1 Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
2 Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(2,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 2 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
4 -5 c x + I k0 x c x 5 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8
5 -(E (-1 + E ) (15 (-43692253605 + 3528645120 k x - 590413824 k x + 352321536 k x + 2147483648 k x ) Cos[-- + k x] + 4 Sqrt[2] k x (21606059475 - 2421619200 k x + 681246720 k x - 1761607680 k x + 2147483648 k x ) (Cos[k x] + Sin[k x])))
7 Integrate::idiv: Integral of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- does not converge on {0, Infinity}.
9 8589934592 k k0 Sqrt[2 Pi] x
10 Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
11 Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5]