Mention submodule in README
[qpms.git] / besseltransforms / ksmall / 5-2-2
bloba9a4158e4dc78ac43e1c532b778aa00add50c60a
1 (5*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 10*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 5*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + (-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - k0*(k0 - Sqrt[-k^2 + k0^2]))/(k^2*k0^2)
2 (5*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) - 10*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 10*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) - 5*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + (-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) - k0*(k0 - Sqrt(-Power(k,2) + Power(k0,2))))/(Power(k,2)*Power(k0,2))
3 SeriesData[k, Infinity, {(-15*c^5)/k0^2, 0, (-315*c^5)/2 + (1050*c^7)/k0^2 - ((1575*I)/2*c^6)/k0, 0, (-1575*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^2)}, 5, 11, 1]
4 (5*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 10*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 5*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + (-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - k0*(k0 - Sqrt[-k^2 + k0^2]))/(k^2*k0^2)