Mention submodule in README
[qpms.git] / besseltransforms / ksmall / 5-3-4
blob8b0286941b9d0b07924ba35b59155e78cdd5d8c9
1 (-(k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/(12*k^4) + (k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5)/(6*k^4) - (k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5)/(6*k^4) + (k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/(12*k^4) - (k^4*(-15 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(60*k^4) + (I/60*(k^4*(15*k0 - 4*Sqrt[-k^2 + k0^2]) + 24*k0^4*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-10*k0 + 7*Sqrt[-k^2 + k0^2])))/k^4)/k0^3
2 (-(Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5))/(12.*Power(k,4)) + (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5))/(6.*Power(k,4)) - (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5))/(6.*Power(k,4)) + (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5))/(12.*Power(k,4)) - (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5))/(60.*Power(k,4)) + (Complex(0,0.016666666666666666)*(Power(k,4)*(15*k0 - 4*Sqrt(-Power(k,2) + Power(k0,2))) + 24*Power(k0,4)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k,2)*Power(k0,2)*(-10*k0 + 7*Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,4))/Power(k0,3)
3 SeriesData[k, Infinity, {(48*c^5)/k0^3, (-525*c^6)/(2*k0^3) + ((105*I)*c^5)/k0^2, 0, (315*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^3), 0, (-693*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^3)}, 4, 11, 1]
4 -(5*(k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5) - 10*(k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 10*(k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 5*(k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-15 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 - I*(k^4*(15*k0 - 4*Sqrt[-k^2 + k0^2]) + 24*k0^4*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-10*k0 + 7*Sqrt[-k^2 + k0^2])))/(60*k^4*k0^3)