Disable "hard" examples in CI
[qpms.git] / notes / ewald-calculations.lyx
blob28b5df60db4eb9e62385f5d6e0f5023c0d92b78a
1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
2 \lyxformat 474
3 \begin_document
4 \begin_header
5 \textclass article
6 \use_default_options true
7 \maintain_unincluded_children false
8 \language finnish
9 \language_package default
10 \inputencoding auto
11 \fontencoding global
12 \font_roman TeX Gyre Pagella
13 \font_sans default
14 \font_typewriter default
15 \font_math auto
16 \font_default_family default
17 \use_non_tex_fonts true
18 \font_sc false
19 \font_osf true
20 \font_sf_scale 100
21 \font_tt_scale 100
22 \graphics default
23 \default_output_format pdf4
24 \output_sync 0
25 \bibtex_command default
26 \index_command default
27 \paperfontsize 10
28 \spacing single
29 \use_hyperref true
30 \pdf_title "Sähköpajan päiväkirja"
31 \pdf_author "Marek Nečada"
32 \pdf_bookmarks true
33 \pdf_bookmarksnumbered false
34 \pdf_bookmarksopen false
35 \pdf_bookmarksopenlevel 1
36 \pdf_breaklinks false
37 \pdf_pdfborder false
38 \pdf_colorlinks false
39 \pdf_backref false
40 \pdf_pdfusetitle true
41 \papersize a3paper
42 \use_geometry true
43 \use_package amsmath 1
44 \use_package amssymb 1
45 \use_package cancel 1
46 \use_package esint 1
47 \use_package mathdots 1
48 \use_package mathtools 1
49 \use_package mhchem 1
50 \use_package stackrel 1
51 \use_package stmaryrd 1
52 \use_package undertilde 1
53 \cite_engine basic
54 \cite_engine_type default
55 \biblio_style plain
56 \use_bibtopic false
57 \use_indices false
58 \paperorientation portrait
59 \suppress_date false
60 \justification true
61 \use_refstyle 1
62 \index Index
63 \shortcut idx
64 \color #008000
65 \end_index
66 \leftmargin 1cm
67 \topmargin 5mm
68 \rightmargin 1cm
69 \bottommargin 1cm
70 \secnumdepth 3
71 \tocdepth 3
72 \paragraph_separation indent
73 \paragraph_indentation default
74 \quotes_language swedish
75 \papercolumns 1
76 \papersides 1
77 \paperpagestyle default
78 \tracking_changes false
79 \output_changes false
80 \html_math_output 0
81 \html_css_as_file 0
82 \html_be_strict false
83 \end_header
85 \begin_body
87 \begin_layout Standard
89 \lang english
90 \begin_inset FormulaMacro
91 \newcommand{\uoft}[1]{\mathfrak{F}#1}
92 \end_inset
95 \begin_inset FormulaMacro
96 \newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
97 \end_inset
100 \begin_inset FormulaMacro
101 \newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
102 \end_inset
105 \begin_inset FormulaMacro
106 \newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
107 \end_inset
110 \begin_inset FormulaMacro
111 \newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
112 \end_inset
115 \begin_inset FormulaMacro
116 \newcommand{\vect}[1]{\mathbf{#1}}
117 \end_inset
120 \begin_inset FormulaMacro
121 \newcommand{\ud}{\mathrm{d}}
122 \end_inset
125 \begin_inset FormulaMacro
126 \newcommand{\basis}[1]{\mathfrak{#1}}
127 \end_inset
130 \begin_inset FormulaMacro
131 \newcommand{\dc}[1]{Ш_{#1}}
132 \end_inset
135 \begin_inset FormulaMacro
136 \newcommand{\rec}[1]{#1^{-1}}
137 \end_inset
140 \begin_inset FormulaMacro
141 \newcommand{\recb}[1]{#1^{\widehat{-1}}}
142 \end_inset
145 \begin_inset FormulaMacro
146 \newcommand{\ints}{\mathbb{Z}}
147 \end_inset
150 \begin_inset FormulaMacro
151 \newcommand{\nats}{\mathbb{N}}
152 \end_inset
155 \begin_inset FormulaMacro
156 \newcommand{\reals}{\mathbb{R}}
157 \end_inset
160 \begin_inset FormulaMacro
161 \newcommand{\ush}[2]{Y_{#1,#2}}
162 \end_inset
165 \begin_inset FormulaMacro
166 \newcommand{\hgfr}{\mathbf{F}}
167 \end_inset
170 \begin_inset FormulaMacro
171 \newcommand{\ph}{\mathrm{ph}}
172 \end_inset
175 \begin_inset FormulaMacro
176 \newcommand{\kor}[1]{\underline{#1}}
177 \end_inset
180 \begin_inset FormulaMacro
181 \newcommand{\koru}[1]{\overline{#1}}
182 \end_inset
185 \begin_inset FormulaMacro
186 \newcommand{\hgf}{F}
187 \end_inset
190 \end_layout
192 \begin_layout Standard
194 \lang english
195 \begin_inset Formula 
196 \begin{eqnarray*}
197 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
198 \mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1\\
199 \end{eqnarray*}
201 \end_inset
204 \end_layout
206 \begin_layout Standard
208 \lang english
209 \begin_inset Formula 
210 \begin{eqnarray*}
211 \mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
212 \mbox{OK(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\
213  &  & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
214 \frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\
216 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
217  & - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
218 \frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\
220 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
221 \mbox{OK20} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\
222  &  & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c}
223 \frac{2-q+n}{2},\frac{2-q-n}{2}\\
225 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
226  & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c}
227 \frac{3-q+n}{2},\frac{3-q-n}{2}\\
229 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
230 \mbox{(D15.2.2)OK3a,b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\
231  &  & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\
232  & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\
233 \mbox{OK4a} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
234  &  & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\
235  & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\
236 \mbox{OK4b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
237  &  & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\
238  & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\
239 \mbox{OK4c} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\
240  &  & \times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
241  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\kor{\left(\sigma c-ik_{0}\right)^{2s}}c_{q,n,s}-\frac{\left(\sigma c-ik_{0}\right)^{2s+1}}{k}č_{q,n,s}\right)\\
242 \mbox{(binom.)} & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
243 \mbox{(conds?)} & = & \frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
244 \kappa
245 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
246 \kappa
247 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
248 \end{eqnarray*}
250 \end_inset
252 now the Stirling number of the 2nd kind 
253 \begin_inset Formula $\begin{Bmatrix}t\\
254 \kappa
255 \end{Bmatrix}=0$
256 \end_inset
258  if 
259 \begin_inset Formula $\kappa>t$
260 \end_inset
263 \end_layout
265 \begin_layout Standard
267 \lang english
268 What about the gamma fn on the left? Using DLMF 5.5.5, which says 
269 \begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$
270 \end_inset
272  we have 
273 \begin_inset Formula 
275 \text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
278 \end_inset
281 \size footnotesize
283 \begin_inset Formula 
284 \begin{eqnarray*}
285 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
286 \kappa
287 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
288 \kappa
289 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
290  & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
291 \kappa
292 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
293 \kappa
294 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
295 \mbox{(D5.2.5)} & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
296 \kappa
297 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}+s\right)\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
298 \kappa
299 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
300 \end{eqnarray*}
302 \end_inset
305 \size default
306 The two terms have to be treated fifferently depending on whether q
307 \begin_inset Formula $q+n$
308 \end_inset
310  is even or odd.
312 \end_layout
314 \begin_layout Standard
316 \lang english
317 First, assume that 
318 \begin_inset Formula $q+n$
319 \end_inset
321  is even, so the left term has gamma functions and pochhammer symbols with
322  integer arguments, while the right one has half-integer arguments.
323  As 
324 \begin_inset Formula $n$
325 \end_inset
327  is non-negative and 
328 \begin_inset Formula $q$
329 \end_inset
331  is positive, 
332 \begin_inset Formula $\frac{q+n}{2}$
333 \end_inset
335  is positive, and the Pochhammer symbol 
336 \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
337 \end_inset
339  if 
340 \begin_inset Formula $s\ge\frac{q+n}{2}$
341 \end_inset
343 , which transforms the sum over 
344 \begin_inset Formula $s$
345 \end_inset
347  to a finite sum for the left term.
348  However, there still remain divergent terms if 
349 \begin_inset Formula $\frac{2-q+n}{2}+s\le0$
350 \end_inset
352  (let's handle this later; maybe D15.8.6–7 may be then be useful)! Now we
353  need to perform some transformations of variables to make the other sum
354  finite as well
355 \end_layout
357 \begin_layout Standard
359 \lang english
360 Pár kroků zpět:
361 \begin_inset Formula 
362 \begin{eqnarray*}
363 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
364  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
365 \end{eqnarray*}
367 \end_inset
370 \end_layout
372 \begin_layout Standard
374 \lang english
375 If 
376 \begin_inset Formula $q+n$
377 \end_inset
379  is even and 
380 \begin_inset Formula $2-q+n\le0$
381 \end_inset
384 \begin_inset Formula 
385 \begin{eqnarray*}
386 \mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\hgfr}\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
387 \mbox{\ensuremath{\mbox{OK}}(D15.1.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}\koru{\text{Γ}(1+n)}}\koru{\hgf}\left(\frac{2-q+n}{2},\kor{\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}\right)\\
388 \mbox{(D15.8.6)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}\text{Γ}(1+n)}\koru{\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}}\hgf\left(\begin{array}{c}
389 \frac{2-q+n}{2},\koru{\kor{1-\left(1+n\right)+\frac{2-q+n}{2}}}\\
390 \koru{\kor{1-\frac{3-q+n}{2}+\frac{2-q+n}{2}}}
391 \end{array};\koru{\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}}\right)\\
392 \mbox{NOTOK} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{k^{q-2}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\koru{\frac{3}{2}\left(2-q+n\right)}}\text{Γ}(1+n)}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
393 \frac{2-q+n}{2},\koru{\frac{2-q-n}{2}}\\
394 \koru{1/2}
395 \end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\\
396 \mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}}\\
397 \mbox{(D5.5.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{3-q+n}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
398 \mbox{(D5.2.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\koru{2^{1-q}}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
399  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
400  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
401 \end{eqnarray*}
403 \end_inset
405 now 
406 \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
407 \end_inset
409  whenever 
410 \begin_inset Formula $s\ge\frac{q+n}{2}$
411 \end_inset
413  and 
414 \begin_inset Formula $\text{Γ}\left(\frac{2-q+n}{2}+s\right)$
415 \end_inset
417  is singular whenever 
418 \begin_inset Formula $s\le-\frac{2-q+n}{2}$
419 \end_inset
421 , so we are no less fucked than before.
422  Maybe let's try the other variable transformation.
423  Or what about (D15.8.27)?
424 \size footnotesize
426 \begin_inset Formula 
427 \begin{eqnarray}
428 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
429 \frac{2-q+n}{2},\frac{2-q-n}{2}\\
431 \end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\nonumber \\
432 \mbox{(D15.8.27)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\frac{\kor{Γ\left(\frac{3-q+n}{2}\right)}Γ\left(\frac{3-q-n}{2}\right)}{2Γ\left(\frac{1}{2}\right)Γ\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
433 2-q+n,2-q-n\\
434 2-q+\frac{1}{2}
435 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
436 2-q+n,2-q-n\\
437 2-q+\frac{1}{2}
438 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\nonumber \\
439  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\text{Γ}\koru{\left(\frac{3-q+n}{2}-\frac{2-q+n}{2}\right)}}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\kor{\text{Γ}\left(\frac{1}{2}\right)}\text{Γ}\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
440 2-q+n,2-q-n\\
441 2-q+\frac{1}{2}
442 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
443 2-q+n,2-q-n\\
444 2-q+\frac{1}{2}
445 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)\nonumber \\
446  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\kor{\left(\hgf\left(\begin{array}{c}
447 2-q+n,2-q-n\\
448 2-q+\frac{1}{2}
449 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
450 2-q+n,2-q-n\\
451 2-q+\frac{1}{2}
452 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\nonumber \\
453 \mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\koru{\sum_{s=0}^{\infty}\left(\frac{\left(2-q+n\right)_{s}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\kor{\left(\left(\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)^{s}+\left(\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)^{s}\right)}\right)}\nonumber \\
454 \mbox{(binom)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\kor{\left(2-q+n\right)_{s}}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\koru{\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)}\nonumber \\
455  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\kor{\left(1+n\right)_{-\frac{2-q+n}{2}}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(2-q+n+s\right)}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
456  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}}\frac{\koru{\text{Γ}\left(1+n\right)}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\koru{\text{Γ}\left(\frac{q+n}{2}\right)}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
457  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{Γ\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}}\koru{\kor{\left(\sigma c-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)}}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
458 (bionm) & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\koru{\sum_{w=0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\label{eq:ugliness withous singularities}\\
459  & = & \koru{\kappa!\left(-1\right)^{\kappa}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kor 0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kor 0}^{s}\binom{\kor s}{\kor r}\left(ik\right)^{-r}\sum_{w=\kor 0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{\kor w}\koru{\kor{\begin{Bmatrix}w\\
460 \kappa
461 \end{Bmatrix}}}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
462  & = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\koru{\kappa}}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\koru{\kappa}}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\koru{\kappa}}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
463 \kappa
464 \end{Bmatrix}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
465  & = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kappa}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kappa}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\kappa}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
466 \kappa
467 \end{Bmatrix}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber 
468 \end{eqnarray}
470 \end_inset
473 \end_layout
475 \begin_layout Standard
477 \lang english
478 The previous things are valid only if 
479 \begin_inset Formula $q$
480 \end_inset
482  has a small non-integer part, 
483 \begin_inset Formula $q=q'+\varepsilon$
484 \end_inset
487  They might still play a role in the series (especially in the infinite
488  ones) when taking the limit 
489 \begin_inset Formula $\varepsilon\to0$
490 \end_inset
493  However, we got rid of the singularities in 
494 \begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
495 \end_inset
497  if 
498 \begin_inset Formula $\kappa$
499 \end_inset
501  is large enough.
502 \end_layout
504 \begin_layout Standard
506 \lang english
507 and we get same shit as before due to the singular 
508 \begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
509 \end_inset
512  However, 
513 \begin_inset Formula 
514 \begin{eqnarray*}
515 (...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\kor{\left(\left(-1\right)^{r}+1\right)}\\
516  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{\koru{floor(s/2)}}\binom{s}{\koru{2r}}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{\koru{2r}}2^{\koru{2r}-s}\left(\left(-1\right)^{\koru{2r}}+1\right)
517 \end{eqnarray*}
519 \end_inset
522 \begin_inset Formula 
523 \begin{eqnarray*}
524 (...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
525 binom & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}\sum_{b=0}^{r}\binom{r}{b}\sigma^{b}c^{b}\left(-ik_{0}\right)^{r-b}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
526  & =
527 \end{eqnarray*}
529 \end_inset
532 \end_layout
534 \begin_layout Standard
536 \lang english
537 aaah.
538  Let's assume that 
539 \begin_inset Formula $q$
540 \end_inset
542  is not exactly
543 \begin_inset Formula 
544 \begin{eqnarray*}
545  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
546  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}k^{-2s}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
547 \end{eqnarray*}
549 \end_inset
551 zpět
552 \end_layout
554 \begin_layout Standard
556 \lang english
557 \begin_inset Formula 
558 \begin{eqnarray*}
559  & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
560 \kappa
561 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
562 \kappa
563 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
564  & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
565 \kappa
566 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
567 \kappa
568 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
569 \end{eqnarray*}
571 \end_inset
574 \end_layout
576 \begin_layout Paragraph*
578 \lang english
579 Special case 
580 \begin_inset Formula $n=0,q=2$
581 \end_inset
584 \end_layout
586 \begin_layout Standard
588 \lang english
589 Take 
590 \begin_inset CommandInset ref
591 LatexCommand eqref
592 reference "eq:ugliness withous singularities"
594 \end_inset
597 \begin_inset Formula 
598 \begin{eqnarray*}
599 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
600 \pht 0{s_{2+\epsilon,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1+n)}{2^{n}k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(s-\epsilon\right)\left(-\epsilon\right)_{s}}{\left(\epsilon+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=0}^{\infty}\binom{r+\frac{3}{2}\epsilon}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r+\frac{3}{2}\epsilon-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)
601 \end{eqnarray*}
603 \end_inset
605 There is one problematic factor on the previous line, 
606 \begin_inset Formula $\Gamma(s-\epsilon)$
607 \end_inset
609  for 
610 \begin_inset Formula $s=0$
611 \end_inset
613 ; the other elementary summands are finite in the limit 
614 \begin_inset Formula $\epsilon\to0$
615 \end_inset
618  Let us analyse the problematic term.
619 \begin_inset Formula 
620 \begin{eqnarray*}
621 \mbox{problem} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1)}{k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\frac{\text{Γ}\left(-\epsilon\right)\kor{\left(-\epsilon\right)_{0}}}{\kor{\left(\epsilon+\frac{1}{2}\right)_{0}0!}}\kor{\sum_{r=0}^{0}\binom{0}{r}\left(ik\right)^{-r}}\sum_{w=0}^{\infty}\binom{\kor r+\frac{3}{2}\epsilon}{w}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\kor r+\frac{3}{2}\epsilon-w}2^{\kor r-0}\kor{\left(\left(-1\right)^{r}+1\right)}\\
622  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1)}{k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\text{Γ}\left(-\epsilon\right)\sum_{w=0}^{\infty}\kor{\binom{\frac{3}{2}\epsilon}{w}}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\frac{3}{2}\epsilon-w}2\\
623  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1)}{k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\text{Γ}\left(-\epsilon\right)\sum_{w=0}^{\infty}\frac{\Gamma\left(1+\frac{3}{2}\epsilon\right)}{\Gamma\left(w+1\right)\Gamma\left(1+\frac{3}{2}\epsilon-w\right)}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\frac{3}{2}\epsilon-w}2.
624 \end{eqnarray*}
626 \end_inset
628 In the last sum, the divisor 
629 \begin_inset Formula $\Gamma\left(1+\frac{3}{2}\epsilon-w\right)$
630 \end_inset
632  counters the 
633 \begin_inset Formula $\epsilon\to0$
634 \end_inset
636  divergence for all summands except for the case 
637 \begin_inset Formula $w=0$
638 \end_inset
641  However, that divergence gets canceled by the 
642 \begin_inset Formula $\kappa$
643 \end_inset
645 -regularisation,
646 \begin_inset Formula 
648 \mbox{problem}=\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1+n)}{2^{n}k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\kor{\text{Γ}\left(-\epsilon\right)}\sum_{w=\koru{\kappa}}^{\infty}\frac{\Gamma\left(1+\frac{3}{2}\epsilon\right)}{\Gamma\left(w+1\right)\kor{\Gamma\left(1+\frac{3}{2}\epsilon-w\right)}}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\frac{3}{2}\epsilon-w}2.
651 \end_inset
653 6amma function has simple poles for non-positive integer arguments with
655 \begin_inset Formula $\mathrm{Res}\left(Γ,-n\right)=\left(-1\right)^{n}/n!$
656 \end_inset
658 , so writing the Laurent series for the underlined factors gives
659 \begin_inset Formula 
661 \lim_{\epsilon\to0}\frac{Γ\left(-\epsilon\right)}{Γ\left(1+\frac{3}{2}\epsilon-w\right)}=\lim_{\epsilon\to0}\frac{\left(-\epsilon\right)^{-1}+\sum_{n=0}^{\infty}\dots\epsilon^{n}}{\left(-1\right)^{w-1}\left(\frac{3}{2}\epsilon\left(w-1\right)!\right)^{-1}+\sum_{n=0}^{\infty}\dots\epsilon^{n}}=\lim_{\epsilon\to0}\frac{-1+\epsilon\sum_{n=0}^{\infty}\dots\epsilon^{n}}{\left(-1\right)^{w-1}\frac{2}{3}/\left(w-1\right)!+\epsilon\sum_{n=0}^{\infty}\dots\epsilon^{n}}=\frac{3}{2}\left(-1\right)^{w}\left(w-1\right)!
664 \end_inset
666  and the rest is obviously continuous with regard to 
667 \begin_inset Formula $\epsilon$
668 \end_inset
671  Therefore,
672 \begin_inset Formula 
673 \begin{eqnarray*}
674 \lim_{\epsilon\to0}\mbox{problem} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\sum_{w=\kappa}^{\infty}\frac{1}{\kor{\Gamma\left(w+1\right)}}\frac{3}{2}\left(-1\right)^{w}\kor{\left(w-1\right)!}\sigma^{w}c^{w}\left(-ik_{0}\right)^{-w}\\
675  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{3}{2}\sum_{w=\kappa}^{\infty}\frac{\left(-1\right)^{w}\sigma^{w}c^{w}\left(-ik_{0}\right)^{-w}}{\koru w}\\
676  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{3}{2}\sum_{w=\kappa}^{\infty}\frac{1}{w}\left(-i\frac{\sigma c}{k_{0}}\right)^{w}
677 \end{eqnarray*}
679 \end_inset
681 and if 
682 \begin_inset Formula $\left|\sigma c/k_{0}\right|<1$
683 \end_inset
685 , the last expression is (almost) the well known power series 
686 \begin_inset Formula $\log\left(1+x\right)=-\sum_{n=1}^{\infty}\left(-x\right)^{n}/n$
687 \end_inset
689 , so
690 \begin_inset Formula 
692 \lim_{\epsilon\to0}\mbox{problem}=-\kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{3}{2}\left[\log\left(1+i\frac{\sigma c}{k_{0}}\right)+\sum_{w=1}^{\kappa-1}\frac{1}{w}\kor{\left(-i\frac{\sigma c}{k_{0}}\right)^{w}}\right]
695 \end_inset
697 and the 
698 \begin_inset Formula $\kappa$
699 \end_inset
701 -regularisation makes the last term identically zero, providing even simpler
702  expression
703 \begin_inset Formula 
705 \lim_{\epsilon\to0}\mbox{problem}=-\frac{3}{2}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\log\left(1+i\frac{\sigma c}{k_{0}}\right).
708 \end_inset
711 \emph on
712 What does this mean w.r.t.
713  the limit 
714 \begin_inset Formula $k\to\infty$
715 \end_inset
718 \emph default
719  Back to the whole Bessel transform,
720 \begin_inset Formula 
721 \begin{eqnarray*}
722 \pht 0{s_{2+\epsilon,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & - & \mbox{problem}\\
723  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1+n)}{2^{n}k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\sum_{s=1}^{\infty}\frac{\text{Γ}\left(s-\epsilon\right)\left(-\epsilon\right)_{s}}{\left(\epsilon+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=0}^{\infty}\binom{r+\frac{3}{2}\epsilon}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r+\frac{3}{2}\epsilon-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)
724 \end{eqnarray*}
726 \end_inset
729 \end_layout
731 \begin_layout Subparagraph*
733 \lang english
734 Trash
735 \end_layout
737 \begin_layout Standard
739 \lang english
740 \begin_inset Note Note
741 status open
743 \begin_layout Plain Layout
745 \lang english
746 Now if 
747 \begin_inset Formula $\frac{2-q+n}{2}$
748 \end_inset
750  or 
751 \begin_inset Formula $\frac{3-q+n}{2}$
752 \end_inset
754  is non-positive integer, (D15.2.4) is applicable and the result is simply
755  a polynomial
756 \begin_inset Formula 
758 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=\frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\frac{\text{Γ}\left(1+n\right)}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right)}\koru{\sum_{s=0}^{\frac{q-2-n}{2}}\left(-1\right)^{s}\binom{\frac{2-q+n}{2}}{s}\frac{\left(\frac{3-q+n}{2}\right)_{s}}{\left(n+1\right)_{s}}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}}
761 \end_inset
763 if 
764 \begin_inset Formula $-\frac{2-q+n}{2}\in\nats_{0}$
765 \end_inset
767  and
768 \begin_inset Formula 
770 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=\frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\frac{\text{Γ}\left(1+n\right)}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right)}\koru{\sum_{s=0}^{\frac{q-3-n}{2}}\left(-1\right)^{s}\binom{\frac{3-q+n}{2}}{s}\frac{\left(\frac{2-q+n}{2}\right)_{s}}{\left(n+1\right)_{s}}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}}
773 \end_inset
775 if 
776 \begin_inset Formula $-\frac{3-q+n}{2}\in\nats_{0}$
777 \end_inset
780 \end_layout
782 \begin_layout Plain Layout
784 \lang english
785 This is some kind of shit, as it returns zeroes.
786  Where is the mistake?
787 \end_layout
789 \end_inset
792 \end_layout
794 \end_body
795 \end_document