Constant factors in general (off-plane) Ewald 2D-in-3D sum
[qpms.git] / amos / zbesi.f
bloba2ddd8c4f487a981505237b3d01e4a0698619a3c
1 SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
2 C***BEGIN PROLOGUE ZBESI
3 C***DATE WRITTEN 830501 (YYMMDD)
4 C***REVISION DATE 890801 (YYMMDD)
5 C***CATEGORY NO. B5K
6 C***KEYWORDS I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
7 C MODIFIED BESSEL FUNCTION OF THE FIRST KIND
8 C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
9 C***PURPOSE TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
10 C***DESCRIPTION
12 C ***A DOUBLE PRECISION ROUTINE***
13 C ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
14 C BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
15 C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
16 C -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED
17 C FUNCTIONS
19 C CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z) J = 1,...,N , X=REAL(Z)
21 C WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
22 C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
23 C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
24 C (REF. 1).
26 C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
27 C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
28 C FNU - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0
29 C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
30 C KODE= 1 RETURNS
31 C CY(J)=I(FNU+J-1,Z), J=1,...,N
32 C = 2 RETURNS
33 C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
34 C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
36 C OUTPUT CYR,CYI ARE DOUBLE PRECISION
37 C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
38 C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
39 C CY(J)=I(FNU+J-1,Z) OR
40 C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)) J=1,...,N
41 C DEPENDING ON KODE, X=REAL(Z)
42 C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
43 C NZ= 0 , NORMAL RETURN
44 C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
45 C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
46 C J = N-NZ+1,...,N
47 C IERR - ERROR FLAG
48 C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
49 C IERR=1, INPUT ERROR - NO COMPUTATION
50 C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z) TOO
51 C LARGE ON KODE=1
52 C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
53 C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
54 C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
55 C ACCURACY
56 C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
57 C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
58 C CANCE BY ARGUMENT REDUCTION
59 C IERR=5, ERROR - NO COMPUTATION,
60 C ALGORITHM TERMINATION CONDITION NOT MET
62 C***LONG DESCRIPTION
64 C THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
65 C SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
66 C THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
67 C NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
68 C UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
69 C FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
70 C SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
72 C THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
73 C CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
75 C I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z) REAL(Z).GT.0.0
76 C M = +I OR -I, I**2=-1
78 C FOR NEGATIVE ORDERS,THE FORMULA
80 C I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
82 C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
83 C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
84 C INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
85 C NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
86 C K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
87 C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
88 C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
89 C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
90 C LARGE MEANS FNU.GT.CABS(Z).
92 C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
93 C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
94 C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
95 C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
96 C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
97 C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
98 C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
99 C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
100 C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
101 C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
102 C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
103 C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
104 C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
105 C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
106 C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
107 C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
108 C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
109 C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
110 C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
112 C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
113 C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
114 C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
115 C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
116 C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
117 C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
118 C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
119 C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
120 C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
121 C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
122 C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
123 C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
124 C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
125 C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
126 C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
127 C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
128 C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
129 C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
130 C OR -PI/2+P.
132 C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
133 C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
134 C COMMERCE, 1955.
136 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
137 C BY D. E. AMOS, SAND83-0083, MAY, 1983.
139 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
140 C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
142 C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
143 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
144 C 1018, MAY, 1985
146 C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
147 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
148 C MATH. SOFTWARE, 1986
150 C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
151 C***END PROLOGUE ZBESI
152 C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
153 DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
154 * CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
155 * ZR, D1MACH, AZ, BB, FN, AZABS, ASCLE, RTOL, ATOL, STI
156 INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
157 DIMENSION CYR(N), CYI(N)
158 DATA PI /3.14159265358979324D0/
159 DATA CONER, CONEI /1.0D0,0.0D0/
161 C***FIRST EXECUTABLE STATEMENT ZBESI
162 IERR = 0
163 NZ=0
164 IF (FNU.LT.0.0D0) IERR=1
165 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
166 IF (N.LT.1) IERR=1
167 IF (IERR.NE.0) RETURN
168 C-----------------------------------------------------------------------
169 C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
170 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
171 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
172 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
173 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
174 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
175 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
176 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
177 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
178 C-----------------------------------------------------------------------
179 TOL = DMAX1(D1MACH(4),1.0D-18)
180 K1 = I1MACH(15)
181 K2 = I1MACH(16)
182 R1M5 = D1MACH(5)
183 K = MIN0(IABS(K1),IABS(K2))
184 ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
185 K1 = I1MACH(14) - 1
186 AA = R1M5*DBLE(FLOAT(K1))
187 DIG = DMIN1(AA,18.0D0)
188 AA = AA*2.303D0
189 ALIM = ELIM + DMAX1(-AA,-41.45D0)
190 RL = 1.2D0*DIG + 3.0D0
191 FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
192 C-----------------------------------------------------------------------------
193 C TEST FOR PROPER RANGE
194 C-----------------------------------------------------------------------
195 AZ = AZABS(ZR,ZI)
196 FN = FNU+DBLE(FLOAT(N-1))
197 AA = 0.5D0/TOL
198 BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
199 AA = DMIN1(AA,BB)
200 IF (AZ.GT.AA) GO TO 260
201 IF (FN.GT.AA) GO TO 260
202 AA = DSQRT(AA)
203 IF (AZ.GT.AA) IERR=3
204 IF (FN.GT.AA) IERR=3
205 ZNR = ZR
206 ZNI = ZI
207 CSGNR = CONER
208 CSGNI = CONEI
209 IF (ZR.GE.0.0D0) GO TO 40
210 ZNR = -ZR
211 ZNI = -ZI
212 C-----------------------------------------------------------------------
213 C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
214 C WHEN FNU IS LARGE
215 C-----------------------------------------------------------------------
216 INU = INT(SNGL(FNU))
217 ARG = (FNU-DBLE(FLOAT(INU)))*PI
218 IF (ZI.LT.0.0D0) ARG = -ARG
219 CSGNR = DCOS(ARG)
220 CSGNI = DSIN(ARG)
221 IF (MOD(INU,2).EQ.0) GO TO 40
222 CSGNR = -CSGNR
223 CSGNI = -CSGNI
224 40 CONTINUE
225 CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
226 * ELIM, ALIM)
227 IF (NZ.LT.0) GO TO 120
228 IF (ZR.GE.0.0D0) RETURN
229 C-----------------------------------------------------------------------
230 C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
231 C-----------------------------------------------------------------------
232 NN = N - NZ
233 IF (NN.EQ.0) RETURN
234 RTOL = 1.0D0/TOL
235 ASCLE = D1MACH(1)*RTOL*1.0D+3
236 DO 50 I=1,NN
237 C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
238 C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
239 C CYR(I) = STR
240 AA = CYR(I)
241 BB = CYI(I)
242 ATOL = 1.0D0
243 IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
244 AA = AA*RTOL
245 BB = BB*RTOL
246 ATOL = TOL
247 55 CONTINUE
248 STR = AA*CSGNR - BB*CSGNI
249 STI = AA*CSGNI + BB*CSGNR
250 CYR(I) = STR*ATOL
251 CYI(I) = STI*ATOL
252 CSGNR = -CSGNR
253 CSGNI = -CSGNI
254 50 CONTINUE
255 RETURN
256 120 CONTINUE
257 IF(NZ.EQ.(-2)) GO TO 130
258 NZ = 0
259 IERR=2
260 RETURN
261 130 CONTINUE
262 NZ=0
263 IERR=5
264 RETURN
265 260 CONTINUE
266 NZ=0
267 IERR=4
268 RETURN