Fix qpms_vswf_set_reindex().
[qpms.git] / qpms / tmatrices.py
bloba74a41f0dd1b0729f1d7a130b1812ad81d70416d
1 """
2 Mostly legacy code, but still kept for reference.
3 Might be removed in future versions.
4 """
6 import numpy as np
7 use_moble_quaternion = False
8 try:
9 import quaternion, spherical_functions as sf # because of the Wigner matrices. These imports are SLOW.
10 use_moble_quaternion = True
11 except ImportError:
12 use_moble_quaternion = False
14 import re
15 from .constants import hbar, eV, pi, c
16 from .cycommon import get_mn_y, get_nelem
17 from .cyquaternions import CQuat
18 ň = np.newaxis
19 from .types import NormalizationT, TMatrixSpec
21 # Transformations of spherical bases
22 def WignerD_mm(l, quat):
23 """
24 Calculates Wigner D matrix (as an numpy (2*l+1,2*l+1)-shaped array)
25 for order l, and a rotation given by quaternion quat.
27 This represents the rotation of spherical vector basis
28 TODO doc
29 """
31 if use_moble_quaternion:
32 indices = np.array([ [l,i,j] for i in range(-l,l+1) for j in range(-l,l+1)])
33 Delems = sf.Wigner_D_element(quat, indices).reshape(2*l+1,2*l+1)
34 return Delems
35 else:
36 Delems = np.zeros((2*l+1, 2*l+1), dtype=complex)
37 for i in range(-l,l+1):
38 for j in range(-l,l+1):
39 Delems[i,j] = quat.wignerDelem(l, i, j)
40 return Delems
43 def WignerD_mm_fromvector(l, vect):
44 """
45 TODO doc
46 """
47 if use_moble_quaternion:
48 return WignerD_mm(l, quaternion.from_rotation_vector(vect))
49 else:
50 return WignerD_mm(l, CQuat.from_rotvector(vect))
53 def WignerD_yy(lmax, quat):
54 """
55 TODO doc
56 """
57 my, ny = get_mn_y(lmax)
58 Delems = np.zeros((len(my),len(my)),dtype=complex)
59 b_in = 0
60 e_in = None
61 for l in range(1,lmax+1):
62 e_in = b_in + 2*l+1
63 Delems[b_in:e_in,b_in:e_in] = WignerD_mm(l, quat)
64 b_in = e_in
65 return Delems
67 def WignerD_yy_fromvector(lmax, vect):
68 """
69 TODO doc
70 """
71 if use_moble_quaternion:
72 return WignerD_yy(lmax, quaternion.from_rotation_vector(vect))
73 else:
74 return WignerD_yy(lMax, CQuat.from_rotvector(vect))
76 def identity_yy(lmax):
77 """
78 TODO doc
79 """
80 return np.eye(lMax2nelem(lMax))
82 def identity_tyty(lmax):
83 """
84 TODO doc
85 """
86 nelem = lMax2nelem(lmax)
87 return np.eye(2*nelem).reshape((2,nelem,2,nelem))
89 def xflip_yy(lmax):
90 """
91 TODO doc
92 xflip = δ(m + m') δ(l - l')
93 (i.e. ones on the (m' m) antidiagonal
94 """
95 my, ny = get_mn_y(lmax)
96 elems = np.zeros((len(my),len(my)),dtype=int)
97 b_in = 0
98 e_in = None
99 for l in range(1,lmax+1):
100 e_in = b_in + 2*l+1
101 elems[b_in:e_in,b_in:e_in] = np.eye(2*l+1)[::-1,:]
102 b_in = e_in
103 return elems
105 def xflip_tyy(lmax):
106 fl_yy = xflip_yy(lmax)
107 return np.array([fl_yy,-fl_yy])
109 def xflip_tyty(lmax):
110 fl_yy = xflip_yy(lmax)
111 nelem = fl_yy.shape[0]
112 fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
113 fl_tyty[0,:,0,:] = fl_yy
114 fl_tyty[1,:,1,:] = -fl_yy
115 return fl_tyty
117 def yflip_yy(lmax):
119 TODO doc
120 yflip = rot(z,pi/2) * xflip * rot(z,-pi/2)
121 = δ(m + m') δ(l - l') * (-1)**m
123 my, ny = get_mn_y(lmax)
124 elems = xflip_yy(lmax)
125 elems[(my % 2)==1] = elems[(my % 2)==1] * -1 # Obvious sign of tiredness (this is correct but ugly; FIXME)
126 return elems
128 def yflip_tyy(lmax):
129 fl_yy = yflip_yy(lmax)
130 return np.array([fl_yy,-fl_yy])
132 def yflip_tyty(lmax):
133 fl_yy = yflip_yy(lmax)
134 nelem = fl_yy.shape[0]
135 fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
136 fl_tyty[0,:,0,:] = fl_yy
137 fl_tyty[1,:,1,:] = -fl_yy
138 return fl_tyty
140 def zflip_yy(lmax):
142 TODO doc
143 zflip = (-1)^(l+m)
145 my, ny = get_mn_y(lmax)
146 elems = np.zeros((len(my), len(my)), dtype=int)
147 b_in = 0
148 e_in = None
149 for l in range(1,lmax+1):
150 e_in = b_in + 2*l+1
151 elems[b_in:e_in,b_in:e_in] = np.diag([(-1)**i for i in range(e_in-b_in)])
152 b_in = e_in
153 return elems
155 def zflip_tyy(lmax):
156 fl_yy = zflip_yy(lmax)
157 return np.array([fl_yy,-fl_yy])
159 def zflip_tyty(lmax):
160 fl_yy = zflip_yy(lmax)
161 nelem = fl_yy.shape[0]
162 fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
163 fl_tyty[0,:,0,:] = fl_yy
164 fl_tyty[1,:,1,:] = -fl_yy
165 return fl_tyty
167 def zrotN_yy(N, lMax):
168 return WignerD_yy_fromvector(lMax, np.array([0,0,pi * (2/N)]))
170 def op_yy2tyty(yyop):
172 Broadcasts an yy operator to tyty operator without considering mirroring effects.
173 Good (maybe only) for rotations.
175 return np.moveaxis(np.eye(2)[:,:,ň,ň] * yyop, 2,1)
177 def zrotN_tyty(N, lMax):
178 return op_yy2tyty(zrotN_yy(N, lMax))
180 def parity_yy(lmax):
182 Parity operator (flip in x,y,z)
183 parity = (-1)**l
185 my, ny = get_mn_y(lmax)
186 return np.diag((-1)**ny)
188 # BTW parity (xyz-flip) is simply (-1)**ny
192 #----------------------------------------------------#
193 # Loading T-matrices from scuff-tmatrix output files #
194 #----------------------------------------------------#
196 # We don't really need this particular function anymore, but...
197 def _scuffTMatrixConvert_EM_01(EM):
198 #print(EM)
199 if (EM == b'E'):
200 return 1
201 elif (EM == b'M'):
202 return 0
203 else:
204 return None
206 def loadScuffTMatrices(fileName, normalisation = 1, version = 'old', freqscale = None, order = None):
208 TODO doc
210 version describes version of scuff-em. It is either 'old' or 'new'.
211 default order is ('N','M') with 'old' version, ('M','N') with 'new'
213 oldversion = (version == 'old')
214 μm = 1e-6
215 table = np.genfromtxt(fileName,
216 converters={1: _scuffTMatrixConvert_EM_01, 4: _scuffTMatrixConvert_EM_01} if oldversion else None,
217 skip_header = 0 if oldversion else 5,
218 usecols = None if oldversion else (0, 2, 3, 4, 6, 7, 8, 9, 10),
219 dtype=[('freq', '<f8'),
220 ('outc_type', '<i8'), ('outc_l', '<i8'), ('outc_m', '<i8'),
221 ('inc_type', '<i8'), ('inc_l', '<i8'), ('inc_m', '<i8'),
222 ('Treal', '<f8'), ('Timag', '<f8')]
223 if oldversion else
224 [('freq', '<f8'),
225 ('outc_l', '<i8'), ('outc_m', '<i8'), ('outc_type', '<i8'),
226 ('inc_l', '<i8'), ('inc_m', '<i8'), ('inc_type', '<i8'),
227 ('Treal', '<f8'), ('Timag', '<f8')]
229 lMax=np.max(table['outc_l'])
230 my,ny = get_mn_y(lMax)
231 nelem = len(ny)
232 TMatrix_sz = nelem**2 * 4 # number of rows for each frequency: nelem * nelem spherical incides, 2 * 2 E/M types
233 freqs_weirdunits = table['freq'][::TMatrix_sz].copy()
234 freqs = freqs_weirdunits * c / μm
235 # The iteration in the TMatrix file goes in this order (the last one iterates fastest, i.e. in the innermost loop):
236 # freq outc_l outc_m outc_type inc_l inc_m inc_type
237 # The l,m mapping is the same as is given by my get_mn_y function, so no need to touch that
238 TMatrices_tmp_real = table['Treal'].reshape(len(freqs), nelem, 2, nelem, 2)
239 TMatrices_tmp_imag = table['Timag'].reshape(len(freqs), nelem, 2, nelem, 2)
240 # There are two přoblems with the previous matrices. First, we want to have the
241 # type indices first, so we want a shape (len(freqs), 2, nelem, 2, nelem) as in the older code.
242 # Second, M-waves come first, so they have now 0-valued index, and E-waves have 1-valued index,
243 # which we want to be inverted.
244 TMatrices = np.zeros((len(freqs),2,nelem,2,nelem),dtype=complex)
245 reorder = (0,1)
246 if ((order == ('N', 'M')) and not oldversion): # reverse order for the new version
247 reorder = (1,0)
248 # TODO reverse order for the old version...
249 for inc_type in (0,1):
250 for outc_type in (0,1):
251 TMatrices[:,reorder[outc_type],:,reorder[inc_type],:] = TMatrices_tmp_real[:,:,outc_type,:,inc_type]+1j*TMatrices_tmp_imag[:,:,outc_type,:,inc_type]
252 # IMPORTANT: now we are going from Reid's/Kristensson's/Jackson's/whoseever convention to Taylor's convention
253 # TODO make these consistent with what is defined in qpms_types.h (implement all possibilities)
254 if normalisation == 1:
255 TMatrices[:,:,:,:,:] = TMatrices[:,:,:,:,:] * np.sqrt(ny*(ny+1))[ň,ň,ň,ň,:] / np.sqrt(ny*(ny+1))[ň,ň,:,ň,ň]
256 elif normalisation == 2: # Kristensson?
257 pass
258 if freqscale is not None:
259 freqs *= freqscale
260 freqs_weirdunits *= freqscale
261 return (TMatrices, freqs, freqs_weirdunits, lMax)
264 # misc tensor maniputalion
265 def apply_matrix_left(matrix, tensor, axis):
267 TODO doc
268 Apply square matrix to a given axis of a tensor, so that the result retains the shape
269 of the original tensor. The summation goes over the second index of the matrix and the
270 given tensor axis.
272 tmp = np.tensordot(matrix, tensor, axes=(-1,axis))
273 return np.moveaxis(tmp, 0, axis)
275 def apply_ndmatrix_left(matrix,tensor,axes):
277 Generalized apply_matrix_left, the matrix can have more (2N) abstract dimensions,
278 like M[i,j,k,...z,i,j,k,...,z]. N axes have to be specified in a tuple, corresponding
279 to the axes 0,1,...N-1 of the matrix
281 N = len(axes)
282 matrix = np.tensordot(matrix, tensor, axes=([-N+axn for axn in range(N)],axes))
283 matrix = np.moveaxis(matrix, range(N), axes)
284 return matrix
286 def apply_ndmatrix_right(tensor, matrix, axes):
288 Right-side analogue of apply_ndmatrix_lift.
289 Multiplies a tensor with a 2N-dimensional matrix, conserving the axis order.
291 N = len(axes)
292 matrix = np.tensordot(tensor, matrix, axes = (axes, range(N)))
293 matrix = np.moveaxis(matrix, [-N+axn for axn in range(N)], axes)
294 return matrix
296 def ndmatrix_Hconj(matrix):
298 For 2N-dimensional matrix, swap the first N and last N matrix, and complex conjugate.
300 twoN = len(matrix.shape)
301 if not twoN % 2 == 0:
302 raise ValueError("The matrix has to have even number of axes.")
303 N = twoN//2
304 matrix = np.moveaxis(matrix, range(N), range(N, 2*N))
305 return matrix.conj()
307 def symz_indexarrays(lMax, npart = 1):
309 Returns indices that are used for separating the in-plane E ('TE' in the photonic crystal
310 jargon) and perpendicular E ('TM' in the photonic crystal jargon) modes
311 in the z-mirror symmetric systems.
313 Parameters
314 ----------
315 lMax : int
316 The maximum degree cutoff for the T-matrix to which these indices will be applied.
318 npart : int
319 Number of particles (TODO better description)
321 Returns
322 -------
323 TEč, TMč : (npart * 2 * nelem)-shaped bool ndarray
324 Mask arrays corresponding to the 'TE' and 'TM' modes, respectively.
326 my, ny = get_mn_y(lMax)
327 nelem = len(my)
328 ž = np.arange(2*nelem) # single particle spherical wave indices
329 = ž // nelem # tž == 0: electric waves, tž == 1: magnetic waves
330 = my[ž%nelem]
331 = ny[ž%nelem]
332 TEž = ž[(++) % 2 == 0]
333 TMž = ž[(++) % 2 == 1]
335 č = np.arange(npart*2*nelem) # spherical wave indices for multiple particles (e.g. in a unit cell)
336 žč = č % (2* nelem)
337 =[žč]
338 =[žč]
339 =[žč]
340 TEč = č[(++) % 2 == 0]
341 TMč = č[(++) % 2 == 1]
342 return (TEč, TMč)
346 Processing T-matrix related operations from scripts
347 ===================================================
349 see also scripts_common.py
351 The unit cell is defined by a dict particle_specs and a list TMatrix_specs.
352 This particular module has to provide the T-matrices according to what is defined
353 in TMatrix_specs
355 TMatrix_specs is a list of tuples (lMax_override, TMatrix_path, ops)
356 where
357 - TMatrix_path is path to the file generated by scuff-tmatrix
358 - lMax_override is int or None; if it is int and less than the lMax found from the T-matrix file,
359 lMax_override is used as the order cutoff for the output T-matrix.
360 - ops is an iterable of tuples (optype, opargs) where currently optype can be 'sym' or 'tr'
361 for symmetrization operation or some other transformation.
364 #TODO FEATURE more basic group symmetry operations, cf. http://symmetry.otterbein.edu/tutorial/index.html
366 # This is for finite „fractional“ rotations along the z-axis (mCN means rotation of 2π*(m/N))
367 reCN = re.compile('(\d*)C(\d+)') # TODO STYLE make this regexp also accept the 3*C_5-type input, eqiv. to 3C5
369 def get_TMatrix_fromspec(tmatrix_spec):
370 ''' TODO doc
371 returns (TMatrices, freqs, lMax)
373 lMax_override, tmpath, ops = tmatrix_spec
374 TMatrices, freqs, freqs_weirdunits, lMax = loadScuffTMatrices(tmpath)
375 if lMax_override is not None and (lMax_override < lMax_orig):
376 nelem = get_nelem(lMax_override)
377 TMatrices = TMatrices[...,0:nelem,:,0:nelem]
378 lMax = lMax_override
380 for (optype, opargs) in ops:
381 if optype == 'sym':
382 mCN = reCN.match(opargs)
383 if opargs == 'C2' or opargs == 'C_2':
384 opmat = apply_matrix_left(yflip_yy(lMax), xflip_yy(lMax), -1)
385 TMatrices = (TMatrices + apply_matrix_left(opmat, apply_matrix_left(opmat, TMatrices, -3), -1))/2
386 elif opargs == 'σ_x' or opargs == 'σx':
387 opmat = xflip_tyty(lMax)
388 TMatrices = (TMatrices + apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1)))/2
389 elif opargs == 'σ_y' or opargs == 'σy':
390 opmat = yflip_tyty(lMax)
391 TMatrices = (TMatrices + apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1)))/2
392 elif opargs == 'σ_z' or opargs == 'σz':
393 opmat = zflip_tyty(lMax)
394 TMatrices = (TMatrices + apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1)))/2
395 elif mCN:
396 rotN = int(mCN.group(2)) # the possible m is ignored
397 TMatrix_contribs = np.empty((rotN,)+TMatrices.shape, dtype=np.complex_)
398 for i in range(rotN):
399 rotangle = 2*np.pi*i / rotN
400 rot = WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
401 rotinv = WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
402 TMatrix_contribs[i] = apply_matrix_left(rot, apply_matrix_left(rotinv, TMatrices, -3), -1)
403 TMatrices = np.sum(TMatrix_contribs, axis=0) / rotN
404 elif opargs == 'C_inf' or opargs == 'Cinf' or opargs == 'C_∞' or opargs == 'C∞':
405 raise ValueError('not implemented: ', opargs) # TODO FEATURE
406 else:
407 raise ValueError('not implemented: ', opargs)
408 elif optype == 'tr':
409 mCN = reCN.match(opargs)
410 if opargs == 'C2' or opargs == 'C_2':
411 opmat = apply_matrix_left(yflip_yy(lMax), xflip_yy(lMax), -1)
412 TMatrices = apply_matrix_left(opmat, apply_matrix_left(opmat, TMatrices, -3), -1)/2
413 elif opargs == 'σ_x' or opargs == 'σx':
414 opmat = xflip_tyty(lMax)
415 TMatrices = apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1))/2
416 elif opargs == 'σ_y' or opargs == 'σy':
417 opmat = yflip_tyty(lMax)
418 TMatrices = apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1))/2
419 elif opargs == 'σ_z' or opargs == 'σz':
420 opmat = zflip_tyty(lMax)
421 TMatrices = apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1))/2
422 elif mCN:
423 rotN = int(mCN.group(2))
424 power = int(mCN.group(1)) if mCN.group(1) else 1
425 rotangle = 2*np.pi*power / rotN
426 rot = WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
427 rotinv = WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
428 TMatrices = apply_matrix_left(rot, apply_matrix_left(rotinv, TMatrices, -3), -1)
429 else:
430 raise ValueError('not implemented: ', opargs)
431 else:
432 raise ValueError('not implemented: ', optype)
433 return (TMatrices, freqs, lMax)
435 class TMatrix(TMatrixSpec):
437 TODO doc
439 TODO support for different/multiple interpolators
441 def __init__(self, tmatrix_spec):
442 from scipy import interpolate
443 #self.specification = tmatrix_spec
444 self.lMax_override = tmatrix_spec.lMax_override
445 self.tmatrix_path = tmatrix_spec.tmatrix_path
446 self.ops = tmatrix_spec.ops
447 self.tmdata, self.freqs, self.lMax = get_TMatrix_fromspec(tmatrix_spec)
448 self.nelem = get_nelem(self.lMax)
449 #self._interpolators = dict()
450 self.default_interpolator = interpolate.interp1d(self.freqs,
451 self.tmdata, axis=0, kind='linear', fill_value='extrapolate')
452 self.normalization = NormalizationT.TAYLOR # TODO others are not supported by the loading functions
454 def atfreq(self, freq):
455 freqarray = np.array(freq, copy=False)
456 if freqarray.shape: # not just a scalar
457 tm_interp = np.empty(freqarray.shape + (2, self.nelem, 2, self.nelem), dtype=np.complex_)
458 for i in np.ndindex(freqarray.shape):
459 tm_interp[i] = self.default_interpolator(freqarray[i])
460 return tm_interp
461 else: # scalar
462 return self.default_interpolator(freq)
464 __getitem__ = atfreq # might be changed later, use atfreq to be sure
466 def perform_tmspecs(tmspecs):
467 """Takes a sequence of TMatrixSpec or TMatrix instances and returns
468 a list of corresponding TMatrix instances"""
469 return [(tmspec if hasattr(tmspec, "tmdata") else TMatrix(tmspec))
470 for tmspec in tmspecs]