1 // c99 -o ew_gen_kin -Wall -I ../.. -I ../../amos/ -O2 -ggdb -DQPMS_VECTORS_NICE_TRANSFORMATIONS -DLATTICESUMS32 2dlattice_ewald.c ../translations.c ../ewald.c ../ewaldsf.c ../gaunt.c ../lattices2d.c ../latticegens.c ../bessel.c -lgsl -lm -lblas ../../amos/libamos.a -lgfortran ../error.c
7 #include "transop_ewald_cmdline.h"
14 #include <qpms/translations.h>
15 #include <qpms/lattices.h>
16 #include <qpms/qpms_error.h>
17 #include <gsl/gsl_const_mksa.h>
18 #include <qpms/parsing.h>
21 // Command line args parsing progress:
23 // base-vector DONE 2D
24 // error-estimate-output
30 // refractive-index DONE
34 // omegafile DONE, TODO unit conversion
35 // omega DONE, TODO unit conversion
39 #define MAXKCOUNT 200 // 200 // serves as klist default buffer size
40 //#define KMINCOEFF 0.783 //0.9783 // 0.783 // not used if KSTDIN defined
41 //#define KMAXCOEFF 1.217 //1.0217 // 1.217 // not used if KSTDIN defined
45 const double s3
= 1.732050807568877293527446341505872366942805253810380628055;
47 //const qpms_y_t lMax = 3;
48 //const double REFINDEX = 1.52;
49 static const double SCUFF_OMEGAUNIT
= 3e14
;
50 static const double hbar
= GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR
;
51 static const double eV
= GSL_CONST_MKSA_ELECTRON_CHARGE
;
52 static const double c0
= GSL_CONST_MKSA_SPEED_OF_LIGHT
;
54 int main (int argc
, char **argv
) {
55 struct gengetopt_args_info args_info
;
57 int retval
= cmdline_parser(argc
, argv
, *args_info
);
58 if (retval
) return retval
;
60 // Parse lattice vectors
61 const int latdim
= args_info
.base_vector_given
;
62 QPMS_ENSURE(latdim
== 2,
63 "Sorry, only 2d lattices supported, but %d basis vectors were given\n",
66 for (int i
= 0; i
< latdim
; ++i
) {
67 const int gotnumbers
= qpms_parse_ndoubles(
68 (*double) &(b
[i
].x
), latdim
,
69 args_info
.base_vector_arg
[i
]);
70 QPMS_ENSURE(latdim
== gotnumbers
,
71 "%d. base vector contained %d numbers, expected %d\n",
72 i
, gotnumbers
, latdim
);
75 // N.B. this is 2D specific, TODO generalize when Nd sum supported
76 const double unitcell_area
= l2d_unitcell_area(b
[0], b
[1]);
77 l2d_reduceBasis(b
[0], b
[1], b
, b
+1);
79 const qpms_l_t lMax
= args_info
.lMax_arg
;
80 QPMS_ENSURE(lMax
> 0, "invalid value of lMax: %d", (int)lMax
);
82 const double refindex
= args_info
.refractive_index_arg
;
84 // Parse all particle positions
85 const int npart
= args_info
.particle_given
;
87 cart2_t part_positions
[npart
];
88 if(!args_info
.particle_given
)
89 part_positions
[0].x
= part_positions
[0].y
= 0;
90 else for (int i
= 0; i
< npart
; ++i
) {
91 const int gotnumbers
= qpms_parse_ndoubles(
92 (*double) &(part_positions
[i
].x
), latdim
,
93 args_info
.particle_arg
[i
]);
94 QPMS_ENSURE(latdim
== gotnumbers
,
95 "%d. particle position contained %d coordinates, expected %d\n",
96 i
, gotnumbers
, latdim
);
99 QPMS_ENSURE(!args_info
.k_omega_meshgrid_mode_counter
!=
100 !args_info
.k_omega_points_mode_counter
,
101 "THIS IS A BUG. Only one mode ((k, ω) tuples, or k, ω lists) allowed.");
102 // ===================== k, ω grid mode =====================
103 if (args_info
.k_omega_meshgrid_mode_counter
) {
104 size_t omegacount
= 0;
105 double *omegalist
= NULL
;
106 for (int i
= 0; i
< args_info
.omega_given
; ++i
) // freqs from command line
107 omegacount
= qpms_parse_doubles(&omegalist
, omegacount
,
108 args_info
.omega_arg
[i
]);
109 for (int i
= 0; i
< args_info
.omegafile_given
; ++i
) // freqs from file
110 omegacount
= qpms_parse_doubles_fromfile(&omegalist
, omegacount
,
111 args_info
.omegafile_arg
[i
]);
114 double *kclist
= NULL
;
115 for (int i
= 0; i
< args_info
.k_given
; ++i
) {// ks from command line
116 kc_count
= qpms_parse_doubles(&kclist
, kc_count
, args_info
.k_arg
[i
]);
117 QPMS_ENSURE(0 == kc_count
% latdim
,
118 "Provided number of k components (cum. %zd) not compatible with the "
119 "lattice dimension (%d): %s", kc_count
, latdim
, args_info
.k_arg
[i
]);
121 for (int i
= 0; i
< args_info
.kfile_given
; ++i
) {//ks from file
122 kc_count
= qpms_parse_doubles_fromfile(&kclist
, kc_count
,
123 args_info
.kfile_arg
[i
]);
124 QPMS_ENSURE(0 == kc_count
% latdim
,
125 "Provided number of k components (cum. %zd) not compatible with the "
126 "lattice dimension (%d) in file %s", kc_count
, latdim
,
127 args_info
.kfile_arg
[i
]);
129 // 2D specific, TODO generalize when Nd supported
130 cart2_t klist
[kc_count
/2];
131 for (size_t i
= 0; i
< kc_count
/2; ++i
)
132 klist
[i
] = {kclist
[2*i
], kclist
[2*i
+1]};
137 } else if (args_info
.k_omega_points_mode_counter
) { // explic. point mode
142 const double scuffomega
= strtod(argv
[7], NULL
);
145 size_t klist_capacity
= MAXKCOUNT
;
146 cart2_t
*klist
= malloc(sizeof(cart2_t
) * klist_capacity
);
147 while (scanf("%lf %lf", &(klist
[kcount
].x
), &(klist
[kcount
].y
)) == 2) {
149 if(kcount
>= klist_capacity
) {
151 klist
= realloc(klist
, sizeof(cart2_t
) * klist_capacity
);
152 if (klist
== NULL
) abort();
157 cart2_t klist
[MAXKCOUNT
];
158 int kcount
= MAXKCOUNT
;
159 for (int i
= 0; i
< kcount
; ++i
) { // TODO this should depend on orientation...
161 klist
[i
].y
= (4.* M_PI
/ 3. / LATTICE_A
) * (KMINCOEFF
+ (KMAXCOEFF
-KMINCOEFF
)/kcount
*i
);
166 // TODO more clever way of determining the cutoff
167 const double a
= sqrt(unitcell_area
); // N.B. different meaning than before
168 const double maxR
= 25 * a
;
169 const double maxK
= 25 * 2*M_PI
/a
;
171 qpms_trans_calculator
*c
= qpms_trans_calculator_init(lMax
, QPMS_NORMALISATION_POWER_CS
); // vai POWER_CS?
173 FILE *out
, *ferr
= NULL
;
174 if (args_info
.error_estimate_output_given
) {
175 if (!strcmp(args_info
.error_estimate_output_arg
, "-"))
178 ferr
= fopen(args_info
.error_estimate_output_arg
, "w");
179 QPMS_ENSURE(ferr
, "Could not open error output file %s",
180 args_info
.error_estimate_output_arg
);
181 if (args_info
.output_given
&& !strcmp(args_info
.output_arg
, "-")
182 && args_info
.output_arg
[0]) {
183 out
= fopen(args_info
.output_arg
, "w");
184 QPMS_ENSURE(out
, "Could not open output file %s", args_info
.output_arg
);
189 const double omega
= scuffomega
* SCUFF_OMEGAUNIT
;
190 const double EeV
= omega
* hbar
/ eV
;
191 const double k0_vac
= omega
/ c0
;
192 const double k0_eff
= k0_vac
* refindex
;
193 const double eta
= 5.224/a
; // FIXME quite arbitrary, but this one should work
195 // indices : destpart (A/B-particle), srcpart (A/B-particle), coeff type (A/B- type), desty, srcy
196 complex double W
[npart
][npart
][2][c
->nelem
][c
->nelem
];
197 double Werr
[npart
][npart
][npart
][c
->nelem
][c
->nelem
];
199 for (size_t ki
= 0; ki
< kcount
; ++ki
) {
200 cart2_t beta
= klist
[ki
];
201 memset(W
, 0, sizeof(W
));
203 memset(Werr
, 0, sizeof(Werr
));
205 const ptrdiff_t deststride
= &(W
[0][0][0][1][0]) - &(W
[0][0][0][0][0]);
206 const ptrdiff_t srcstride
= &(W
[0][0][0][0][1]) - &(W
[0][0][0][0][0]);
207 assert (srcstride
== 1 && deststride
== c
->nelem
);
209 for (size_t ps
= 0; ps
< npart
; ++ps
) for (size_t pd
= 0; pd
< npart
; ++pd
)
210 // TODO optimize (calculate only once for each particle shift; especially if pd == ps)
211 qpms_trans_calculator_get_AB_arrays_e32(c
,
212 &(W
[pd
][ps
][0][0][0]), ferr
? &(Werr
[pd
][ps
][0][0][0]) : NULL
, // Adest, Aerr,
213 &(W
[pd
][ps
][1][0][0]), ferr
? &(Werr
[pd
][ps
][1][0][0]) : NULL
, // Bdest, Berr,
214 deststride
, srcstride
,
217 cart2_substract(part_positions
[pd
], part_positions
[ps
]), // CHECKSIGN
220 // TODO CHECK B<-A vs. A<-B relation
222 fprintf(out
, "%.16g\t%.16g\t%.16g\t%.16g\t%.16g\t",
223 scuffomega
, EeV
, k0_eff
, beta
.x
, beta
.y
);
224 if(ferr
) fprintf(ferr
, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
225 scuffomega
, EeV
, k0_eff
, beta
.x
, beta
.y
);
226 size_t totalelems
= sizeof(W
) / sizeof(complex double);
227 for (size_t i
= 0; i
< totalelems
; ++i
) {
228 complex double w
= ((complex double *)W
)[i
];
229 fprintf(out
, "%.16g\t%.16g\t", creal(w
), cimag(w
));
231 fprintf(ferr
, "%.3g\t", ((double *)Werr
)[i
]);
234 if(ferr
) fputc('\n', ferr
);
239 if(ferr
) fclose(ferr
);
245 qpms_trans_calculator_free(c
);