Disable "hard" examples in CI
[qpms.git] / notes / ewald.lyx
blob984a8807f3adf793ac618bc831ae1715b07d1c36
1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
2 \lyxformat 474
3 \begin_document
4 \begin_header
5 \textclass article
6 \begin_preamble
7 \usepackage{unicode-math}
9 % Toto je trik, jimž se z fontspec získá familyname pro následující
10 \ExplSyntaxOn
11 \DeclareExpandableDocumentCommand{\getfamilyname}{m}
12  {
13   \use:c { g__fontspec_ \cs_to_str:N #1 _family }
14  }
15 \ExplSyntaxOff
17 % definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše
18 \newfontfamily\MyCyr{CMU Serif}
20 \DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it}
21 \newcommand{\makecyrmathletter}[1]{%
22   \begingroup\lccode`a=#1\lowercase{\endgroup
23   \Umathcode`a}="0 \csname symcyritletters\endcsname\space #1
25 \count255="409
26 \loop\ifnum\count255<"44F
27   \advance\count255 by 1
28   \makecyrmathletter{\count255}
29 \repeat
31 \renewcommand{\lyxmathsym}[1]{#1}
33 \usepackage{polyglossia}
34 \setmainlanguage{english}
35 \setotherlanguage{russian}
36 \newfontfamily\russianfont[Script=Cyrillic]{URW Palladio L}
37 %\newfontfamily\russianfont[Script=Cyrillic]{DejaVu Sans}
38 \end_preamble
39 \use_default_options true
40 \begin_modules
41 theorems-starred
42 \end_modules
43 \maintain_unincluded_children false
44 \language english
45 \language_package default
46 \inputencoding auto
47 \fontencoding global
48 \font_roman TeX Gyre Pagella
49 \font_sans default
50 \font_typewriter default
51 \font_math default
52 \font_default_family default
53 \use_non_tex_fonts true
54 \font_sc false
55 \font_osf true
56 \font_sf_scale 100
57 \font_tt_scale 100
58 \graphics default
59 \default_output_format pdf4
60 \output_sync 0
61 \bibtex_command default
62 \index_command default
63 \paperfontsize 10
64 \spacing single
65 \use_hyperref true
66 \pdf_title "Accelerating lattice mode calculations with T-matrix method"
67 \pdf_author "Marek Nečada"
68 \pdf_bookmarks true
69 \pdf_bookmarksnumbered false
70 \pdf_bookmarksopen false
71 \pdf_bookmarksopenlevel 1
72 \pdf_breaklinks false
73 \pdf_pdfborder false
74 \pdf_colorlinks false
75 \pdf_backref false
76 \pdf_pdfusetitle true
77 \papersize a5paper
78 \use_geometry true
79 \use_package amsmath 2
80 \use_package amssymb 1
81 \use_package cancel 1
82 \use_package esint 1
83 \use_package mathdots 1
84 \use_package mathtools 1
85 \use_package mhchem 1
86 \use_package stackrel 1
87 \use_package stmaryrd 1
88 \use_package undertilde 1
89 \cite_engine basic
90 \cite_engine_type default
91 \biblio_style plain
92 \use_bibtopic false
93 \use_indices false
94 \paperorientation portrait
95 \suppress_date false
96 \justification true
97 \use_refstyle 1
98 \index Index
99 \shortcut idx
100 \color #008000
101 \end_index
102 \leftmargin 1cm
103 \topmargin 2cm
104 \rightmargin 1cm
105 \bottommargin 2cm
106 \secnumdepth 3
107 \tocdepth 3
108 \paragraph_separation indent
109 \paragraph_indentation default
110 \quotes_language english
111 \papercolumns 1
112 \papersides 1
113 \paperpagestyle default
114 \tracking_changes false
115 \output_changes false
116 \html_math_output 0
117 \html_css_as_file 0
118 \html_be_strict false
119 \end_header
121 \begin_body
123 \begin_layout Standard
124 \begin_inset FormulaMacro
125 \newcommand{\uoft}[1]{\mathfrak{F}#1}
126 \end_inset
129 \begin_inset FormulaMacro
130 \newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
131 \end_inset
134 \begin_inset FormulaMacro
135 \newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
136 \end_inset
139 \begin_inset FormulaMacro
140 \newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
141 \end_inset
144 \begin_inset FormulaMacro
145 \newcommand{\sgn}{\operatorname{sgn}}
146 {\mathrm{sgn}}
147 \end_inset
150 \begin_inset FormulaMacro
151 \newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
152 \end_inset
155 \begin_inset FormulaMacro
156 \newcommand{\vect}[1]{\mathbf{#1}}
157 \end_inset
160 \begin_inset FormulaMacro
161 \newcommand{\ud}{\mathrm{d}}
162 \end_inset
165 \begin_inset FormulaMacro
166 \newcommand{\basis}[1]{\mathfrak{#1}}
167 \end_inset
170 \begin_inset FormulaMacro
171 \newcommand{\dc}[1]{Ш_{#1}}
172 \end_inset
175 \begin_inset FormulaMacro
176 \newcommand{\rec}[1]{#1^{-1}}
177 \end_inset
180 \begin_inset FormulaMacro
181 \newcommand{\recb}[1]{#1^{\widehat{-1}}}
182 \end_inset
185 \begin_inset FormulaMacro
186 \newcommand{\ints}{\mathbb{Z}}
187 \end_inset
190 \begin_inset FormulaMacro
191 \newcommand{\nats}{\mathbb{N}}
192 \end_inset
195 \begin_inset FormulaMacro
196 \newcommand{\reals}{\mathbb{R}}
197 \end_inset
200 \begin_inset FormulaMacro
201 \newcommand{\ush}[2]{Y_{#1,#2}}
202 \end_inset
205 \begin_inset FormulaMacro
206 \newcommand{\hgfr}{\mathbf{F}}
207 \end_inset
210 \begin_inset FormulaMacro
211 \newcommand{\hgf}{F}
212 \end_inset
215 \begin_inset FormulaMacro
216 \newcommand{\ghgf}[2]{\mbox{}_{#1}F_{#2}}
217 \end_inset
220 \begin_inset FormulaMacro
221 \newcommand{\ghgfr}[2]{\mbox{}_{#1}\mathbf{F}_{#2}}
222 \end_inset
225 \begin_inset FormulaMacro
226 \newcommand{\ph}{\mathrm{ph}}
227 \end_inset
230 \begin_inset FormulaMacro
231 \newcommand{\kor}[1]{\underline{#1}}
232 \end_inset
235 \begin_inset FormulaMacro
236 \newcommand{\koru}[1]{\utilde{#1}}
237 \end_inset
240 \begin_inset FormulaMacro
241 \newcommand{\swv}{\mathscr{H}}
242 \end_inset
245 \begin_inset FormulaMacro
246 \newcommand{\expint}{\mathrm{E}}
247 \end_inset
250 \end_layout
252 \begin_layout Title
253 Accelerating lattice mode calculations with 
254 \begin_inset Formula $T$
255 \end_inset
257 -matrix method
258 \end_layout
260 \begin_layout Author
261 Marek Nečada
262 \end_layout
264 \begin_layout Abstract
265 The 
266 \begin_inset Formula $T$
267 \end_inset
269 -matrix approach is the method of choice for simulating optical response
270  of a reasonably small system of compact linear scatterers on isotropic
271  background.
272  However, its direct utilisation for problems with infinite lattices is
273  problematic due to slowly converging sums over the lattice.
274  Here I develop a way to compute the problematic sums in the reciprocal
275  space, making the 
276 \begin_inset Formula $T$
277 \end_inset
279 -matrix method very suitable for infinite periodic systems as well.
280 \end_layout
282 \begin_layout Section
283 Formulation of the problem
284 \end_layout
286 \begin_layout Standard
287 Assume a system of compact EM scatterers in otherwise homogeneous and isotropic
288  medium, and assume that the system, i.e.
289  both the medium and the scatterers, have linear response.
290  A scattering problem in such system can be written as
291 \begin_inset Formula 
293 A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α})
296 \end_inset
298 where 
299 \begin_inset Formula $T_{α}$
300 \end_inset
302  is the 
303 \begin_inset Formula $T$
304 \end_inset
306 -matrix for scatterer α, 
307 \begin_inset Formula $A_{α}$
308 \end_inset
310  is its vector of the scattered wave expansion coefficient (the multipole
311  indices are not explicitely indicated here) and 
312 \begin_inset Formula $P_{α}$
313 \end_inset
315  is the local expansion of the incoming sources.
317 \begin_inset Formula $S_{α\leftarrowβ}$
318 \end_inset
320  is ...
321  and ...
322  is ...
323 \end_layout
325 \begin_layout Standard
327 \end_layout
329 \begin_layout Standard
330 \begin_inset Formula 
332 \sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}.
335 \end_inset
338 \end_layout
340 \begin_layout Standard
341 Now suppose that the scatterers constitute an infinite lattice
342 \end_layout
344 \begin_layout Standard
345 \begin_inset Formula 
347 \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}.
350 \end_inset
352 Due to the periodicity, we can write 
353 \begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
354 \end_inset
356  and 
357 \begin_inset Formula $T_{\vect aα}=T_{\alpha}$
358 \end_inset
361  In order to find lattice modes, we search for solutions with zero RHS
362 \begin_inset Formula 
364 \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
367 \end_inset
369 and we assume periodic solution 
370 \begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
371 \end_inset
373 , yielding
374 \begin_inset Formula 
375 \begin{eqnarray*}
376 \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
377 \sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
378 \sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
379 A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
380 \end{eqnarray*}
382 \end_inset
384 Therefore, in order to solve the modes, we need to compute the 
385 \begin_inset Quotes eld
386 \end_inset
388 lattice Fourier transform
389 \begin_inset Quotes erd
390 \end_inset
392  of the translation operator,
393 \begin_inset Formula 
394 \begin{equation}
395 W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
396 \end{equation}
398 \end_inset
401 \end_layout
403 \begin_layout Section
404 Computing the Fourier sum of the translation operator
405 \end_layout
407 \begin_layout Standard
408 The problem evaluating 
409 \begin_inset CommandInset ref
410 LatexCommand eqref
411 reference "eq:W definition"
413 \end_inset
415  is the asymptotic behaviour of the translation operator, 
416 \begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
417 \end_inset
419  that makes the convergence of the sum quite problematic for any 
420 \begin_inset Formula $d>1$
421 \end_inset
423 -dimensional lattice.
424 \begin_inset Foot
425 status open
427 \begin_layout Plain Layout
428 Note that 
429 \begin_inset Formula $d$
430 \end_inset
432  here is dimensionality of the lattice, not the space it lies in, which
433  I for certain reasons assume to be three.
434  (TODO few notes on integration and reciprocal lattices in some appendix)
435 \end_layout
437 \end_inset
439  In electrostatics, one can solve this problem with Ewald summation.
440  Its basic idea is that if what asymptoticaly decays poorly in the direct
441  space, will perhaps decay fast in the Fourier space.
442  I use the same idea here, but everything will be somehow harder than in
443  electrostatics.
444 \end_layout
446 \begin_layout Standard
447 Let us re-express the sum in 
448 \begin_inset CommandInset ref
449 LatexCommand eqref
450 reference "eq:W definition"
452 \end_inset
454  in terms of integral with a delta comb
455 \end_layout
457 \begin_layout Standard
458 \begin_inset Formula 
459 \begin{equation}
460 W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
461 \end{equation}
463 \end_inset
465 The translation operator 
466 \begin_inset Formula $S$
467 \end_inset
469  is now a function defined in the whole 3d space; 
470 \begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
471 \end_inset
473  are the displacements of scatterers 
474 \begin_inset Formula $\alpha$
475 \end_inset
477  and 
478 \begin_inset Formula $\beta$
479 \end_inset
481  in a unit cell.
482  The arrow notation 
483 \begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$
484 \end_inset
486  means 
487 \begin_inset Quotes eld
488 \end_inset
490 translation operator for spherical waves originating in 
491 \begin_inset Formula $\vect r+\vect r_{\beta}$
492 \end_inset
494  evaluated in 
495 \begin_inset Formula $\vect r_{\alpha}$
496 \end_inset
499 \begin_inset Quotes erd
500 \end_inset
502  and obviously 
503 \begin_inset Formula $S$
504 \end_inset
506  is in fact a function of a single 3d argument, 
507 \begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
508 \end_inset
511  Expression 
512 \begin_inset CommandInset ref
513 LatexCommand eqref
514 reference "eq:W integral"
516 \end_inset
518  can be rewritten as
519 \begin_inset Formula 
521 W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
524 \end_inset
526 where changed the sign of 
527 \begin_inset Formula $\vect r/\vect{\bullet}$
528 \end_inset
530  has been swapped under integration, utilising evenness of 
531 \begin_inset Formula $\dc{\basis u}$
532 \end_inset
535  Fourier transform of product is convolution of Fourier transforms, so (using
536  formula 
537 \begin_inset CommandInset ref
538 LatexCommand eqref
539 reference "eq:Dirac comb uaFt"
541 \end_inset
543  for the Fourier transform of Dirac comb)
544 \begin_inset Formula 
545 \begin{eqnarray}
546 W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
547  & = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
548  & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
549  & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber 
550 \end{eqnarray}
552 \end_inset
555 \begin_inset Note Note
556 status open
558 \begin_layout Plain Layout
559 Factor 
560 \begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$
561 \end_inset
563  cancels out with the 
564 \begin_inset Formula $\left(2\pi\right)^{-\frac{d}{2}}$
565 \end_inset
567  factor appearing in the convolution/product formula in the unitary angular
568  momentum convention.
570 \end_layout
572 \end_inset
574 As such, this is not extremely helpful because the the 
575 \emph on
576 whole
577 \emph default
578  translation operator 
579 \begin_inset Formula $S$
580 \end_inset
582  has singularities in origin, hence its Fourier transform 
583 \begin_inset Formula $\uaft S$
584 \end_inset
586  will decay poorly.
588 \end_layout
590 \begin_layout Standard
591 However, Fourier transform is linear, so we can in principle separate 
592 \begin_inset Formula $S$
593 \end_inset
595  in two parts, 
596 \begin_inset Formula $S=S^{\textup{L}}+S^{\textup{S}}$
597 \end_inset
601 \begin_inset Formula $S^{\textup{S}}$
602 \end_inset
604  is a short-range part that decays sufficiently fast with distance so that
605  its direct-space lattice sum converges well; 
606 \begin_inset Formula $S^{\textup{S}}$
607 \end_inset
609  must as well contain all the singularities of 
610 \begin_inset Formula $S$
611 \end_inset
613  in the origin.
614  The other part, 
615 \begin_inset Formula $S^{\textup{L}}$
616 \end_inset
618 , will retain all the slowly decaying terms of 
619 \begin_inset Formula $S$
620 \end_inset
622  but it also has to be smooth enough in the origin, so that its Fourier
623  transform 
624 \begin_inset Formula $\uaft{S^{\textup{L}}}$
625 \end_inset
627  decays fast enough.
628  (The same idea lies behind the Ewald summation in electrostatics.) Using
629  the linearity of Fourier transform and formulae 
630 \begin_inset CommandInset ref
631 LatexCommand eqref
632 reference "eq:W definition"
634 \end_inset
636  and legendre
637 \begin_inset CommandInset ref
638 LatexCommand eqref
639 reference "eq:W sum in reciprocal space"
641 \end_inset
643 , the operator 
644 \begin_inset Formula $W_{\alpha\beta}$
645 \end_inset
647  can then be re-expressed as
648 \begin_inset Formula 
649 \begin{eqnarray}
650 W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
651 W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
652 W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
653 \end{eqnarray}
655 \end_inset
657 where both sums should converge nicely.
658 \end_layout
660 \begin_layout Standard
661 \begin_inset Note Note
662 status collapsed
664 \begin_layout Section
665 Finding a good decomposition – deprecated
666 \end_layout
668 \begin_layout Plain Layout
669 The remaining challenge is therefore finding a suitable decomposition 
670 \begin_inset Formula $S^{\textup{L}}+S^{\textup{S}}$
671 \end_inset
673  such that both 
674 \begin_inset Formula $S^{\textup{S}}$
675 \end_inset
677  and 
678 \begin_inset Formula $\uaft{S^{\textup{L}}}$
679 \end_inset
681  decay fast enough with distance and are expressable analytically.
682  With these requirements, I do not expect to find gaussian asymptotics as
683  in the electrostatic Ewald formula—having 
684 \begin_inset Formula $\sim x^{-t}$
685 \end_inset
688 \begin_inset Formula $t>d$
689 \end_inset
691  asymptotics would be nice, making the sums in 
692 \begin_inset CommandInset ref
693 LatexCommand eqref
694 reference "eq:W Short definition"
696 \end_inset
699 \begin_inset CommandInset ref
700 LatexCommand eqref
701 reference "eq:W Long definition"
703 \end_inset
705  absolutely convergent.
706 \end_layout
708 \begin_layout Plain Layout
709 The translation operator 
710 \begin_inset Formula $S$
711 \end_inset
713  for compact scatterers in 3d can be expressed as
714 \begin_inset Formula 
716 S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(k_{0}\left|\vect r\right|\right)
719 \end_inset
721 where 
722 \begin_inset Formula $Y_{l,m}\left(\theta,\phi\right)$
723 \end_inset
725  are the spherical harmonics, 
726 \begin_inset Formula $z_{p}^{(J)}\left(r\right)$
727 \end_inset
729  some of the Bessel or Hankel functions (probably 
730 \begin_inset Formula $h_{p}^{(1)}$
731 \end_inset
733  in all meaningful cases; TODO) and 
734 \begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
735 \end_inset
737  are some ugly but known coefficients (REF Xu 1996, eqs.
738  76,77).
740 \end_layout
742 \begin_layout Plain Layout
743 The spherical Hankel functions can be expressed analytically as 
744 \begin_inset CommandInset citation
745 LatexCommand cite
746 after "10.49.6, 10.49.1"
747 key "NIST:DLMF"
749 \end_inset
752 \begin_inset Note Note
753 status open
755 \begin_layout Plain Layout
756 (REF DLMF 10.49.6, 10.49.1)
757 \end_layout
759 \end_inset
762 \begin_inset Formula 
763 \begin{equation}
764 h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},\label{eq:spherical Hankel function series}
765 \end{equation}
767 \end_inset
769  so if we find a way to deal with the radial functions 
770 \begin_inset Formula $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
771 \end_inset
774 \begin_inset Formula $q=1,2$
775 \end_inset
777  in 2d case or 
778 \begin_inset Formula $q=1,2,3$
779 \end_inset
781  in 3d case, we get absolutely convergent summations in the direct space.
782 \end_layout
784 \begin_layout Subsection
786 \end_layout
788 \begin_layout Plain Layout
789 Assume that all scatterers are placed in the plane 
790 \begin_inset Formula $\vect z=0$
791 \end_inset
793 , so that the 2d Fourier transform of the long-range part of the translation
794  operator in terms of Hankel transforms, according to 
795 \begin_inset CommandInset ref
796 LatexCommand eqref
797 reference "eq:Fourier v. Hankel tf 2d"
799 \end_inset
801 , reads
802 \end_layout
804 \begin_layout Plain Layout
805 \begin_inset Formula 
806 \begin{multline*}
807 \uaft{S_{l',m',t'\leftarrow l,m,t}^{\textup{L}}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
808 \sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\frac{\pi}{2},0\right)e^{i(m'-m)\phi}i^{m'-m}\pht{m'-m}{h_{p}^{(1)\textup{L}}\left(k_{0}\vect{\bullet}\right)}\left(\left|\vect k\right|\right)
809 \end{multline*}
811 \end_inset
813 Here 
814 \begin_inset Formula $h_{p}^{(1)\textup{L}}=h_{p}^{(1)}-h_{p}^{(1)\textup{S}}$
815 \end_inset
817  is a long range part of a given spherical Hankel function which has to
818  be found and which contains all the terms with far-field (
819 \begin_inset Formula $r\to\infty$
820 \end_inset
822 ) asymptotics proportional to
823 \begin_inset Formula $\sim e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
824 \end_inset
827 \begin_inset Formula $q\le Q$
828 \end_inset
830  where 
831 \begin_inset Formula $Q$
832 \end_inset
834  is at least two in order to achieve absolute convergence of the direct-space
835  sum, but might be higher in order to speed the convergence up.
836 \end_layout
838 \begin_layout Plain Layout
839 Obviously, all the terms 
840 \begin_inset Formula $\propto s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
841 \end_inset
844 \begin_inset Formula $q>Q$
845 \end_inset
847  of the spherical Hankel function 
848 \begin_inset CommandInset ref
849 LatexCommand eqref
850 reference "eq:spherical Hankel function series"
852 \end_inset
854  can be kept untouched as part of 
855 \begin_inset Formula $h_{p}^{(1)\textup{S}}$
856 \end_inset
858 , as they decay fast enough.
859 \end_layout
861 \begin_layout Plain Layout
862 The remaining task is therefore to find a suitable decomposition of 
863 \begin_inset Formula $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
864 \end_inset
867 \begin_inset Formula $q\le Q$
868 \end_inset
870  into short-range and long-range parts, 
871 \begin_inset Formula $s_{k_{0},q}(r)=s_{k_{0},q}^{\textup{S}}(r)+s_{k_{0},q}^{\textup{L}}(r)$
872 \end_inset
874 , such that 
875 \begin_inset Formula $s_{k_{0},q}^{\textup{L}}(r)$
876 \end_inset
878  contains all the slowly decaying asymptotics and its Hankel transforms
879  decay desirably fast as well, 
880 \begin_inset Formula $\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=o(z^{-Q})$
881 \end_inset
884 \begin_inset Formula $z\to\infty$
885 \end_inset
888  The latter requirement calls for suitable regularisation functions—
889 \begin_inset Formula $s_{q}^{\textup{L}}$
890 \end_inset
892  must be sufficiently smooth in the origin, so that 
893 \begin_inset Formula 
894 \begin{equation}
895 \pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=\int_{0}^{\infty}s_{k_{0},q}^{\textup{L}}\left(r\right)rJ_{n}\left(kr\right)\ud r=\int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho\left(r\right)rJ_{n}\left(kr\right)\ud r\label{eq:2d long range regularisation problem statement}
896 \end{equation}
898 \end_inset
900  exists and decays fast enough.
902 \begin_inset Formula $J_{\nu}(r)\sim\left(r/2\right)^{\nu}/\Gamma\left(\nu+1\right)$
903 \end_inset
905  (REF DLMF 10.7.3) near the origin, so the regularisation function should
906  be 
907 \begin_inset Formula $\rho(r)=o(r^{q-n-1})$
908 \end_inset
910  only to make 
911 \begin_inset Formula $\pht n{s_{q}^{\textup{L}}}$
912 \end_inset
914  converge.
915  The additional decay speed requirement calls for at least 
916 \begin_inset Formula $\rho(r)=o(r^{q-n+Q-1})$
917 \end_inset
919 , I guess.
920  At the same time, 
921 \begin_inset Formula $\rho(r)$
922 \end_inset
924  must converge fast enough to one for 
925 \begin_inset Formula $r\to\infty$
926 \end_inset
929 \end_layout
931 \begin_layout Plain Layout
932 The electrostatic Ewald summation uses regularisation with 
933 \begin_inset Formula $1-e^{-cr^{2}}$
934 \end_inset
937  However, such choice does not seem to lead to an analytical solution (really?
938  could not something be dug out of DLMF 10.22.54?) for the current problem
940 \begin_inset CommandInset ref
941 LatexCommand eqref
942 reference "eq:2d long range regularisation problem statement"
944 \end_inset
947  But it turns out that the family of functions
948 \begin_inset Formula 
949 \begin{equation}
950 \rho_{\kappa,c}(r)\equiv\left(1-e^{-cr}\right)^{\text{\kappa}},\quad c>0,\kappa\in\nats\label{eq:binom regularisation function}
951 \end{equation}
953 \end_inset
955 might lead to satisfactory results; see below.
956 \end_layout
958 \begin_layout Plain Layout
959 \begin_inset Note Note
960 status open
962 \begin_layout Plain Layout
963 In natural/dimensionless units; 
964 \begin_inset Formula $x=k_{0}r$
965 \end_inset
968 \begin_inset Formula $\tilde{k}=k/k_{0}$
969 \end_inset
972 \begin_inset Formula $č=c/k_{0}$
973 \end_inset
976 \begin_inset Formula 
978 s_{q}(x)\equiv e^{ix}x^{-q}
981 \end_inset
984 \begin_inset Formula 
986 \tilde{\rho}_{\kappa,č}(x)\equiv\left(1-e^{-čx}\right)^{\text{\kappa}}=\left(1-e^{-\frac{c}{k_{0}}k_{0}r}\right)^{\kappa}=\left(1-e^{-cr}\right)^{\kappa}=\rho_{\kappa,c}(r)
989 \end_inset
992 \begin_inset Formula 
994 s_{q}^{\textup{L}}\left(x\right)\equiv s_{q}(x)\tilde{\rho}_{\kappa,č}(x)=e^{ix}x^{-q}\left(1-e^{-čx}\right)^{\text{\kappa}}
997 \end_inset
1000 \begin_inset Formula 
1001 \begin{eqnarray*}
1002 \pht n{s_{q}^{\textup{L}}}\left(\tilde{k}\right) & = & \int_{0}^{\infty}s_{q}^{\textup{L}}\left(x\right)xJ_{n}\left(\tilde{k}x\right)\ud x=\int_{0}^{\infty}s_{q}\left(x\right)\tilde{\rho}_{\kappa,č}(x)xJ_{n}\left(\tilde{k}x\right)\ud x\\
1003  & = & \int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho_{\kappa,c}(r)\left(k_{0}r\right)J_{n}\left(kr\right)\ud\left(k_{0}r\right)\\
1004  & = & k_{0}^{2}\int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho_{\kappa,c}(r)rJ_{n}\left(kr\right)\ud r\\
1005  & = & k_{0}^{2}\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)
1006 \end{eqnarray*}
1008 \end_inset
1011 \end_layout
1013 \end_inset
1016 \end_layout
1018 \begin_layout Plain Layout
1019 \begin_inset Note Note
1020 status open
1022 \begin_layout Plain Layout
1023 Another analytically feasible possibility could be
1024 \begin_inset Formula 
1025 \begin{equation}
1026 \rho_{p}^{\textup{ig.}}\equiv e^{-p/x^{2}}.\label{eq:inverse gaussian regularisation function}
1027 \end{equation}
1029 \end_inset
1032 \end_layout
1034 \begin_layout Plain Layout
1035 Nope, propably did not work.
1036 \end_layout
1038 \end_inset
1041 \end_layout
1043 \begin_layout Subsubsection
1044 Hankel transforms of the long-range parts, „binomial“ regularisation
1045 \begin_inset CommandInset label
1046 LatexCommand label
1047 name "sub:Hankel-transforms-binom-reg"
1049 \end_inset
1052 \end_layout
1054 \begin_layout Plain Layout
1055 Let 
1056 \begin_inset Note Note
1057 status open
1059 \begin_layout Plain Layout
1060 \begin_inset Formula $\rho_{\kappa,c}$
1061 \end_inset
1063  from 
1064 \begin_inset CommandInset ref
1065 LatexCommand eqref
1066 reference "eq:binom regularisation function"
1068 \end_inset
1070  serve as the regularisation fuction and
1071 \end_layout
1073 \end_inset
1076 \end_layout
1078 \begin_layout Plain Layout
1079 \begin_inset Formula 
1080 \begin{eqnarray}
1081 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & \equiv & \int_{0}^{\infty}\frac{e^{ik_{0}r}}{\left(k_{0}r\right)^{q}}J_{n}\left(kr\right)\left(1-e^{-cr}\right)^{\kappa}r\,\ud r\nonumber \\
1082  & = & k_{0}^{-q}\int_{0}^{\infty}r^{1-q}J_{n}\left(kr\right)\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}e^{-(\sigma c-ik_{0})r}\ud r\nonumber \\
1083  & \underset{\equiv}{\textup{form.}} & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\pht n{s_{q,k_{0}}^{\textup{L}1,\sigma c}}\left(k\right).\label{eq:2D Hankel transform of regularized outgoing wave, decomposition}
1084 \end{eqnarray}
1086 \end_inset
1088 From
1089 \begin_inset Note Note
1090 status open
1092 \begin_layout Plain Layout
1093  [REF DLMF 10.22.49]
1094 \end_layout
1096 \end_inset
1099 \begin_inset CommandInset citation
1100 LatexCommand cite
1101 after "10.22.49"
1102 key "NIST:DLMF"
1104 \end_inset
1106  one digs 
1107 \begin_inset Note Note
1108 status open
1110 \begin_layout Plain Layout
1111 \begin_inset Formula 
1112 \begin{eqnarray*}
1113 \mu & \leftarrow & 2-q\\
1114 \nu & \leftarrow & n\\
1115 b & \leftarrow & k\\
1116 a & \leftarrow & c-ik_{0}
1117 \end{eqnarray*}
1119 \end_inset
1122 \end_layout
1124 \end_inset
1127 \begin_inset Formula 
1128 \begin{multline}
1129 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right),\\
1130 \Re\left(2-q+n\right)>0,\Re(c-ik_{0}\pm k)\ge0,\label{eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1}
1131 \end{multline}
1133 \end_inset
1135 and using [REF DLMF 15.9.17] and 
1136 \begin_inset Note Note
1137 status open
1139 \begin_layout Plain Layout
1140 \begin_inset Formula $P_{\nu}^{\mu}=P_{-\nu-1}^{\mu}$
1141 \end_inset
1144 \end_layout
1146 \end_inset
1149 \begin_inset CommandInset citation
1150 LatexCommand cite
1151 after "14.9.5"
1152 key "NIST:DLMF"
1154 \end_inset
1157 \begin_inset Note Note
1158 status open
1160 \begin_layout Plain Layout
1161 [REF DLMF 14.9.5]
1162 \end_layout
1164 \end_inset
1167 \end_layout
1169 \begin_layout Plain Layout
1170 \begin_inset Note Note
1171 status collapsed
1173 \begin_layout Plain Layout
1174 \begin_inset Formula 
1175 \begin{eqnarray*}
1176 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
1177 \mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1\\
1178 \end{eqnarray*}
1180 \end_inset
1183 \end_layout
1185 \begin_layout Plain Layout
1186 \begin_inset Formula 
1187 \begin{eqnarray*}
1188 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
1189 \mbox{(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\
1190  &  & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
1191 \frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\
1193 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
1194  & - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
1195 \frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\
1197 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
1198  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\
1199  &  & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c}
1200 \frac{2-q+n}{2},\frac{2-q-n}{2}\\
1202 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
1203  & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c}
1204 \frac{3-q+n}{2},\frac{3-q-n}{2}\\
1206 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
1207 \mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\
1208  &  & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\
1209  & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\
1210  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
1211  &  & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\
1212  & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\
1213 \mbox{} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
1214  &  & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\
1215  & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\
1216  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\
1217  &  & \times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
1218  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\kor{\left(\sigma c-ik_{0}\right)^{2s}}c_{q,n,s}-\frac{\left(\sigma c-ik_{0}\right)^{2s+1}}{k}č_{q,n,s}\right)\\
1219 \mbox{(binom.)} & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1220 \mbox{(conds?)} & = & \frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1221 \kappa
1222 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
1223 \kappa
1224 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
1225 \end{eqnarray*}
1227 \end_inset
1229 now the Stirling number of the 2nd kind 
1230 \begin_inset Formula $\begin{Bmatrix}t\\
1231 \kappa
1232 \end{Bmatrix}=0$
1233 \end_inset
1235  if 
1236 \begin_inset Formula $\kappa>t$
1237 \end_inset
1240 \end_layout
1242 \begin_layout Plain Layout
1243 What about the gamma fn on the left? Using DLMF 5.5.5, which says 
1244 \begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$
1245 \end_inset
1247  we have 
1248 \begin_inset Formula 
1250 \text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
1253 \end_inset
1256 \begin_inset Formula 
1257 \begin{eqnarray*}
1258 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1259 \kappa
1260 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
1261 \kappa
1262 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1263  & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1264 \kappa
1265 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
1266 \kappa
1267 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1268 \mbox{(D5.2.5)} & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1269 \kappa
1270 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}+s\right)\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
1271 \kappa
1272 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
1273 \end{eqnarray*}
1275 \end_inset
1277 The two terms have to be treated fifferently depending on whether q
1278 \begin_inset Formula $q+n$
1279 \end_inset
1281  is even or odd.
1283 \end_layout
1285 \begin_layout Plain Layout
1286 First, assume that 
1287 \begin_inset Formula $q+n$
1288 \end_inset
1290  is even, so the left term has gamma functions and pochhammer symbols with
1291  integer arguments, while the right one has half-integer arguments.
1292  As 
1293 \begin_inset Formula $n$
1294 \end_inset
1296  is non-negative and 
1297 \begin_inset Formula $q$
1298 \end_inset
1300  is positive, 
1301 \begin_inset Formula $\frac{q+n}{2}$
1302 \end_inset
1304  is positive, and the Pochhammer symbol 
1305 \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
1306 \end_inset
1308  if 
1309 \begin_inset Formula $s\ge\frac{q+n}{2}$
1310 \end_inset
1312 , which transforms the sum over 
1313 \begin_inset Formula $s$
1314 \end_inset
1316  to a finite sum for the left term.
1317  However, there still remain divergent terms if 
1318 \begin_inset Formula $\frac{2-q+n}{2}+s\le0$
1319 \end_inset
1321  (let's handle this later; maybe D15.8.6–7 may be then be useful)! Now we
1322  need to perform some transformations of variables to make the other sum
1323  finite as well
1324 \end_layout
1326 \begin_layout Plain Layout
1327 Pár kroků zpět:
1328 \begin_inset Formula 
1329 \begin{eqnarray*}
1330 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
1331  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
1332 \end{eqnarray*}
1334 \end_inset
1337 \end_layout
1339 \begin_layout Plain Layout
1340 If 
1341 \begin_inset Formula $q+n$
1342 \end_inset
1344  is even and 
1345 \begin_inset Formula $2-q+n\le0$
1346 \end_inset
1349 \begin_inset Formula 
1350 \begin{eqnarray*}
1351 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\hgfr}\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
1352 \mbox{(D15.1.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)\koru{\text{Γ}(1+n)}}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\koru{\hgf}\left(\frac{2-q+n}{2},\kor{\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}\right)\\
1353 \mbox{(D15.8.6)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\koru{\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}}\hgf\left(\begin{array}{c}
1354 \frac{2-q+n}{2},\koru{\kor{1-\left(1+n\right)+\frac{2-q+n}{2}}}\\
1355 \koru{\kor{1-\frac{3-q+n}{2}+\frac{2-q+n}{2}}}
1356 \end{array};\koru{\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}}\right)\\
1357  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{k^{q-2}}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\koru{\frac{3}{2}\left(2-q+n\right)}}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
1358 \frac{2-q+n}{2},\koru{\frac{2-q-n}{2}}\\
1359 \koru{1/2}
1360 \end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\\
1361 \mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}}\\
1362 \mbox{(D5.5.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{3-q+n}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1363 \mbox{(D5.2.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\koru{2^{1-q}}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1364  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1365  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
1366 \end{eqnarray*}
1368 \end_inset
1370 now 
1371 \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
1372 \end_inset
1374  whenever 
1375 \begin_inset Formula $s\ge\frac{q+n}{2}$
1376 \end_inset
1378  and 
1379 \begin_inset Formula $\text{Γ}\left(\frac{2-q+n}{2}+s\right)$
1380 \end_inset
1382  is singular whenever 
1383 \begin_inset Formula $s\le-\frac{2-q+n}{2}$
1384 \end_inset
1386 , so we are no less fucked than before.
1387  Maybe let's try the other variable transformation.
1388  Or what about (D15.8.27)?
1389 \begin_inset Formula 
1390 \begin{eqnarray*}
1391 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
1392 \frac{2-q+n}{2},\frac{2-q-n}{2}\\
1394 \end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\\
1395 \mbox{(D15.8.27)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\frac{\kor{Γ\left(\frac{3-q+n}{2}\right)}Γ\left(\frac{3-q-n}{2}\right)}{2Γ\left(\frac{1}{2}\right)Γ\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
1396 2-q+n,2-q-n\\
1397 2-q+\frac{1}{2}
1398 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
1399 2-q+n,2-q-n\\
1400 2-q+\frac{1}{2}
1401 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\\
1402  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\text{Γ}\koru{\left(\frac{3-q+n}{2}-\frac{2-q+n}{2}\right)}}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\kor{\text{Γ}\left(\frac{1}{2}\right)}\text{Γ}\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
1403 2-q+n,2-q-n\\
1404 2-q+\frac{1}{2}
1405 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
1406 2-q+n,2-q-n\\
1407 2-q+\frac{1}{2}
1408 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)\\
1409  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\kor{\left(\hgf\left(\begin{array}{c}
1410 2-q+n,2-q-n\\
1411 2-q+\frac{1}{2}
1412 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
1413 2-q+n,2-q-n\\
1414 2-q+\frac{1}{2}
1415 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\\
1416 \mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\koru{\sum_{s=0}^{\infty}\left(\frac{\left(2-q+n\right)_{s}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\kor{\left(\left(\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)^{s}+\left(\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)^{s}\right)}\right)}\\
1417 \mbox{(binom)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\kor{\left(2-q+n\right)_{s}}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\koru{\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)}\\
1418  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\kor{\left(1+n\right)_{-\frac{2-q+n}{2}}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(2-q+n+s\right)}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1419  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}}\frac{\koru{\text{Γ}\left(1+n\right)}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\koru{\text{Γ}\left(\frac{q+n}{2}\right)}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1420  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{Γ\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}}\koru{\kor{\left(\sigma c-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)}}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1421 (bionm) & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\koru{\sum_{w=0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1422  & = & \koru{\kappa!\left(-1\right)^{\kappa}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kor 0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kor 0}^{s}\binom{\kor s}{\kor r}\left(ik\right)^{-r}\sum_{w=\kor 0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{\kor w}\koru{\kor{\begin{Bmatrix}w\\
1423 \kappa
1424 \end{Bmatrix}}}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1425  & = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\koru{\kappa}}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\koru{\kappa}}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\koru{\kappa}}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
1426 \kappa
1427 \end{Bmatrix}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1428  & = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kappa}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kappa}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\kappa}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
1429 \kappa
1430 \end{Bmatrix}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)2^{r-s}\left(\left(-1\right)^{r}+1\right)
1431 \end{eqnarray*}
1433 \end_inset
1436 \end_layout
1438 \begin_layout Plain Layout
1439 The previous things are valid only if 
1440 \begin_inset Formula $q$
1441 \end_inset
1443  has a small non-integer part, 
1444 \begin_inset Formula $q=q'+\varepsilon$
1445 \end_inset
1448  They might still play a role in the series (especially in the infinite
1449  ones) when taking the limit 
1450 \begin_inset Formula $\varepsilon\to0$
1451 \end_inset
1454  However, we got rid of the singularities in 
1455 \begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
1456 \end_inset
1458  if 
1459 \begin_inset Formula $\kappa$
1460 \end_inset
1462  is large enough.
1463 \end_layout
1465 \begin_layout Plain Layout
1466 and we get same shit as before due to the singular 
1467 \begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
1468 \end_inset
1471  However, 
1472 \begin_inset Formula 
1473 \begin{eqnarray*}
1474 (...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\kor{\left(\left(-1\right)^{r}+1\right)}\\
1475  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{\koru{floor(s/2)}}\binom{s}{\koru{2r}}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{\koru{2r}}2^{\koru{2r}-s}\left(\left(-1\right)^{\koru{2r}}+1\right)
1476 \end{eqnarray*}
1478 \end_inset
1481 \begin_inset Formula 
1482 \begin{eqnarray*}
1483 (...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1484 binom & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}\sum_{b=0}^{r}\binom{r}{b}\sigma^{b}c^{b}\left(-ik_{0}\right)^{r-b}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1485  & =
1486 \end{eqnarray*}
1488 \end_inset
1491 \end_layout
1493 \begin_layout Plain Layout
1494 aaah.
1495  Let's assume that 
1496 \begin_inset Formula $q$
1497 \end_inset
1499  is not exactly
1500 \begin_inset Formula 
1501 \begin{eqnarray*}
1502  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1503  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}k^{-2s}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
1504 \end{eqnarray*}
1506 \end_inset
1508 zpět
1509 \end_layout
1511 \begin_layout Plain Layout
1512 \begin_inset Formula 
1513 \begin{eqnarray*}
1514  & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1515 \kappa
1516 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
1517 \kappa
1518 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1519  & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1520 \kappa
1521 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
1522 \kappa
1523 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
1524 \end{eqnarray*}
1526 \end_inset
1529 \end_layout
1531 \end_inset
1534 \begin_inset Note Note
1535 status collapsed
1537 \begin_layout Plain Layout
1538 \begin_inset Formula 
1539 \begin{eqnarray*}
1540 a & \leftarrow & \frac{2-q+n}{2}\\
1541 c & \leftarrow & 1+n\\
1542 z & \leftarrow & \frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}
1543 \end{eqnarray*}
1545 \end_inset
1548 \begin_inset Formula 
1549 \begin{eqnarray*}
1550 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right) & = & \frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}2^{n}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1-\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right)^{-\frac{2-q+n}{2}+\frac{n}{2}}P_{2-q+n-(1+n)}^{1-(1+n)}\left(\frac{1}{\sqrt{1-\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)}}\right)\\
1551  & = & \frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{1-q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right)
1552 \end{eqnarray*}
1554 \end_inset
1557 \begin_inset Formula 
1559 \left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|<\pi,\quad\left|\ph\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right|<\pi
1562 \end_inset
1564 in other words, neither 
1565 \begin_inset Formula $-k^{2}/\left(c-ik_{0}\right)^{2}$
1566 \end_inset
1568  nor 
1569 \begin_inset Formula $1+k^{2}/\left(c-ik_{0}\right)^{2}$
1570 \end_inset
1572  can be non-positive real number.
1573  For assumed positive 
1574 \begin_inset Formula $k_{0}$
1575 \end_inset
1577  and non-negative 
1578 \begin_inset Formula $c$
1579 \end_inset
1581  and 
1582 \begin_inset Formula $k$
1583 \end_inset
1585 , the former case can happen only if 
1586 \begin_inset Formula $k=0$
1587 \end_inset
1589  and the latter only if 
1590 \begin_inset Formula $c=0\wedge k_{0}=k$
1591 \end_inset
1595 \begin_inset Formula 
1596 \begin{eqnarray*}
1597 \left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|<\pi & \Leftrightarrow & \left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|\neq\pi\\
1598 \varphi & \equiv & \ph\left(c-ik_{0}\right)<0,\\
1599 \ph k & \equiv & 0\\
1600 \ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}} & = & 2\varphi\\
1601 \rightsquigarrow\left|\varphi\right| & \neq & \pi/2\\
1602 \rightsquigarrow c & \neq & k_{0}\\
1603 \left|\ph\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right| & = & \left|-2\varphi+\ph\left(\left(c-ik_{0}\right)^{2}+k^{2}\right)\right|
1604 \end{eqnarray*}
1606 \end_inset
1608 Finally, swapping the first two arguments of 
1609 \begin_inset Formula $\hgfr$
1610 \end_inset
1612  in the hypergeometric represenation [REF DLMF 14.3.6] (note [REF DLMF §14.21(iii)]
1613  that this also holds for complex arguments) of Legendre functions gives
1615 \begin_inset Formula $P_{\nu}^{\mu}=P_{-\nu-1}^{\mu}$
1616 \end_inset
1618 , so the above result can be written 
1619 \begin_inset Formula 
1621 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}\text{Γ}\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right).
1624 \end_inset
1626 Let's polish it a bit more
1627 \begin_inset Formula 
1628 \begin{eqnarray*}
1629 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right) & = & \frac{Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q}}\left(-1\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right)\\
1630  & = & \frac{\text{Γ}\left(2-q+n\right)}{k_{0}^{q}}\left(-1\right)^{-\frac{n}{2}}\left(\left(c-ik_{0}\right)^{2}+k^{2}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right).
1631 \end{eqnarray*}
1633 \end_inset
1636 \end_layout
1638 \end_inset
1641 \size footnotesize
1643 \begin_inset Formula 
1644 \begin{multline}
1645 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\
1646 k>0\wedge k_{0}>0\wedge c\ge0\wedge\lnot\left(c=0\wedge k_{0}=k\right)\label{eq:2D Hankel transform of exponentially suppressed outgoing wave expanded}
1647 \end{multline}
1649 \end_inset
1652 \size default
1653 with principal branches of the hypergeometric functions, associated Legendre
1654  functions, and fractional powers.
1655  The conditions from 
1656 \begin_inset CommandInset ref
1657 LatexCommand eqref
1658 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1"
1660 \end_inset
1662  should hold, but we will use 
1663 \begin_inset CommandInset ref
1664 LatexCommand eqref
1665 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
1667 \end_inset
1669  formally even if they are violated, with the hope that the divergences
1670  eventually cancel in 
1671 \begin_inset CommandInset ref
1672 LatexCommand eqref
1673 reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
1675 \end_inset
1678 \end_layout
1680 \begin_layout Plain Layout
1681 \begin_inset Note Note
1682 status collapsed
1684 \begin_layout Plain Layout
1685 Let's do it.
1686 \begin_inset Formula 
1687 \begin{eqnarray*}
1688 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}}\right)\\
1689  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}}\right)
1690 \end{eqnarray*}
1692 \end_inset
1695 \end_layout
1697 \end_inset
1699 One problematic element here is the gamma function 
1700 \begin_inset Formula $\text{Γ}\left(2-q+n\right)$
1701 \end_inset
1703  which is singular if the argument is zero or negative integer, i.e.
1704  if 
1705 \begin_inset Formula $q-n\ge2$
1706 \end_inset
1708 ; which is painful especially because of the case 
1709 \begin_inset Formula $q=2,n=0$
1710 \end_inset
1713  The associated Legendre function can be expressed as a finite 
1714 \begin_inset Quotes eld
1715 \end_inset
1717 polynomial
1718 \begin_inset Quotes erd
1719 \end_inset
1721  if 
1722 \begin_inset Formula $q\ge n$
1723 \end_inset
1726  In other cases, different expressions can be obtained from 
1727 \begin_inset CommandInset ref
1728 LatexCommand ref
1729 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1"
1731 \end_inset
1733  using various transformation formulae from either DLMF or 
1734 \begin_inset ERT
1735 status open
1737 \begin_layout Plain Layout
1740 \backslash
1741 begin{russian}
1742 \end_layout
1744 \end_inset
1746 Прудников
1747 \begin_inset ERT
1748 status open
1750 \begin_layout Plain Layout
1753 \backslash
1754 end{russian}
1755 \end_layout
1757 \end_inset
1761 \end_layout
1763 \begin_layout Plain Layout
1764 In fact, Mathematica is usually able to calculate the transforms for specific
1765  values of 
1766 \begin_inset Formula $\kappa,q,n$
1767 \end_inset
1769 , but it did not find any general formula for me.
1770  The resulting expressions are finite sums of algebraic functions, Table
1772 \begin_inset CommandInset ref
1773 LatexCommand ref
1774 reference "tab:Asymptotical-behaviour-Mathematica"
1776 \end_inset
1778  shows how fast they decay with growing 
1779 \begin_inset Formula $k$
1780 \end_inset
1782  for some parameters.
1783  One particular case where Mathematica did not help at all is 
1784 \begin_inset Formula $q=2,n=0$
1785 \end_inset
1787 , which is unfortunately important.
1789 \end_layout
1791 \begin_layout Plain Layout
1792 \begin_inset Float table
1793 wide false
1794 sideways false
1795 status open
1797 \begin_layout Plain Layout
1798 \align center
1800 \size footnotesize
1801 \begin_inset Tabular
1802 <lyxtabular version="3" rows="4" columns="5">
1803 <features rotate="0" tabularvalignment="middle">
1804 <column alignment="center" valignment="top">
1805 <column alignment="center" valignment="top">
1806 <column alignment="center" valignment="top">
1807 <column alignment="center" valignment="top">
1808 <column alignment="center" valignment="top">
1809 <row>
1810 <cell multicolumn="1" alignment="center" valignment="top" rightline="true" usebox="none">
1811 \begin_inset Text
1813 \begin_layout Plain Layout
1815 \size footnotesize
1816 \begin_inset Formula $\kappa=0$
1817 \end_inset
1820 \end_layout
1822 \end_inset
1823 </cell>
1824 <cell multicolumn="2" alignment="center" valignment="top" rightline="true" usebox="none">
1825 \begin_inset Text
1827 \begin_layout Plain Layout
1829 \end_layout
1831 \end_inset
1832 </cell>
1833 <cell alignment="center" valignment="top" usebox="none">
1834 \begin_inset Text
1836 \begin_layout Plain Layout
1838 \end_layout
1840 \end_inset
1841 </cell>
1842 <cell alignment="center" valignment="top" usebox="none">
1843 \begin_inset Text
1845 \begin_layout Plain Layout
1847 \size footnotesize
1848 \begin_inset Formula $n$
1849 \end_inset
1852 \end_layout
1854 \end_inset
1855 </cell>
1856 <cell alignment="center" valignment="top" usebox="none">
1857 \begin_inset Text
1859 \begin_layout Plain Layout
1861 \end_layout
1863 \end_inset
1864 </cell>
1865 </row>
1866 <row>
1867 <cell multicolumn="1" alignment="center" valignment="top" bottomline="true" usebox="none">
1868 \begin_inset Text
1870 \begin_layout Plain Layout
1872 \end_layout
1874 \end_inset
1875 </cell>
1876 <cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none">
1877 \begin_inset Text
1879 \begin_layout Plain Layout
1881 \end_layout
1883 \end_inset
1884 </cell>
1885 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
1886 \begin_inset Text
1888 \begin_layout Plain Layout
1890 \size footnotesize
1892 \end_layout
1894 \end_inset
1895 </cell>
1896 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
1897 \begin_inset Text
1899 \begin_layout Plain Layout
1901 \size footnotesize
1903 \end_layout
1905 \end_inset
1906 </cell>
1907 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
1908 \begin_inset Text
1910 \begin_layout Plain Layout
1912 \size footnotesize
1914 \end_layout
1916 \end_inset
1917 </cell>
1918 </row>
1919 <row>
1920 <cell multirow="3" alignment="center" valignment="middle" usebox="none">
1921 \begin_inset Text
1923 \begin_layout Plain Layout
1925 \size footnotesize
1926 \begin_inset Formula $q$
1927 \end_inset
1930 \end_layout
1932 \end_inset
1933 </cell>
1934 <cell alignment="center" valignment="top" rightline="true" usebox="none">
1935 \begin_inset Text
1937 \begin_layout Plain Layout
1939 \size footnotesize
1941 \end_layout
1943 \end_inset
1944 </cell>
1945 <cell alignment="center" valignment="top" usebox="none">
1946 \begin_inset Text
1948 \begin_layout Plain Layout
1950 \size footnotesize
1952 \end_layout
1954 \end_inset
1955 </cell>
1956 <cell alignment="center" valignment="top" usebox="none">
1957 \begin_inset Text
1959 \begin_layout Plain Layout
1961 \size footnotesize
1963 \end_layout
1965 \end_inset
1966 </cell>
1967 <cell alignment="center" valignment="top" usebox="none">
1968 \begin_inset Text
1970 \begin_layout Plain Layout
1972 \size footnotesize
1974 \end_layout
1976 \end_inset
1977 </cell>
1978 </row>
1979 <row>
1980 <cell multirow="4" alignment="center" valignment="top" usebox="none">
1981 \begin_inset Text
1983 \begin_layout Plain Layout
1985 \end_layout
1987 \end_inset
1988 </cell>
1989 <cell alignment="center" valignment="top" rightline="true" usebox="none">
1990 \begin_inset Text
1992 \begin_layout Plain Layout
1994 \size footnotesize
1996 \end_layout
1998 \end_inset
1999 </cell>
2000 <cell alignment="center" valignment="top" usebox="none">
2001 \begin_inset Text
2003 \begin_layout Plain Layout
2005 \size footnotesize
2007 \end_layout
2009 \end_inset
2010 </cell>
2011 <cell alignment="center" valignment="top" usebox="none">
2012 \begin_inset Text
2014 \begin_layout Plain Layout
2016 \size footnotesize
2018 \end_layout
2020 \end_inset
2021 </cell>
2022 <cell alignment="center" valignment="top" usebox="none">
2023 \begin_inset Text
2025 \begin_layout Plain Layout
2027 \size footnotesize
2029 \end_layout
2031 \end_inset
2032 </cell>
2033 </row>
2034 </lyxtabular>
2036 \end_inset
2039 \begin_inset space \hspace*{\fill}
2040 \end_inset
2043 \begin_inset Tabular
2044 <lyxtabular version="3" rows="4" columns="7">
2045 <features rotate="0" tabularvalignment="middle">
2046 <column alignment="center" valignment="top">
2047 <column alignment="center" valignment="top">
2048 <column alignment="center" valignment="top">
2049 <column alignment="center" valignment="top">
2050 <column alignment="center" valignment="top">
2051 <column alignment="center" valignment="top">
2052 <column alignment="center" valignment="top">
2053 <row>
2054 <cell multicolumn="1" alignment="center" valignment="top" rightline="true" usebox="none">
2055 \begin_inset Text
2057 \begin_layout Plain Layout
2059 \size footnotesize
2060 \begin_inset Formula $\kappa=1$
2061 \end_inset
2064 \end_layout
2066 \end_inset
2067 </cell>
2068 <cell multicolumn="2" alignment="center" valignment="top" rightline="true" usebox="none">
2069 \begin_inset Text
2071 \begin_layout Plain Layout
2073 \end_layout
2075 \end_inset
2076 </cell>
2077 <cell multicolumn="1" alignment="center" valignment="top" usebox="none">
2078 \begin_inset Text
2080 \begin_layout Plain Layout
2082 \size footnotesize
2083 \begin_inset Formula $n$
2084 \end_inset
2087 \end_layout
2089 \end_inset
2090 </cell>
2091 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2092 \begin_inset Text
2094 \begin_layout Plain Layout
2096 \end_layout
2098 \end_inset
2099 </cell>
2100 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2101 \begin_inset Text
2103 \begin_layout Plain Layout
2105 \end_layout
2107 \end_inset
2108 </cell>
2109 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2110 \begin_inset Text
2112 \begin_layout Plain Layout
2114 \end_layout
2116 \end_inset
2117 </cell>
2118 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2119 \begin_inset Text
2121 \begin_layout Plain Layout
2123 \end_layout
2125 \end_inset
2126 </cell>
2127 </row>
2128 <row>
2129 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2130 \begin_inset Text
2132 \begin_layout Plain Layout
2134 \end_layout
2136 \end_inset
2137 </cell>
2138 <cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none">
2139 \begin_inset Text
2141 \begin_layout Plain Layout
2143 \end_layout
2145 \end_inset
2146 </cell>
2147 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2148 \begin_inset Text
2150 \begin_layout Plain Layout
2152 \size footnotesize
2154 \end_layout
2156 \end_inset
2157 </cell>
2158 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2159 \begin_inset Text
2161 \begin_layout Plain Layout
2163 \size footnotesize
2165 \end_layout
2167 \end_inset
2168 </cell>
2169 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2170 \begin_inset Text
2172 \begin_layout Plain Layout
2174 \size footnotesize
2176 \end_layout
2178 \end_inset
2179 </cell>
2180 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2181 \begin_inset Text
2183 \begin_layout Plain Layout
2185 \size footnotesize
2187 \end_layout
2189 \end_inset
2190 </cell>
2191 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2192 \begin_inset Text
2194 \begin_layout Plain Layout
2196 \size footnotesize
2198 \end_layout
2200 \end_inset
2201 </cell>
2202 </row>
2203 <row>
2204 <cell multirow="3" alignment="center" valignment="middle" usebox="none">
2205 \begin_inset Text
2207 \begin_layout Plain Layout
2209 \size footnotesize
2210 \begin_inset Formula $q$
2211 \end_inset
2214 \end_layout
2216 \end_inset
2217 </cell>
2218 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2219 \begin_inset Text
2221 \begin_layout Plain Layout
2223 \size footnotesize
2225 \end_layout
2227 \end_inset
2228 </cell>
2229 <cell alignment="center" valignment="top" usebox="none">
2230 \begin_inset Text
2232 \begin_layout Plain Layout
2234 \size footnotesize
2236 \end_layout
2238 \end_inset
2239 </cell>
2240 <cell alignment="center" valignment="top" usebox="none">
2241 \begin_inset Text
2243 \begin_layout Plain Layout
2245 \size footnotesize
2247 \end_layout
2249 \end_inset
2250 </cell>
2251 <cell alignment="center" valignment="top" usebox="none">
2252 \begin_inset Text
2254 \begin_layout Plain Layout
2256 \size footnotesize
2258 \end_layout
2260 \end_inset
2261 </cell>
2262 <cell alignment="center" valignment="top" usebox="none">
2263 \begin_inset Text
2265 \begin_layout Plain Layout
2267 \size footnotesize
2269 \end_layout
2271 \end_inset
2272 </cell>
2273 <cell alignment="center" valignment="top" usebox="none">
2274 \begin_inset Text
2276 \begin_layout Plain Layout
2278 \size footnotesize
2280 \end_layout
2282 \end_inset
2283 </cell>
2284 </row>
2285 <row>
2286 <cell multirow="4" alignment="center" valignment="top" usebox="none">
2287 \begin_inset Text
2289 \begin_layout Plain Layout
2291 \end_layout
2293 \end_inset
2294 </cell>
2295 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2296 \begin_inset Text
2298 \begin_layout Plain Layout
2300 \size footnotesize
2302 \end_layout
2304 \end_inset
2305 </cell>
2306 <cell alignment="center" valignment="top" usebox="none">
2307 \begin_inset Text
2309 \begin_layout Plain Layout
2311 \size footnotesize
2313 \end_layout
2315 \end_inset
2316 </cell>
2317 <cell alignment="center" valignment="top" usebox="none">
2318 \begin_inset Text
2320 \begin_layout Plain Layout
2322 \size footnotesize
2324 \end_layout
2326 \end_inset
2327 </cell>
2328 <cell alignment="center" valignment="top" usebox="none">
2329 \begin_inset Text
2331 \begin_layout Plain Layout
2333 \size footnotesize
2335 \end_layout
2337 \end_inset
2338 </cell>
2339 <cell alignment="center" valignment="top" usebox="none">
2340 \begin_inset Text
2342 \begin_layout Plain Layout
2344 \size footnotesize
2346 \end_layout
2348 \end_inset
2349 </cell>
2350 <cell alignment="center" valignment="top" usebox="none">
2351 \begin_inset Text
2353 \begin_layout Plain Layout
2355 \size footnotesize
2357 \end_layout
2359 \end_inset
2360 </cell>
2361 </row>
2362 </lyxtabular>
2364 \end_inset
2367 \begin_inset space \hspace*{\fill}
2368 \end_inset
2371 \begin_inset Tabular
2372 <lyxtabular version="3" rows="4" columns="7">
2373 <features rotate="0" tabularvalignment="middle">
2374 <column alignment="center" valignment="top">
2375 <column alignment="center" valignment="top">
2376 <column alignment="center" valignment="top">
2377 <column alignment="center" valignment="top">
2378 <column alignment="center" valignment="top">
2379 <column alignment="center" valignment="top">
2380 <column alignment="center" valignment="top">
2381 <row>
2382 <cell multicolumn="1" alignment="center" valignment="top" rightline="true" usebox="none">
2383 \begin_inset Text
2385 \begin_layout Plain Layout
2387 \size footnotesize
2388 \begin_inset Formula $\kappa=2$
2389 \end_inset
2392 \end_layout
2394 \end_inset
2395 </cell>
2396 <cell multicolumn="2" alignment="center" valignment="top" rightline="true" usebox="none">
2397 \begin_inset Text
2399 \begin_layout Plain Layout
2401 \end_layout
2403 \end_inset
2404 </cell>
2405 <cell multicolumn="1" alignment="center" valignment="top" usebox="none">
2406 \begin_inset Text
2408 \begin_layout Plain Layout
2410 \size footnotesize
2411 \begin_inset Formula $n$
2412 \end_inset
2415 \end_layout
2417 \end_inset
2418 </cell>
2419 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2420 \begin_inset Text
2422 \begin_layout Plain Layout
2424 \end_layout
2426 \end_inset
2427 </cell>
2428 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2429 \begin_inset Text
2431 \begin_layout Plain Layout
2433 \end_layout
2435 \end_inset
2436 </cell>
2437 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2438 \begin_inset Text
2440 \begin_layout Plain Layout
2442 \end_layout
2444 \end_inset
2445 </cell>
2446 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2447 \begin_inset Text
2449 \begin_layout Plain Layout
2451 \end_layout
2453 \end_inset
2454 </cell>
2455 </row>
2456 <row>
2457 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2458 \begin_inset Text
2460 \begin_layout Plain Layout
2462 \end_layout
2464 \end_inset
2465 </cell>
2466 <cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none">
2467 \begin_inset Text
2469 \begin_layout Plain Layout
2471 \end_layout
2473 \end_inset
2474 </cell>
2475 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2476 \begin_inset Text
2478 \begin_layout Plain Layout
2480 \size footnotesize
2482 \end_layout
2484 \end_inset
2485 </cell>
2486 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2487 \begin_inset Text
2489 \begin_layout Plain Layout
2491 \size footnotesize
2493 \end_layout
2495 \end_inset
2496 </cell>
2497 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2498 \begin_inset Text
2500 \begin_layout Plain Layout
2502 \size footnotesize
2504 \end_layout
2506 \end_inset
2507 </cell>
2508 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2509 \begin_inset Text
2511 \begin_layout Plain Layout
2513 \size footnotesize
2515 \end_layout
2517 \end_inset
2518 </cell>
2519 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2520 \begin_inset Text
2522 \begin_layout Plain Layout
2524 \size footnotesize
2526 \end_layout
2528 \end_inset
2529 </cell>
2530 </row>
2531 <row>
2532 <cell multirow="3" alignment="center" valignment="middle" usebox="none">
2533 \begin_inset Text
2535 \begin_layout Plain Layout
2537 \size footnotesize
2538 \begin_inset Formula $q$
2539 \end_inset
2542 \end_layout
2544 \end_inset
2545 </cell>
2546 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2547 \begin_inset Text
2549 \begin_layout Plain Layout
2551 \size footnotesize
2553 \end_layout
2555 \end_inset
2556 </cell>
2557 <cell alignment="center" valignment="top" usebox="none">
2558 \begin_inset Text
2560 \begin_layout Plain Layout
2562 \size footnotesize
2564 \end_layout
2566 \end_inset
2567 </cell>
2568 <cell alignment="center" valignment="top" usebox="none">
2569 \begin_inset Text
2571 \begin_layout Plain Layout
2573 \size footnotesize
2575 \end_layout
2577 \end_inset
2578 </cell>
2579 <cell alignment="center" valignment="top" usebox="none">
2580 \begin_inset Text
2582 \begin_layout Plain Layout
2584 \size footnotesize
2586 \end_layout
2588 \end_inset
2589 </cell>
2590 <cell alignment="center" valignment="top" usebox="none">
2591 \begin_inset Text
2593 \begin_layout Plain Layout
2595 \size footnotesize
2597 \end_layout
2599 \end_inset
2600 </cell>
2601 <cell alignment="center" valignment="top" usebox="none">
2602 \begin_inset Text
2604 \begin_layout Plain Layout
2606 \size footnotesize
2608 \end_layout
2610 \end_inset
2611 </cell>
2612 </row>
2613 <row>
2614 <cell multirow="4" alignment="center" valignment="top" usebox="none">
2615 \begin_inset Text
2617 \begin_layout Plain Layout
2619 \end_layout
2621 \end_inset
2622 </cell>
2623 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2624 \begin_inset Text
2626 \begin_layout Plain Layout
2628 \size footnotesize
2630 \end_layout
2632 \end_inset
2633 </cell>
2634 <cell alignment="center" valignment="top" usebox="none">
2635 \begin_inset Text
2637 \begin_layout Plain Layout
2639 \size footnotesize
2641 \end_layout
2643 \end_inset
2644 </cell>
2645 <cell alignment="center" valignment="top" usebox="none">
2646 \begin_inset Text
2648 \begin_layout Plain Layout
2650 \size footnotesize
2652 \end_layout
2654 \end_inset
2655 </cell>
2656 <cell alignment="center" valignment="top" usebox="none">
2657 \begin_inset Text
2659 \begin_layout Plain Layout
2661 \size footnotesize
2663 \end_layout
2665 \end_inset
2666 </cell>
2667 <cell alignment="center" valignment="top" usebox="none">
2668 \begin_inset Text
2670 \begin_layout Plain Layout
2672 \size footnotesize
2674 \end_layout
2676 \end_inset
2677 </cell>
2678 <cell alignment="center" valignment="top" usebox="none">
2679 \begin_inset Text
2681 \begin_layout Plain Layout
2683 \size footnotesize
2685 \end_layout
2687 \end_inset
2688 </cell>
2689 </row>
2690 </lyxtabular>
2692 \end_inset
2695 \end_layout
2697 \begin_layout Plain Layout
2698 \begin_inset Caption Standard
2700 \begin_layout Plain Layout
2701 Asymptotical behaviour of some 
2702 \begin_inset CommandInset ref
2703 LatexCommand eqref
2704 reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
2706 \end_inset
2708  obtained by Mathematica for 
2709 \begin_inset Formula $k\to\infty$
2710 \end_inset
2713  The table entries are the 
2714 \begin_inset Formula $N$
2715 \end_inset
2717  of 
2718 \begin_inset Formula $\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=o\left(1/k^{N}\right)$
2719 \end_inset
2722  The special entry 
2723 \begin_inset Quotes eld
2724 \end_inset
2727 \begin_inset Quotes erd
2728 \end_inset
2730  means that Mathematica was not able to calculate the integral, and 
2731 \begin_inset Quotes eld
2732 \end_inset
2735 \begin_inset Quotes erd
2736 \end_inset
2738  denotes that the first returned term was not simply of the kind 
2739 \begin_inset Formula $(\ldots)k^{-N-1}$
2740 \end_inset
2743 \begin_inset CommandInset label
2744 LatexCommand label
2745 name "tab:Asymptotical-behaviour-Mathematica"
2747 \end_inset
2750 \end_layout
2752 \end_inset
2755 \end_layout
2757 \end_inset
2760 \begin_inset Note Note
2761 status open
2763 \begin_layout Plain Layout
2764 \begin_inset ERT
2765 status open
2767 \begin_layout Plain Layout
2770 \backslash
2771 begin{russian}
2772 \end_layout
2774 \end_inset
2776 Градштейн и Рыжик
2777 \begin_inset ERT
2778 status open
2780 \begin_layout Plain Layout
2783 \backslash
2784 end{russian}
2785 \end_layout
2787 \end_inset
2789  6.512.1 has expression for 
2790 \begin_inset Formula $\int_{0}^{\infty}J_{\mu}\left(ax\right)J_{\nu}\left(bx\right)\ud x$
2791 \end_inset
2794 \begin_inset Formula $\Re\left(\mu+\nu\right)>-1$
2795 \end_inset
2797  in terms of hypergeometric function.
2798  Unfortunately, no corresponding and general enough expression for 
2799 \begin_inset Formula $\int_{0}^{\infty}J_{\mu}\left(ax\right)Y_{\nu}\left(bx\right)\ud x$
2800 \end_inset
2803 \end_layout
2805 \end_inset
2808 \end_layout
2810 \begin_layout Paragraph
2811 Case 
2812 \begin_inset Formula $n=0,q=2$
2813 \end_inset
2816 \end_layout
2818 \begin_layout Plain Layout
2819 As shown in a separate note,
2820 \end_layout
2822 \begin_layout Plain Layout
2823 \begin_inset Formula 
2825 \pht 0{s_{2,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=-\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{1}{k_{0}^{2}}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)
2828 \end_inset
2830 for 
2831 \begin_inset Formula $\kappa\ge?$
2832 \end_inset
2835 \begin_inset Formula $k>k_{0}?$
2836 \end_inset
2839 \end_layout
2841 \begin_layout Paragraph
2842 Case 
2843 \begin_inset Formula $n=1,q=3$
2844 \end_inset
2847 \end_layout
2849 \begin_layout Plain Layout
2850 As shown in separate note (check whether copied correctly)
2851 \begin_inset Formula 
2853 \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right)=-\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}-ik\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{2k_{0}^{3}}
2856 \end_inset
2858 for 
2859 \begin_inset Formula $\kappa\ge3$
2860 \end_inset
2863 \begin_inset Formula $k>k_{0}?$
2864 \end_inset
2867 \end_layout
2869 \begin_layout Paragraph
2870 Case 
2871 \begin_inset Formula $n=0,q=3$
2872 \end_inset
2875 \end_layout
2877 \begin_layout Plain Layout
2878 As shown in separate note (check whether copied correctly)
2879 \lang finnish
2881 \begin_inset Note Note
2882 status collapsed
2884 \begin_layout Plain Layout
2886 \lang finnish
2887 Sum[((-1)^(1 + sig)*(k*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] + (k0 + I*c*sig)*ArcSi
2888 n[(k0 + I*c*sig)/k])*Binomial[kap, sig])/k0^3, {sig, 0, kap}]
2889 \end_layout
2891 \end_inset
2894 \begin_inset Formula 
2895 \begin{eqnarray*}
2896 \pht 0{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}+\left(k_{0}+ic\sigma\right)\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{k_{0}^{3}}
2897 \end{eqnarray*}
2899 \end_inset
2902 \lang english
2903 for 
2904 \begin_inset Formula $\kappa\ge2$
2905 \end_inset
2908 \begin_inset Formula $k>k_{0}?$
2909 \end_inset
2912 \end_layout
2914 \begin_layout Plain Layout
2915 \begin_inset Note Note
2916 status open
2918 \begin_layout Plain Layout
2919 From Wikipedia page on binomial coefficient, eq.
2920  (10) and around:
2921 \end_layout
2923 \begin_layout Plain Layout
2924 When 
2925 \begin_inset Formula $P(x)$
2926 \end_inset
2928  is of degree less than or equal to 
2929 \begin_inset Formula $n$
2930 \end_inset
2933 \begin_inset Formula 
2935 \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}P(n-j)=n!a_{n}
2938 \end_inset
2940 where 
2941 \begin_inset Formula $a_{n}$
2942 \end_inset
2944  is the coefficient of degree 
2945 \begin_inset Formula $n$
2946 \end_inset
2948  in 
2949 \begin_inset Formula $P(x)$
2950 \end_inset
2953 \end_layout
2955 \begin_layout Plain Layout
2956 More generally,
2957 \begin_inset Formula 
2959 \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}P(m+(n-j)d)=d^{n}n!a_{n}
2962 \end_inset
2964  where 
2965 \begin_inset Formula $m$
2966 \end_inset
2968  and 
2969 \begin_inset Formula $d$
2970 \end_inset
2972  are complex numbers.
2973 \end_layout
2975 \end_inset
2978 \begin_inset Note Note
2979 status open
2981 \begin_layout Subsubsection
2982 Hankel transforms of the long-range parts, alternative regularisation with
2984 \begin_inset Formula $e^{-p/x^{2}}$
2985 \end_inset
2988 \begin_inset CommandInset label
2989 LatexCommand label
2990 name "sub:Hankel-transforms-ig-reg"
2992 \end_inset
2995 \end_layout
2997 \begin_layout Plain Layout
2998 From [REF 
2999 \begin_inset ERT
3000 status open
3002 \begin_layout Plain Layout
3005 \backslash
3006 begin{russian}
3007 \end_layout
3009 \end_inset
3011 Прудников, том 2
3012 \begin_inset ERT
3013 status open
3015 \begin_layout Plain Layout
3018 \backslash
3019 end{russian}
3020 \end_layout
3022 \end_inset
3024 , 2.12.9.14]
3025 \begin_inset Formula 
3026 \begin{multline}
3027 \int_{0}^{\infty}x^{\alpha-1}e^{-p/x^{2}}J_{\nu}\left(cx\right)\,\ud x=\frac{2^{\alpha-1}}{c^{\alpha}}Γ\begin{bmatrix}\left(\alpha+\nu\right)/2\\
3028 1+\left(\nu-\alpha\right)/2
3029 \end{bmatrix}{}_{0}F_{2}\left(1-\frac{\nu+\alpha}{2},1+\frac{\nu-\alpha}{2};\frac{c^{2}p}{4}\right)\\
3030 +\frac{c^{\nu}p^{\left(\alpha+\nu\right)/2}}{2^{\nu+1}}\text{Γ}\begin{bmatrix}\left(\alpha+\nu\right)/2\\
3031 \nu+1
3032 \end{bmatrix}{}_{0}F_{2}\left(1+\frac{\nu+\alpha}{2},\nu+1;\frac{c^{2}p}{4}\right),\qquad[c,\Re p>0;\Re\alpha<3/2].\label{eq:prudnikov2 eq 2.12.9.14}
3033 \end{multline}
3035 \end_inset
3037 Let now 
3038 \begin_inset Formula $\rho_{p}^{\textup{ig.}}$
3039 \end_inset
3041  from 
3042 \begin_inset CommandInset ref
3043 LatexCommand eqref
3044 reference "eq:inverse gaussian regularisation function"
3046 \end_inset
3048  serve as the regularisation fuction and
3049 \begin_inset Formula 
3051 \pht n{s_{q,k_{0}}^{\textup{L}'p}}\left(k\right)\equiv\int_{0}^{\infty}\frac{e^{ik_{0}r}}{\left(k_{0}r\right)^{q}}J_{n}\left(kr\right)e^{-p/r^{2}}r\,\ud r.
3054 \end_inset
3056 And it seems that this is a dead-end, because 
3057 \begin_inset CommandInset ref
3058 LatexCommand eqref
3059 reference "eq:prudnikov2 eq 2.12.9.14"
3061 \end_inset
3063  cannot deal with the 
3064 \begin_inset Formula $e^{ik_{0}r}$
3065 \end_inset
3067  part.
3068  Damn.
3069 \end_layout
3071 \end_inset
3074 \end_layout
3076 \begin_layout Subsection
3077 3d (TODO)
3078 \end_layout
3080 \begin_layout Plain Layout
3081 \begin_inset Formula 
3082 \begin{multline*}
3083 \uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
3084 \sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect k},\phi_{\vect k}\right)\left(-i\right)^{p}\usht p{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
3085 \end{multline*}
3087 \end_inset
3090 \end_layout
3092 \end_inset
3095 \end_layout
3097 \begin_layout Section
3098 Exponentially converging decompositions
3099 \end_layout
3101 \begin_layout Standard
3102 (As in Linton, Thompson, Journal of Computational Physics 228 (2009) 1815–1829
3103  [LT] 
3104 \begin_inset CommandInset citation
3105 LatexCommand cite
3106 key "linton_one-_2009"
3108 \end_inset
3111 \end_layout
3113 \begin_layout Standard
3114 \begin_inset Note Note
3115 status open
3117 \begin_layout Plain Layout
3118 [LT]
3119 \end_layout
3121 \end_inset
3124 \begin_inset CommandInset citation
3125 LatexCommand cite
3126 key "linton_one-_2009"
3128 \end_inset
3130  offers an exponentially convergent decomposition.
3131  Let 
3132 \begin_inset Formula 
3133 \begin{eqnarray*}
3134 \sigma_{n}^{m}\left(\vect{\beta}\right) & = & \sum_{\vect R\in\Lambda}^{'}e^{i\vect{\beta}\cdot\vect R}\swv_{n}^{m}\left(\vect R\right),\\
3135 \swv_{n}^{m}\left(\vect r\right) & = & Y_{n}^{m}\left(\hat{\vect r}\right)h_{n}\left(\left|\vect r\right|\right).
3136 \end{eqnarray*}
3138 \end_inset
3140 Then, we have a decomposition 
3141 \begin_inset Formula $\sigma_{n}^{m}=\sigma_{n}^{m(0)}+\sigma_{n}^{m(1)}+\sigma_{n}^{m(2)}$
3142 \end_inset
3145  The real-space sum part 
3146 \begin_inset Formula $\sigma_{n}^{m(2)}$
3147 \end_inset
3149  is already 
3150 \begin_inset Quotes eld
3151 \end_inset
3153 convention independent
3154 \begin_inset Quotes erd
3155 \end_inset
3157  in [LT(4.5)] (i.e.
3158  the result is also expressed in terms of 
3159 \begin_inset Formula $Y_{n}^{m}$
3160 \end_inset
3162 , so it is valid regardless of normalisation or CS-phase convention used
3163  inside 
3164 \begin_inset Formula $Y_{n}^{m}$
3165 \end_inset
3168 \begin_inset Formula 
3169 \begin{equation}
3170 \sigma_{n}^{m(2)}=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi.\label{eq:Ewald in 3D short-range part}
3171 \end{equation}
3173 \end_inset
3175 However the other parts in 
3176 \begin_inset CommandInset citation
3177 LatexCommand cite
3178 key "linton_one-_2009"
3180 \end_inset
3183 \begin_inset Note Note
3184 status open
3186 \begin_layout Plain Layout
3187 [LT]
3188 \end_layout
3190 \end_inset
3192  are convention dependend, so let me fix it here.
3194 \begin_inset Note Note
3195 status open
3197 \begin_layout Plain Layout
3198 [LT]
3199 \end_layout
3201 \end_inset
3204 \begin_inset CommandInset citation
3205 LatexCommand cite
3206 key "linton_one-_2009"
3208 \end_inset
3210  use the convention 
3211 \begin_inset CommandInset citation
3212 LatexCommand cite
3213 after "(A.7)"
3214 key "linton_one-_2009"
3216 \end_inset
3219 \begin_inset Note Note
3220 status open
3222 \begin_layout Plain Layout
3223 [LT(A.7)]
3224 \end_layout
3226 \end_inset
3229 \begin_inset Formula 
3230 \begin{eqnarray*}
3231 P_{n}^{m}\left(0\right) & = & \frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}\qquad n+m\mbox{ even,}\\
3232 Y_{n}^{m}\left(\theta,\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi},
3233 \end{eqnarray*}
3235 \end_inset
3237 noting that the former formula is valid also for negative 
3238 \begin_inset Formula $m$
3239 \end_inset
3241  (as can be checked by substituting 
3242 \begin_inset CommandInset citation
3243 LatexCommand cite
3244 after "(A.4)"
3245 key "linton_one-_2009"
3247 \end_inset
3250 \begin_inset Note Note
3251 status open
3253 \begin_layout Plain Layout
3254 [LT(A.4)]
3255 \end_layout
3257 \end_inset
3260  Therefore
3261 \begin_inset Formula 
3262 \begin{eqnarray*}
3263 Y_{n}^{m}\left(\frac{\pi}{2},\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}\frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}\\
3264  & = & \frac{\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}}{\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}
3265 \end{eqnarray*}
3267 \end_inset
3269  Let us substitute this into 
3270 \begin_inset Note Note
3271 status open
3273 \begin_layout Plain Layout
3274  [LT(4.5)] 
3275 \end_layout
3277 \end_inset
3280 \begin_inset CommandInset citation
3281 LatexCommand cite
3282 after "(4.5)"
3283 key "linton_one-_2009"
3285 \end_inset
3288 \begin_inset Formula 
3289 \begin{eqnarray}
3290 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
3291  &  & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
3292  & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3293  &  & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
3294  & = & -\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3295  &  & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:2D Ewald in 3D long-range part}
3296 \end{eqnarray}
3298 \end_inset
3300 which basically replaces an ugly prefactor with another, similarly ugly
3301  one.
3302  See 
3303 \begin_inset CommandInset citation
3304 LatexCommand cite
3305 key "linton_one-_2009"
3307 \end_inset
3310 \begin_inset Note Note
3311 status open
3313 \begin_layout Plain Layout
3314  [LT]
3315 \end_layout
3317 \end_inset
3319  for the meanings of the 
3320 \begin_inset Formula $pq$
3321 \end_inset
3323 -indexed symbols.
3324  Note that the latter version does not depend on the sign of 
3325 \begin_inset Formula $m$
3326 \end_inset
3328  (except for that which is already included in 
3329 \begin_inset Formula $Y_{n}^{m}$
3330 \end_inset
3333 \end_layout
3335 \begin_layout Standard
3336 To have it complete, 
3337 \begin_inset Formula 
3338 \begin{equation}
3339 \sigma_{n}^{m(0)}=\frac{\delta_{n0}\delta_{m0}}{4\pi}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)=\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m}.\label{eq:Ewald in 3D origin part}
3340 \end{equation}
3342 \end_inset
3345 \end_layout
3347 \begin_layout Standard
3348 N.B.
3349  Apparently, the formulae might be valid regardless of coordinate system
3350  orientation (then the spherical harmonic arguments would be of course general
3352 \begin_inset Formula $Y_{n}^{m}\left(\theta,\phi\right)$
3353 \end_inset
3356 \begin_inset Formula $Y_{n}^{m}\left(\theta_{b_{pq}},\phi_{\vect{\beta}_{pq}}\right)$
3357 \end_inset
3359  accordingly; but CHECK).
3360 \end_layout
3362 \begin_layout Subsection
3363 Error estimates
3364 \end_layout
3366 \begin_layout Standard
3367 For the part of a 2D lattice sum that lies outside of a circle with radius
3369 \begin_inset Formula $R$
3370 \end_inset
3372  and 
3373 \begin_inset Formula $f(r)$
3374 \end_inset
3376  positive, radial, monotonically decreasing, we have
3377 \end_layout
3379 \begin_layout Standard
3380 \begin_inset Formula 
3381 \begin{equation}
3382 \mathscr{A}_{\Lambda}\sum_{\begin{array}{c}
3383 \vect R_{i}\in\Lambda\\
3384 \left|\vect R_{i}\right|\ge R
3385 \end{array}}f\left(\left|\vect R_{i}\right|\right)\le2\pi\underbrace{\int_{R_{\mathrm{s}}\left(R,\Lambda\right)}^{\infty}rf(r)\,\ud r}_{\equiv B_{R_{\mathrm{s}}}\left[f\right]},\label{eq:lsum_bound}
3386 \end{equation}
3388 \end_inset
3390 where the largest 
3391 \begin_inset Quotes eld
3392 \end_inset
3394 safe radius
3395 \begin_inset Quotes erd
3396 \end_inset
3399 \begin_inset Formula $R_{\mathrm{s}}\left(R,\Lambda\right)$
3400 \end_inset
3402  is probably something like 
3403 \begin_inset Formula $R-\left|\vect u_{\mathrm{L}}\right|$
3404 \end_inset
3406  where 
3407 \begin_inset Formula $\vect u_{\mathrm{L}}$
3408 \end_inset
3410  is the longer primitive lattice vector of 
3411 \begin_inset Formula $\Lambda$
3412 \end_inset
3415 \end_layout
3417 \begin_layout Subsubsection
3418 Short-range (real-space) sum
3419 \end_layout
3421 \begin_layout Standard
3422 For the short-range part 
3423 \begin_inset Formula $\sigma_{n}^{m(2)}$
3424 \end_inset
3426 , the radially varying part reads 
3427 \begin_inset Formula $f_{\eta}^{\mathrm{S}}\left(R_{pq}\right)\equiv R_{pq}^{n}\int_{\eta}^{\infty}e^{-R_{pq}^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2n}\ud\xi$
3428 \end_inset
3430  and for its integral as in 
3431 \begin_inset CommandInset ref
3432 LatexCommand ref
3433 reference "eq:lsum_bound"
3435 \end_inset
3437  we have 
3438 \begin_inset Formula 
3439 \begin{eqnarray*}
3440 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{S}}\right] & = & \int_{R_{\mathrm{s}}}^{\infty}r^{n+1}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2n}\ud\xi\,\ud r\\
3441  & \le & e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}r^{n+1}e^{-r^{2}\xi^{2}}\xi^{2n}\ud\xi\,\ud r\\
3442  & = & e^{k^{2}/4\eta^{2}}\frac{\eta^{2n+1}R_{\mathrm{s}}^{2+n}\left(E_{\frac{1}{2}-n}\left(\eta^{2}R_{\mathrm{s}}^{2}\right)-E_{-\frac{n}{2}}\left(\eta^{2}R_{\mathrm{s}}^{2}\right)\right)}{2\left(n-1\right)}\\
3443  & = & e^{k^{2}/4\eta^{2}}\frac{\eta^{2n+1}R_{\mathrm{s}}^{2+n}\left(\left(\eta R_{\mathrm{s}}\right)^{-2n-1}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\left(\eta R_{\mathrm{s}}\right)^{-n-2}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right)}{2\left(n-1\right)}\\
3444  & = & \frac{e^{k^{2}/4\eta^{2}}}{2\left(n-1\right)}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right),
3445 \end{eqnarray*}
3447 \end_inset
3449 where the integral is according to mathematica and the error functions were
3450  transformed to incomplete gammas using the relation 
3451 \begin_inset Formula $\Gamma\left(s,x\right)=x^{s}E_{1-s}\left(x\right)$
3452 \end_inset
3454  from Wikipedia or equivalently 
3455 \begin_inset Formula $\Gamma\left(1-n,z\right)=z^{1-n}E_{n}\left(z\right)$
3456 \end_inset
3458  from 
3459 \begin_inset CommandInset citation
3460 LatexCommand cite
3461 after "8.4.13"
3462 key "NIST:DLMF"
3464 \end_inset
3467 \begin_inset Note Note
3468 status open
3470 \begin_layout Plain Layout
3471  [DLMF(8.4.13)]
3472 \end_layout
3474 \end_inset
3477  Therefore, the upper estimate for the short-range sum error is
3478 \begin_inset Formula 
3479 \begin{eqnarray*}
3480 \left|\sigma_{n}^{m(2)}|_{R_{pq}>R}\right| & \le & \frac{2^{n+1}}{k^{n+1}\sqrt{\pi}}\left|P_{n}^{m}\left(0\right)\right|\frac{2\pi}{\mathscr{A}_{\Lambda}}\frac{e^{k^{2}/4\eta^{2}}}{2\left(n-1\right)}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right)\\
3481  & = & \frac{2^{n+1}}{k^{n+1}}\left|P_{n}^{m}\left(0\right)\right|\frac{\sqrt{\pi}}{\mathscr{A}_{\Lambda}}\frac{e^{k^{2}/4\eta^{2}}}{n-1}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right).
3482 \end{eqnarray*}
3484 \end_inset
3486 Apparently, this expression is problematic for 
3487 \begin_inset Formula $n=1$
3488 \end_inset
3490 ; Mathematica gives for that case some ugly expression with 
3491 \begin_inset Formula $_{2}F_{2}$
3492 \end_inset
3494 , resulting in:
3495 \begin_inset Formula 
3497 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{S}}\right]\le e^{k^{2}/4\eta^{2}}\left(\frac{\eta R}{2}{}_{2}F_{2}\left(\begin{array}{cc}
3498 \frac{1}{2}, & \frac{1}{2}\\
3499 \frac{3}{2}, & \frac{3}{2}
3500 \end{array};-\eta^{2}R_{\mathrm{s}}^{2}\right)-\frac{\sqrt{\pi}}{8}\left(\gamma_{\mathrm{E}}-2\mathrm{erfc}\left(\eta R_{\mathrm{s}}\right)+2\log\left(2\eta R_{\mathrm{s}}\right)\right)\right).
3503 \end_inset
3505 The problem is that evaluation of the 
3506 \begin_inset Formula $_{2}F_{2}$
3507 \end_inset
3509  for large argument is very problematic.
3510  However, Mathematica says that the value of the right parenthesis drops
3511  below DBL_EPSILON for 
3512 \begin_inset Formula $\eta R_{\mathrm{s}}>6$
3513 \end_inset
3516 \end_layout
3518 \begin_layout Standard
3519 Also the expression for 
3520 \begin_inset Formula $n\ne1$
3521 \end_inset
3523  decreases very fast, so as long as the value of 
3524 \begin_inset Formula $e^{k^{2}/4\eta^{2}}$
3525 \end_inset
3527 is reasonably low, there should not be much trouble.
3528 \end_layout
3530 \begin_layout Standard
3531 \begin_inset Note Note
3532 status open
3534 \begin_layout Plain Layout
3535 Maybe it might make sense to take a rougher estimate using (for 
3536 \begin_inset Formula $n=1$
3537 \end_inset
3540 \begin_inset Formula 
3541 \begin{eqnarray*}
3542 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{L}}\right] & = & \int_{R_{\mathrm{s}}}^{\infty}r^{2}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2}\ud\xi\,\ud r\\
3543  & \le & e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}r^{2}\xi^{2}\ud\xi\,\ud r,
3544 \end{eqnarray*}
3546 \end_inset
3548 now the integration on the last line is 
3549 \begin_inset Quotes eld
3550 \end_inset
3552 symmetric
3553 \begin_inset Quotes erd
3554 \end_inset
3556  w.r.t.
3558 \begin_inset Formula $R_{\mathrm{s}}\leftrightarrow\eta$
3559 \end_inset
3561 , so we can write either
3562 \begin_inset Formula 
3564 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{L}}\right]\le e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}r^{2}\xi^{2}\ud\xi\,\ud r
3567 \end_inset
3570 \end_layout
3572 \end_inset
3575 \end_layout
3577 \begin_layout Subsubsection
3578 Long-range (
3579 \begin_inset Formula $k$
3580 \end_inset
3582 -space) sum
3583 \end_layout
3585 \begin_layout Standard
3586 For 
3587 \begin_inset Formula $\beta_{pq}>k$
3588 \end_inset
3590 , we have 
3591 \begin_inset Formula $\gamma_{pq}=\frac{\beta_{pq}}{k}\sqrt{1-\left(k/\beta_{pq}\right)^{2}}\le\frac{\beta_{pq}}{k}$
3592 \end_inset
3594 , hence 
3595 \begin_inset Formula $\Gamma_{j,pq}=\Gamma\left(\frac{1}{2}-j,\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)$
3596 \end_inset
3598  and the 
3599 \begin_inset Formula $\beta_{pq}$
3600 \end_inset
3602 -dependent part of 
3603 \begin_inset Formula $\sigma_{n}^{m(1)}$
3604 \end_inset
3606  is 
3607 \end_layout
3609 \begin_layout Standard
3610 \begin_inset Formula 
3611 \begin{eqnarray*}
3612 \left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}\left(\gamma_{pq}\right)^{2j-1} & = & \left(\beta_{pq}/k\right)^{n-2j}\Gamma\left(\frac{1}{2}-j,\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{j-\frac{1}{2}}\\
3613  & \le & \left(\beta_{pq}/k\right)^{n-2j}\left(\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)^{-j-\frac{1}{2}}e^{-\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}}\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{j-\frac{1}{2}}\\
3614  & = & \left(2\eta\right)^{2j+1}e^{-\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}}k^{-n-1}\beta_{pq}^{n-2j}\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{-1}\\
3615  & = & e^{-\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}}\left(\frac{\beta_{pq}}{k}\right)^{n}\frac{2\eta}{k}\left(\frac{2\eta}{\beta_{pq}}\right)^{2j}\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{-1}.
3616 \end{eqnarray*}
3618 \end_inset
3620 The only diverging factor here is apparently 
3621 \begin_inset Formula $\left(\beta_{pq}/k\right)^{n}$
3622 \end_inset
3624 ; Mathematica and 
3625 \begin_inset CommandInset citation
3626 LatexCommand cite
3627 key "NIST:DLMF"
3629 \end_inset
3632 \begin_inset Note Note
3633 status open
3635 \begin_layout Plain Layout
3636 [DMLF]
3637 \end_layout
3639 \end_inset
3641  say
3642 \begin_inset Formula 
3643 \begin{eqnarray*}
3644 \int_{B_{\mathrm{s}}}^{\infty}e^{-\frac{\beta^{2}}{4\eta^{2}}}\beta^{n}\beta\ud\beta & = & \frac{B_{\mathrm{s}}^{n+2}}{2}E_{-\frac{n}{2}}\left(\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right)\\
3645  & = & \frac{B_{\mathrm{s}}^{n+2}}{2}\left(\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right)^{-1-\frac{n}{2}}\Gamma\left(1+\frac{n}{2},\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right)\\
3646  & = & \frac{\left(2\eta\right)^{n+2}}{2}\Gamma\left(1+\frac{n}{2},\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right).
3647 \end{eqnarray*}
3649 \end_inset
3652 \end_layout
3654 \begin_layout Subsection
3656 \end_layout
3658 \begin_layout Standard
3659 For 1D chains, one can use almost the same formulae as above – the main
3660  difference is that there are different exponents in some terms of the long-rang
3661 e part so that 
3662 \begin_inset Formula $\sigma_{n[1\mathrm{d}]}^{m(1)}/\sigma_{n[2\mathrm{d}]}^{m(1)}=k\gamma_{pq}/2\sqrt{\pi}$
3663 \end_inset
3665  (see 
3666 \begin_inset CommandInset citation
3667 LatexCommand cite
3668 after "(4.62)"
3669 key "linton_lattice_2010"
3671 \end_inset
3673 ), so
3674 \end_layout
3676 \begin_layout Standard
3677 \begin_inset Formula 
3678 \begin{eqnarray}
3679 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k\sqrt{\pi}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
3680  &  & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j}\nonumber \\
3681  & = & -\frac{i^{n+1}}{2k\mathscr{A}}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3682  &  & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j}\nonumber \\
3683  & = & -\frac{i^{n+1}}{k\mathscr{A}}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3684  &  & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j}\label{eq:1D Ewald in 3D long-range part}
3685 \end{eqnarray}
3687 \end_inset
3689 and of course, in this case the unit cell 
3690 \begin_inset Quotes eld
3691 \end_inset
3693 volume
3694 \begin_inset Quotes erd
3695 \end_inset
3698 \begin_inset Formula $\mathscr{A}$
3699 \end_inset
3701  has the dimension of length instead of 
3702 \begin_inset Formula $\mbox{length}^{2}$
3703 \end_inset
3706  Eqs.
3708 \begin_inset CommandInset ref
3709 LatexCommand eqref
3710 reference "eq:Ewald in 3D short-range part"
3712 \end_inset
3715 \begin_inset CommandInset ref
3716 LatexCommand eqref
3717 reference "eq:Ewald in 3D origin part"
3719 \end_inset
3721  for 
3722 \begin_inset Formula $\sigma_{n}^{m(2)},\sigma_{n}^{m(0)}$
3723 \end_inset
3725  can be used directly without modifications.
3726 \end_layout
3728 \begin_layout Standard
3729 Another possibility is to consider the chain to be aligned along the 
3730 \begin_inset Formula $z$
3731 \end_inset
3733 -axis and to apply the formula 
3734 \begin_inset CommandInset citation
3735 LatexCommand cite
3736 after "(4.64)"
3737 key "linton_lattice_2010"
3739 \end_inset
3741  instead.
3742  Let us rewrite it again in the spherical-harmonic-normalisation-agnostic
3743  way (N.B.
3744  the relations 
3745 \begin_inset CommandInset citation
3746 LatexCommand cite
3747 after "(4.10)"
3748 key "linton_lattice_2010"
3750 \end_inset
3753 \begin_inset Formula $\sigma_{n}^{m}=\left(-1\right)^{m}\hat{\tau}_{n}^{m}$
3754 \end_inset
3757 \begin_inset CommandInset citation
3758 LatexCommand cite
3759 after "(A.5)"
3760 key "linton_lattice_2010"
3762 \end_inset
3765 \begin_inset Formula $P_{n}^{m}\left(\pm1\right)=\left(\pm1\right)^{n}\delta_{m0}$
3766 \end_inset
3768  and 
3769 \begin_inset CommandInset citation
3770 LatexCommand cite
3771 after "(A.8)"
3772 key "linton_lattice_2010"
3774 \end_inset
3777 \begin_inset Formula $Y_{n}^{m}\left(\theta,\phi\right)=\left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}$
3778 \end_inset
3781 \begin_inset Formula 
3782 \begin{eqnarray*}
3783 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}\delta_{m0}\sqrt{\frac{2n+1}{4\pi}}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\expint_{j+1}\left(\frac{k^{2}\gamma^{\mu}}{4\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}\\
3784  & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\expint_{j+1}\left(\frac{k^{2}\gamma^{\mu}}{4\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}.
3785 \end{eqnarray*}
3787 \end_inset
3789 Here, 
3790 \begin_inset Formula $\tilde{\beta}_{\mu}$
3791 \end_inset
3793  seems to be again just 
3794 \begin_inset Formula $\tilde{\beta}_{\mu}=\beta+K_{\mu}$
3795 \end_inset
3797 , i.e.
3798  the shifted reciprocal lattice point (projected onto the 
3799 \begin_inset Formula $z$
3800 \end_inset
3802 -axis).
3803  From 
3804 \begin_inset CommandInset citation
3805 LatexCommand cite
3806 after "(4.64)"
3807 key "linton_lattice_2010"
3809 \end_inset
3812 \begin_inset Formula $\expint_{j+1}\left(\frac{k^{2}\gamma_{\mu}^{2}}{4\eta^{2}}\right)=\left(\frac{k\gamma_{\mu}}{2\eta}\right)^{2j}\Gamma\left(-j,\frac{k^{2}\gamma_{\mu}^{2}}{2\eta^{2}}\right)$
3813 \end_inset
3815 , therefore 
3816 \begin_inset Formula 
3817 \begin{eqnarray}
3818 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\left(\frac{k\gamma_{\mu}}{2\eta}\right)^{2j}\Gamma\left(-j,\frac{k^{2}\gamma_{\mu}^{2}}{2\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}\nonumber \\
3819  & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\left(\frac{k\gamma_{\mu}}{2}\right)^{2j}\underbrace{\Gamma\left(-j,\frac{k^{2}\gamma_{\mu}^{2}}{2\eta^{2}}\right)}_{\Gamma_{j,\mu}}\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}\nonumber \\
3820  & = & -\frac{i^{n+1}}{k\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}n!\left(\tilde{\beta}_{\mu}/k\right)^{n-2j}\Gamma_{j,\mu}}{j!2^{2j}\left(n-2j\right)!}\left(\gamma_{\mu}\right)^{2j}.\label{eq:1D_z_LRsum}
3821 \end{eqnarray}
3823 \end_inset
3826 \end_layout
3828 \begin_layout Standard
3829 \begin_inset Note Note
3830 status open
3832 \begin_layout Plain Layout
3833 One-dimensional lattice sums are provided in [REF LT, sect.
3834  3].
3835  However, these are the 
3836 \begin_inset Quotes eld
3837 \end_inset
3839 non-shifted
3840 \begin_inset Quotes erd
3841 \end_inset
3843  sums,
3844 \begin_inset Formula 
3845 \begin{eqnarray*}
3846 \ell_{n}\left(\beta\right) & = & \sum_{j\in\ints}^{'}e^{i\beta aj}\mathcal{H}_{n}^{0}\left(aj\hat{\vect z}\right)\\
3847  & = & \sum_{j\in\ints}^{'}e^{i\beta aj}h_{n}\left(\left|aj\right|\right)Y_{n}^{0}\\
3848  & = & \sqrt{\frac{2n+1}{4\pi}}\sum_{j\in\ints}^{'}P_{n}^{0}\left(\sgn j\right)h_{n}\left(\left|aj\right|\right)e^{i\beta aj}\\
3849  & = & \sqrt{\frac{2n+1}{4\pi}}\sum_{j\in\ints}^{'}\left(\sgn j\right)^{n}h_{n}\left(\left|aj\right|\right)e^{i\beta aj},
3850 \end{eqnarray*}
3852 \end_inset
3854 where we used 
3855 \begin_inset Formula $P_{n}^{m}\left(\pm1\right)=\left(\pm1\right)^{n}\delta_{m0}$
3856 \end_inset
3859 \end_layout
3861 \end_inset
3864 \end_layout
3866 \begin_layout Section
3867 Half-spaces and edge modes
3868 \end_layout
3870 \begin_layout Subsection
3872 \end_layout
3874 \begin_layout Standard
3875 Let us first consider the 
3876 \begin_inset Quotes eld
3877 \end_inset
3879 simple
3880 \begin_inset Quotes erd
3881 \end_inset
3883  case without sublattices, so for example, let a set of identical particles
3884  particles be placed with spacing 
3885 \begin_inset Formula $d$
3886 \end_inset
3888  on the positive 
3889 \begin_inset Formula $z$
3890 \end_inset
3892 -halfaxis, so their coordinates are in the set 
3893 \begin_inset Formula $C_{0}=C+\left\{ \vect 0\right\} =d\nats\hat{\vect{\mathbf{z}}}+\left\{ \vect 0\right\} $
3894 \end_inset
3897  The scattering problem on the particle placed at 
3898 \begin_inset Formula $\vect n\in C$
3899 \end_inset
3901  can then be described in the per-particle-matrix form as
3902 \begin_inset Formula 
3904 p_{\vect n}-p_{\vect n}^{(0)}=\sum_{\vect n'\in C_{0}\backslash\{\vect n\}}S_{\vect n\leftarrow\vect n'}Tp_{\vect n'},
3907 \end_inset
3909 where 
3910 \begin_inset Formula $T$
3911 \end_inset
3913  is the 
3914 \begin_inset Formula $T$
3915 \end_inset
3917 -matrix, 
3918 \begin_inset Formula $S_{\vect n\leftarrow\vect n'}$
3919 \end_inset
3921  the translation operator and 
3922 \begin_inset Formula $p_{\vect n}^{(0)}$
3923 \end_inset
3925  the expansion of the external exciting fields, which can be set to zero
3926  in order to find the system's eigenmodes.
3927 \end_layout
3929 \begin_layout Standard
3930 \begin_inset Note Note
3931 status open
3933 \begin_layout Section
3934 Major TODOs and open questions
3935 \end_layout
3937 \begin_layout Itemize
3938 Check if 
3939 \begin_inset CommandInset ref
3940 LatexCommand eqref
3941 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
3943 \end_inset
3945  gives a satisfactory result for the case 
3946 \begin_inset Formula $q=2,n=0$
3947 \end_inset
3950 \end_layout
3952 \begin_layout Itemize
3953 Analyse the behaviour 
3954 \begin_inset Formula $k\to k_{0}$
3955 \end_inset
3958 \end_layout
3960 \begin_layout Itemize
3961 Find a general algorithm for generating the expressions of the Hankel transforms.
3962 \end_layout
3964 \begin_layout Itemize
3965 Three-dimensional case.
3966 \end_layout
3968 \end_inset
3971 \end_layout
3973 \begin_layout Section
3974 (Appendix) Fourier vs.
3975  Hankel transform
3976 \end_layout
3978 \begin_layout Subsection
3979 Three dimensions
3980 \end_layout
3982 \begin_layout Standard
3983 Given a nice enough function 
3984 \begin_inset Formula $f$
3985 \end_inset
3987  of a real 3d variable, assume its factorisation into radial and angular
3988  parts 
3989 \begin_inset Formula 
3991 f(\vect r)=\sum_{l,m}f_{l,m}(\left|\vect r\right|)\ush lm\left(\theta_{\vect r},\phi_{\vect r}\right).
3994 \end_inset
3996 Acording to (REF Baddour 2010, eqs.
3997  13, 16), its Fourier transform can then be expressed in terms of Hankel
3998  transforms (CHECK normalisation of 
3999 \begin_inset Formula $j_{n}$
4000 \end_inset
4002 , REF Baddour (1)) 
4003 \begin_inset Formula 
4005 \uaft f(\vect k)=\frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sum_{l,m}\left(-i\right)^{l}\left(\bsht{f_{l,m}}{}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)
4008 \end_inset
4010 where the spherical Hankel transform 
4011 \begin_inset Formula $\bsht l{}$
4012 \end_inset
4014  of degree 
4015 \begin_inset Formula $l$
4016 \end_inset
4018  is defined as (REF Baddour eq.
4019  2)
4020 \begin_inset Formula 
4022 \bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
4025 \end_inset
4027 Using this convention, the inverse spherical Hankel transform is given by
4028  (REF Baddour eq.
4029  3)
4030 \begin_inset Formula 
4032 g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
4035 \end_inset
4037 so it is not unitary.
4039 \end_layout
4041 \begin_layout Standard
4042 An unitary convention would look like this:
4043 \begin_inset Formula 
4044 \begin{equation}
4045 \usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
4046 \end{equation}
4048 \end_inset
4050 Then 
4051 \begin_inset Formula $\usht l{}^{-1}=\usht l{}$
4052 \end_inset
4054  and the unitary, angular-momentum Fourier transform reads
4055 \begin_inset Formula 
4056 \begin{eqnarray}
4057 \uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\nonumber \\
4058  & = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).\label{eq:Fourier v. Hankel tf 3d}
4059 \end{eqnarray}
4061 \end_inset
4063 Cool.
4064 \end_layout
4066 \begin_layout Subsection
4067 Two dimensions
4068 \end_layout
4070 \begin_layout Standard
4071 Similarly in 2d, let the expansion of 
4072 \begin_inset Formula $f$
4073 \end_inset
4075  be 
4076 \begin_inset Formula 
4078 f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\vect r}},
4081 \end_inset
4083 its Fourier transform is then (CHECK this, it is taken from the Wikipedia
4084  article on Hankel transform) 
4085 \begin_inset Formula 
4086 \begin{equation}
4087 \uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\phi_{\vect k}}\pht mf_{m}\left(\left|\vect k\right|\right)\label{eq:Fourier v. Hankel tf 2d}
4088 \end{equation}
4090 \end_inset
4092 where the Hankel transform of order 
4093 \begin_inset Formula $m$
4094 \end_inset
4096  is defined as
4097 \begin_inset Formula 
4098 \begin{eqnarray}
4099 \pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
4100  & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r
4101 \end{eqnarray}
4103 \end_inset
4105 which is already self-inverse, 
4106 \begin_inset Formula $\pht m{}^{-1}=\pht m{}$
4107 \end_inset
4109  (hence also unitary).
4110 \end_layout
4112 \begin_layout Section
4113 (Appendix) Multidimensional Dirac comb
4114 \end_layout
4116 \begin_layout Subsection
4118 \end_layout
4120 \begin_layout Standard
4121 This is all from Wikipedia
4122 \end_layout
4124 \begin_layout Subsubsection
4125 Definitions
4126 \end_layout
4128 \begin_layout Standard
4129 \begin_inset Formula 
4130 \begin{eqnarray*}
4131 Ш(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-k)\\
4132 Ш_{T}(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}Ш\left(\frac{t}{T}\right)
4133 \end{eqnarray*}
4135 \end_inset
4138 \end_layout
4140 \begin_layout Subsubsection
4141 Fourier series representation
4142 \end_layout
4144 \begin_layout Standard
4145 \begin_inset Formula 
4146 \begin{equation}
4147 Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}\label{eq:1D Dirac comb Fourier series}
4148 \end{equation}
4150 \end_inset
4153 \end_layout
4155 \begin_layout Subsubsection
4156 Fourier transform
4157 \end_layout
4159 \begin_layout Standard
4160 With unitary ordinary frequency Ft., i.e.
4161 \end_layout
4163 \begin_layout Standard
4164 \begin_inset Formula 
4166 \uoft f(\vect{\xi})\equiv\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect{\xi}}\ud^{n}\vect x
4169 \end_inset
4171 we have 
4172 \begin_inset Formula 
4173 \begin{equation}
4174 \uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}\label{eq:1D Dirac comb Ft ordinary freq}
4175 \end{equation}
4177 \end_inset
4179  and with unitary angular frequency Ft., i.e.
4180 \begin_inset Formula 
4181 \begin{equation}
4182 \uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n/2}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-i\vect x\cdot\vect k}\ud^{n}\vect x\label{eq:Ft unitary angular frequency}
4183 \end{equation}
4185 \end_inset
4187 we have (CHECK)
4188 \begin_inset Formula 
4190 \uaft{Ш_{T}}(\omega)=\frac{\sqrt{2\pi}}{T}Ш_{\frac{2\pi}{T}}(\omega)=\frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-i\omega nT}
4193 \end_inset
4196 \end_layout
4198 \begin_layout Subsection
4199 Dirac comb for multidimensional lattices
4200 \end_layout
4202 \begin_layout Subsubsection
4203 Definitions
4204 \end_layout
4206 \begin_layout Standard
4207 Let 
4208 \begin_inset Formula $d$
4209 \end_inset
4211  be the dimensionality of the real vector space in question, and let 
4212 \begin_inset Formula $\basis u\equiv\left\{ \vect u_{i}\right\} _{i=1}^{d}$
4213 \end_inset
4215  denote a basis for some lattice in that space.
4216  Let the corresponding lattice delta comb be
4217 \begin_inset Formula 
4219 \dc{\basis u}\left(\vect x\right)\equiv\sum_{n_{1}=-\infty}^{\infty}\ldots\sum_{n_{d}=-\infty}^{\infty}\delta\left(\vect x-\sum_{i=1}^{d}n_{i}\vect u_{i}\right).
4222 \end_inset
4225 \end_layout
4227 \begin_layout Standard
4228 Furthemore, let 
4229 \begin_inset Formula $\rec{\basis u}\equiv\left\{ \rec{\vect u}_{i}\right\} _{i=1}^{d}$
4230 \end_inset
4232  be the reciprocal lattice basis, that is the basis satisfying 
4233 \begin_inset Formula $\vect u_{i}\cdot\rec{\vect u_{j}}=\delta_{ij}$
4234 \end_inset
4237  This slightly differs from the usual definition of a reciprocal basis,
4238  here denoted 
4239 \begin_inset Formula $\recb{\basis u}\equiv\left\{ \recb{\vect u_{i}}\right\} _{i=1}^{d}$
4240 \end_inset
4242 , which satisfies 
4243 \begin_inset Formula $\vect u_{i}\cdot\recb{\vect u_{j}}=2\pi\delta_{ij}$
4244 \end_inset
4246  instead.
4247 \end_layout
4249 \begin_layout Subsubsection
4250 Factorisation of a multidimensional lattice delta comb
4251 \end_layout
4253 \begin_layout Standard
4254 By simple drawing, it can be seen that 
4255 \begin_inset Formula 
4257 \dc{\basis u}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right)
4260 \end_inset
4262 where 
4263 \begin_inset Formula $c_{\basis u}$
4264 \end_inset
4266  is some numerical volume factor.
4267  In order to determine 
4268 \begin_inset Formula $c_{\basis u}$
4269 \end_inset
4271 , let us consider only the 
4272 \begin_inset Quotes eld
4273 \end_inset
4275 zero tooth
4276 \begin_inset Quotes erd
4277 \end_inset
4279  of the comb, leading to
4280 \begin_inset Formula 
4282 \delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\delta\left(\vect x\cdot\rec{\vect u_{i}}\right).
4285 \end_inset
4287 From the scaling property of delta function, 
4288 \begin_inset Formula $\delta(ax)=\left|a\right|^{-1}\delta(x)$
4289 \end_inset
4291 , we get
4292 \begin_inset Formula 
4294 \delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert ^{-1}\delta\left(\vect x\cdot\frac{\rec{\vect u_{i}}}{\left\Vert \rec{\vect u_{i}}\right\Vert }\right).
4297 \end_inset
4300 \end_layout
4302 \begin_layout Standard
4303 From the Osgood's book (p.
4304  375):
4305 \end_layout
4307 \begin_layout Standard
4308 \begin_inset Formula 
4310 \dc A(\vect x)=\frac{1}{\left|\det A\right|}\dc{}^{(d)}\left(A^{-1}\vect x\right)
4313 \end_inset
4316 \begin_inset Note Note
4317 status open
4319 \begin_layout Plain Layout
4320 Applying both sides to a test function that is one at the origin, we get
4322 \begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $
4323 \end_inset
4325  SRSLY?, and hence
4326 \begin_inset Formula 
4327 \begin{equation}
4328 \dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).\label{eq:Dirac comb factorisation}
4329 \end{equation}
4331 \end_inset
4334 \end_layout
4336 \end_inset
4339 \end_layout
4341 \begin_layout Subsubsection
4342 Fourier series representation
4343 \end_layout
4345 \begin_layout Standard
4346 \begin_inset Note Note
4347 status open
4349 \begin_layout Plain Layout
4350 Utilising the Fourier series for 1D Dirac comb 
4351 \begin_inset CommandInset ref
4352 LatexCommand eqref
4353 reference "eq:1D Dirac comb Fourier series"
4355 \end_inset
4357  and the factorisation 
4358 \begin_inset CommandInset ref
4359 LatexCommand eqref
4360 reference "eq:Dirac comb factorisation"
4362 \end_inset
4364 , we get
4365 \begin_inset Formula 
4366 \begin{eqnarray*}
4367 \dc{\basis u}(\vect x) & = & \prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \sum_{n_{j}=-\infty}^{\infty}e^{2\pi in_{i}\vect x\cdot\rec{\vect u_{i}}}\\
4368  & = & \left(\prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \right)\sum_{\vect n\in\mathbb{Z}^{d}}e^{2\pi i\vect x\cdot\sum_{k=1}^{d}n_{k}\rec{\vect u_{k}}}.
4369 \end{eqnarray*}
4371 \end_inset
4374 \end_layout
4376 \end_inset
4379 \end_layout
4381 \begin_layout Subsubsection
4382 Fourier transform (OK)
4383 \end_layout
4385 \begin_layout Standard
4386 From the Osgood's book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf,
4387  p.
4388  379
4389 \end_layout
4391 \begin_layout Standard
4392 \begin_inset Formula 
4394 \uoft{\dc{\basis u}}\left(\vect{\xi}\right)=\left|\det\rec{\basis u}\right|\dc{\rec{\basis u}}^{(d)}\left(\vect{\xi}\right).
4397 \end_inset
4399 And consequently, for unitary/angular frequency it is
4400 \end_layout
4402 \begin_layout Standard
4403 \begin_inset Formula 
4404 \begin{eqnarray}
4405 \uaft{\dc{\basis u}}\left(\vect k\right) & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\uoft{\dc{\basis u}}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
4406  & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\rec{\basis u}}^{(d)}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
4407  & = & \left(2\pi\right)^{\frac{d}{2}}\left|\det\rec{\basis u}\right|\dc{\recb{\basis u}}\left(\vect k\right)\nonumber \\
4408  & = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\recb{\basis u}}\left(\vect k\right).\label{eq:Dirac comb uaFt}
4409 \end{eqnarray}
4411 \end_inset
4414 \end_layout
4416 \begin_layout Standard
4417 \begin_inset Note Note
4418 status open
4420 \begin_layout Plain Layout
4421 On the third line, we used the stretch theorem, getting
4422 \begin_inset Formula 
4424 \dc{\recb{\basis u}}\left(\vect k\right)=\dc{2\pi\rec{\basis u}}\left(\vect k\right)=\left(2\pi\right)^{-d}\dc{\rec{\basis u}}\left(\frac{\vect k}{2\pi}\right)
4427 \end_inset
4430 \end_layout
4432 \end_inset
4435 \end_layout
4437 \begin_layout Subsubsection
4438 Convolution
4439 \end_layout
4441 \begin_layout Standard
4442 \begin_inset Formula 
4444 \left(f\ast\dc{\basis u}\right)(\vect x)=\sum_{\vect t\in\basis u\ints^{d}}f(\vect x-\vect t)
4447 \end_inset
4450 \end_layout
4452 \begin_layout Standard
4453 \begin_inset Note Note
4454 status open
4456 \begin_layout Plain Layout
4457 So, from the stretch theorem 
4458 \begin_inset Formula $\uoft{(f(A\vect x))}=\frac{1}{\left|\det A\right|}\uoft{f\left(A^{-T}\vect{\xi}\right)}=\left|\det A^{-T}\right|\uoft{f\left(A^{-T}\vect{\xi}\right)}$
4459 \end_inset
4462 \end_layout
4464 \begin_layout Plain Layout
4465 From 
4466 \begin_inset CommandInset ref
4467 LatexCommand eqref
4468 reference "eq:Dirac comb factorisation"
4470 \end_inset
4472  and 
4473 \begin_inset CommandInset ref
4474 LatexCommand eqref
4475 reference "eq:1D Dirac comb Ft ordinary freq"
4477 \end_inset
4480 \begin_inset Formula 
4482 \uoft{\dc{\basis u}}(\vect{\xi})=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).
4485 \end_inset
4488 \end_layout
4490 \end_inset
4493 \end_layout
4495 \begin_layout Standard
4496 \begin_inset CommandInset bibtex
4497 LatexCommand bibtex
4498 bibfiles "Ewald summation,Tables"
4499 options "plain"
4501 \end_inset
4504 \end_layout
4506 \end_body
4507 \end_document