.eye(nelem), 2,1)
361 order = D3h_permgroup.order()
362 sphrep_full = generate_grouprep(D3h_permgroup, I_tyty, D3h_srcgens, [C3_tyty, vfl_tyty, zfl_tyty],
363 immultop = mmult_tyty, imcmp = np.allclose)
364 sphreps = dict()
365 for repkey, matrixrep in D3h_irreps.items():
366 arepmatrix = matrixrep[rot3_perm] # just one of the matrices to get the shape etc
367 if isinstance(arepmatrix, numbers.Number):
368 dim = 1 # repre dimension
369 preprocess = lambda x: np.array([[x]])
370 elif isinstance(arepmatrix, np.ndarray):
371 if(len(arepmatrix.shape)) != 2 or arepmatrix.shape[0] != arepmatrix.shape[1]:
372 raise ValueError("Arrays representing irrep matrices must be of square shape")
373 dim = arepmatrix.shape[0]
374 preprocess = lambda x: x
375 else:
376 raise ValueError("Irrep is not a square array or number")
377 sphrep = np.zeros((dim,dim,2,nelem,2,nelem), dtype=complex)
378 for i in D3h_permgroup.elements:
379 sphrep += preprocess(matrixrep[i]).conj().transpose()[:,:,ň,ň,ň,ň] * sphrep_full[i]
380 sphrep *= dim / order
381 # clean the nonexact values here
382 for x in [0, 0.5, -0.5, 0.5j, -0.5j]:
383 sphrep[np.isclose(sphrep,x)]=x
384 sphreps[repkey] = sphrep
385 return sphreps
387 def gen_hexlattice_Kpoint_svwf_rep(lMax, psi, vflip = 'x'):
388 my, ny = get_mn_y(lMax)
389 nelem = len(my)
390 C3_yy = WignerD_yy_fromvector(lMax, np.array([0,0,2*pi/3]))
391 C3_tyty = np.moveaxis(np.eye(2)[:,:,ň,ň] * C3_yy, 2,1)
392 zfl_tyty = zflip_tyty(lMax)
393 #yfl_tyty = yflip_tyty(lMax)
394 #xfl_tyty = xflip_tyty(lMax)
395 vfl_tyty = yflip_tyty(lMax) if vflip == 'y' else xflip_tyty(lMax)
396 I_tyty = np.moveaxis(np.eye(2)[:,:,ň,ň] * np.eye(nelem), 2,1)
397 hex_C3_K_ptypty = np.diag([exp(-psi*1j*2*pi/3),exp(+psi*1j*2*pi/3)])[:,ň,ň,:,ň,ň] * C3_tyty[ň,:,:,ň,:,:]
398 hex_zfl_ptypty = np.eye(2)[:,ň,ň,:,ň,ň] * zfl_tyty[ň,:,:,ň,:,:]
399 #hex_xfl_ptypty = np.array([[0,1],[1,0]])[:,ň,ň,:,ň,ň] * xfl_tyty[ň,:,:,ň,:,:]
400 hex_vfl_ptypty = np.array([[0,1],[1,0]])[:,ň,ň,:,ň,ň] * vfl_tyty[ň,:,:,ň,:,:]
401 hex_I_ptypty = np.eye((2*2*nelem)).reshape((2,2,nelem,2,2,nelem))
402 order = D3h_permgroup.order()
403 hex_K_sphrep_full = generate_grouprep(D3h_permgroup, hex_I_ptypty, D3h_srcgens, [hex_C3_K_ptypty, hex_vfl_ptypty, hex_zfl_ptypty],
404 immultop = mmult_ptypty, imcmp = np.allclose)
405 hex_K_sphreps = dict()
406 for repkey, matrixrep in D3h_irreps.items():
407 arepmatrix = matrixrep[rot3_perm] # just one of the matrices to get the shape etc
408 if isinstance(arepmatrix, numbers.Number):
409 dim = 1 # repre dimension
410 preprocess = lambda x: np.array([[x]])
411 elif isinstance(arepmatrix, np.ndarray):
412 if(len(arepmatrix.shape)) != 2 or arepmatrix.shape[0] != arepmatrix.shape[1]:
413 raise ValueError("Arrays representing irrep matrices must be of square shape")
414 dim = arepmatrix.shape[0]
415 preprocess = lambda x: x
416 else:
417 raise ValueError("Irrep is not a square array or number")
418 sphrep = np.zeros((dim,dim,2,2,nelem,2,2,nelem), dtype=complex)
419 for i in D3h_permgroup.elements:
420 sphrep += preprocess(matrixrep[i]).conj().transpose()[:,:,ň,ň,ň,ň,ň,ň] * hex_K_sphrep_full[i]
421 sphrep *= dim / order
422 # clean the nonexact values here
423 for x in [0, 0.5, -0.5, 0.5j, -0.5j]:
424 sphrep[np.isclose(sphrep,x)]=x
425 hex_K_sphreps[repkey] = sphrep
426 return hex_K_sphreps
428 def normalize(v):
429 norm = np.linalg.norm(v.reshape((np.prod(v.shape),)), ord=2)
430 if norm == 0:
431 return v*np.nan
432 return v / norm
434 def gen_hexlattice_Kpoint_svwf_rep_projectors(lMax, psi, vflip='x', do_bases=False):
435 nelem = lMax * (lMax+2)
436 projectors = dict()
437 if do_bases:
438 bases = dict()
439 for repi, W in gen_hexlattice_Kpoint_svwf_rep(lMax,psi,vflip=vflip).items():
440 totalvecs = 0
441 tmplist = list()
442 for p in (0,1):
443 for t in (0,1):
444 for y in range(nelem):
445 for ai in range(W.shape[0]):
446 for bi in range(W.shape[1]):
447 v = np.zeros((2,2,nelem))
448 v[p,t,y] = 1
449 #v = np.ones((2,2,nelem))
450 v1 = np.tensordot(W[ai,bi],v, axes = ([-3,-2,-1],[0,1,2]))
453 if not np.allclose(v1,0):
454 v1 = normalize(v1)
455 for v2 in tmplist:
456 dot = np.tensordot(v1.conjugate(),v2,axes = ([-3,-2,-1],[0,1,2]))
457 if not np.allclose(dot,0):
458 if not np.allclose(np.abs(dot),1):
459 raise ValueError('You have to fix this piece of code.')# TODO maybe I should make sure that the absolute value is around 1
460 break
461 else:
462 totalvecs += 1
463 tmplist.append(v1)
464 #for index, x in np.ndenumerate(v1):
465 # if x!=0:
466 # print(index, x)
467 #print('----------')
468 theprojector = np.zeros((2,2,nelem,2,2,nelem), dtype = float)
469 if do_bases:
470 thebasis = np.zeros((len(tmplist), 2,2,nelem), dtype=complex)
471 for i, v in enumerate(tmplist):
472 thebasis[i] = v
473 bases[repi] = thebasis
474 for v in tmplist:
475 theprojector += (v[:,:,:,ň,ň,ň] * v.conjugate()[ň,ň,ň,:,:,:]).real # TODO check is it possible to have imaginary elements?
476 for x in [0, 1, -1,sqrt(0.5),-sqrt(0.5),0.5,-0.5]:
477 theprojector[np.isclose(theprojector,x)]=x
478 projectors[repi] = theprojector
479 if do_bases:
480 return projectors, bases
481 else:
482 return projectors
486 point_group_info = { # representation info of some useful point groups
487 # TODO real trivial without generators
488 'trivial_g' : SVWFPointGroupInfo('trivial_g',
489 # permutation group generators
490 ( # I put here the at least the identity for now (it is reduntant, but some functions are not robust enough to have an empty set of generators
491 Permutation(),
493 # dictionary with irrep generators
495 "A" : (1,),
497 # function that generates a tuple with svwf representation generators
498 lambda lMax : (identity_tyty(lMax),),
499 # quaternion rep generators
500 rep3d_gens = (
501 IRot3.identity(),
504 'C2' : SVWFPointGroupInfo('C2',
505 # permutation group generators
506 (Permutation(0,1), # 180 deg rotation around z axis
508 # dictionary with irrep generators
510 # Bradley, Cracknell p. 57;
511 'A': (1,),
512 'B': (-1,),
514 # function that generates a tuple with svwf representation generators
515 lambda lMax : (zrotN_tyty(2, lMax),),
516 # quaternion rep generators
517 rep3d_gens = (
518 IRot3.zrotN(2),
522 'C2v' : SVWFPointGroupInfo('C2v',
523 # permutation group generators
524 (Permutation(0,1, size=4)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
525 Permutation(0,3, size=4)(1,2), # y -> - y mirror operation (i.e. xz mirror plane)
527 # dictionary with irrep generators
529 # Bradley, Cracknell p. 58; not sure about the labels / axes here
530 'A1': (1,1),
531 'B2': (-1,1),
532 'A2': (-1,-1),
533 'B1': (1,-1),
535 # function that generates a tuple with svwf representation generators
536 lambda lMax : (xflip_tyty(lMax), yflip_tyty(lMax)),
537 # quaternion rep generators
538 rep3d_gens = (
539 IRot3.xflip(),
540 IRot3.yflip(),
544 'D2h' : SVWFPointGroupInfo('D2h',
545 # permutation group generators
546 (Permutation(0,1, size=6)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
547 Permutation(0,3, size=6)(1,2), # y -> - y mirror operation (i.e. xz mirror plane)
548 # ^^^ btw, I guess that Permutation(0,1, size=6) and Permutation(2,3, size=6) would
549 # do exactly the same job (they should; CHECK)
550 Permutation(4,5, size=6) # z -> - z mirror operation (i.e. xy mirror plane)
552 # dictionary with irrep generators
554 # Product of C2v and zflip; not sure about the labels / axes here
555 "A1'": (1,1,1),
556 "B2'": (-1,1,1),
557 "A2'": (-1,-1,1),
558 "B1'": (1,-1,1),
559 "A1''": (-1,-1,-1),
560 "B2''": (1,-1,-1),
561 "A2''": (1,1,-1),
562 "B1''": (-1,1,-1),
564 # function that generates a tuple with svwf representation generators
565 lambda lMax : (xflip_tyty(lMax), yflip_tyty(lMax), zflip_tyty(lMax)),
566 # quaternion rep generators
567 rep3d_gens = (
568 IRot3.xflip(),
569 IRot3.yflip(),
570 IRot3.zflip(),
573 'C4' : SVWFPointGroupInfo('C4',
574 # permutation group generators
575 (Permutation(0,1,2,3, size=4),), #C4 rotation
576 # dictionary with irrep generators
578 # Bradley, Cracknell p. 58
579 'A': (1,),
580 'B': (-1,),
581 '1E': (-1j,),
582 '2E': (1j,),
584 # function that generates a tuple with svwf representation generators
585 lambda lMax : (zrotN_tyty(4, lMax), ),
586 # quaternion rep generators
587 rep3d_gens = (
588 IRot3.zrotN(4),
591 'C4v' : SVWFPointGroupInfo('C4v',
592 # permutation group generators
593 (Permutation(0,1,2,3, size=4), #C4 rotation
594 Permutation(0,1, size=4)(2,3)), # x -> - x mirror operation (i.e. yz mirror plane)
595 # dictionary with irrep generators
597 # Bradley, Cracknell p. 62
598 'E': (ra, -lam),
599 # Bradley, Cracknell p. 59, or Dresselhaus, Table A.18
600 'A1': (1,1),
601 'A2': (1,-1),
602 'B1': (-1,1),
603 'B2': (-1,-1),
605 # function that generates a tuple with svwf representation generators
606 lambda lMax : (zrotN_tyty(4, lMax), xflip_tyty(lMax)),
607 # quaternion rep generators
608 rep3d_gens = (
609 IRot3.zrotN(4),
610 IRot3.xflip(),
613 'D4h' : SVWFPointGroupInfo('D4h',
614 # permutation group generators
615 (Permutation(0,1,2,3, size=6), # C4 rotation
616 Permutation(0,1, size=6)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
617 Permutation(4,5, size=6), # horizontal mirror operation z -> -z (i.e. xy mirror plane)
619 # dictionary with irrep generators
620 { # product of C4v and zflip
621 "E'": (ra, -lam, epsilon),
622 "E''":(ra, -lam, -epsilon),
623 "A1'": (1,1,1),
624 "A2'": (1,-1,1),
625 "A1''": (1,-1,-1),
626 "A2''": (1,1,-1),
627 "B1'": (-1,1,1),
628 "B2'": (-1,-1,1),
629 "B1''": (-1,-1,-1),
630 "B2''": (-1,1,-1),
632 # function that generates a tuple with svwf representation generators
633 lambda lMax : (zrotN_tyty(4, lMax), xflip_tyty(lMax), zflip_tyty(lMax)),
634 # quaternion rep generators
635 rep3d_gens = (
636 IRot3.zrotN(4),
637 IRot3.xflip(),
638 IRot3.zflip(),
641 'D3h' : SVWFPointGroupInfo('D3h',
642 # permutation group generators
643 ( Permutation(0,1,2, size=5), # C3 rotation
644 Permutation(0,2, size=5), # vertical mirror
645 Permutation(3,4, size=5), # horizontal mirror z -> -z (i.e. xy mirror plane)
647 # dictionary with irrep generators
648 { # Bradley, Cracknell p. 61
649 "E'" : (alif, lam, epsilon),
650 "E''" : (alif, lam, -epsilon),
651 # Bradley, Cracknell p. 59, or Dresselhaus, Table A.14 (p. 482)
652 "A1'" : (1,1,1),
653 "A2'" : (1,-1,1),
654 "A1''" : (1,-1,-1),
655 "A2''" : (1,1,-1),
657 # function that generates a tuple with svwf representation generators
658 lambda lMax, vflip: (zrotN_tyty(3, lMax), yflip_tyty(lMax) if vflip == 'y' else xflip_tyty(lMax), zflip_tyty(lMax)),
659 # quaternion rep generators
660 rep3d_gens = (
661 IRot3.zrotN(3),
662 IRot3.xflip(), # if vflip == 'y' else IRot3.xflip(), # FIXME enable to choose
663 IRot3.zflip(),
666 'x_and_z_flip': SVWFPointGroupInfo(
667 'x_and_z_flip',
669 Permutation(0,1, size=4), # x -> -x mirror op
670 Permutation(2,3, size=4), # z -> -z mirror op
673 "P'": (1, 1),
674 "R'": (-1, 1),
675 "P''": (-1,-1),
676 "R''": (1, -1),
678 lambda lMax : (xflip_tyty(lMax), zflip_tyty(lMax)),
679 rep3d_gens = (
680 IRot3.xflip(),
681 IRot3.zflip(),
685 'y_and_z_flip': SVWFPointGroupInfo(
686 'y_and_z_flip',
688 Permutation(0,1, size=4), # y -> -y mirror op
689 Permutation(2,3, size=4), # z -> -z mirror op
692 "P'": (1, 1),
693 "R'": (-1, 1),
694 "P''": (-1,-1),
695 "R''": (1, -1),
697 lambda lMax : (yflip_tyty(lMax), zflip_tyty(lMax)),
698 rep3d_gens = (
699 IRot3.yflip(),
700 IRot3.zflip(),