Separate Ewald parameter for different frequencies
[qpms.git] / besseltransforms / 4-3-2
blob592b772714db9291be25bfdb8e590bf0ec543388
1 (8*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 12*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) - 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 2*k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 3*k^2*k0*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (4*(k^2 - k0^2)^(3/2))/(3*k^2*k0*Sqrt[Pi])] + I*Piecewise[{{(-2*(2*k0*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3 + (2*Sqrt[-k^2 + k0^2])/k0)))/(3*k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(2*(1 - (2*k0^2)/(3*k^2)))/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(12*k^2*k0^3)
2 SeriesData[k, Infinity, {(3*c^4)/k0^3, 0, (-5*(13*c^6 - (12*I)*c^5*k0 - 3*c^4*k0^2))/(2*k0^3), 0, (105*I)*c^5 + (5103*c^8)/(16*k0^3) - ((525*I)*c^7)/k0^2 - (1365*c^6)/(4*k0) + (105*c^4*k0)/8, 0, (-15*(6821*c^10 - (15540*I)*c^9*k0 - 15309*c^8*k0^2 + (8400*I)*c^7*k0^3 + 2730*c^6*k0^4 - (504*I)*c^5*k0^5 - 42*c^4*k0^6))/(32*k0^3)}, 3, 11, 1]