Notes on evaluating Δ_n factor in the lattice sums.
[qpms.git] / amos / zbesj.f
blobafe588f2529fa6b5a42c78708623a7ecbc538bf8
1 SUBROUTINE ZBESJ(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
2 C***BEGIN PROLOGUE ZBESJ
3 C***DATE WRITTEN 830501 (YYMMDD)
4 C***REVISION DATE 890801 (YYMMDD)
5 C***CATEGORY NO. B5K
6 C***KEYWORDS J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
7 C BESSEL FUNCTION OF FIRST KIND
8 C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
9 C***PURPOSE TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT
10 C***DESCRIPTION
12 C ***A DOUBLE PRECISION ROUTINE***
13 C ON KODE=1, CBESJ COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
14 C BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE
15 C ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
16 C -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED
17 C FUNCTIONS
19 C CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z)
21 C WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
22 C LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
23 C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
24 C (REF. 1).
26 C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
27 C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
28 C FNU - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0D0
29 C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
30 C KODE= 1 RETURNS
31 C CY(I)=J(FNU+I-1,Z), I=1,...,N
32 C = 2 RETURNS
33 C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)), I=1,...,N
34 C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
36 C OUTPUT CYR,CYI ARE DOUBLE PRECISION
37 C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
38 C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
39 C CY(I)=J(FNU+I-1,Z) OR
40 C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)) I=1,...,N
41 C DEPENDING ON KODE, Y=AIMAG(Z).
42 C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
43 C NZ= 0 , NORMAL RETURN
44 C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET ZERO DUE
45 C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
46 C I = N-NZ+1,...,N
47 C IERR - ERROR FLAG
48 C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
49 C IERR=1, INPUT ERROR - NO COMPUTATION
50 C IERR=2, OVERFLOW - NO COMPUTATION, AIMAG(Z)
51 C TOO LARGE ON KODE=1
52 C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
53 C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
54 C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
55 C ACCURACY
56 C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
57 C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
58 C CANCE BY ARGUMENT REDUCTION
59 C IERR=5, ERROR - NO COMPUTATION,
60 C ALGORITHM TERMINATION CONDITION NOT MET
62 C***LONG DESCRIPTION
64 C THE COMPUTATION IS CARRIED OUT BY THE FORMULA
66 C J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z) AIMAG(Z).GE.0.0
68 C J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z) AIMAG(Z).LT.0.0
70 C WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION.
72 C FOR NEGATIVE ORDERS,THE FORMULA
74 C J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU)
76 C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
77 C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
78 C INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A
79 C LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
80 C Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
81 C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
82 C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
83 C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
84 C LARGE MEANS FNU.GT.CABS(Z).
86 C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
87 C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
88 C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
89 C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
90 C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
91 C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
92 C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
93 C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
94 C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
95 C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
96 C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
97 C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
98 C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
99 C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
100 C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
101 C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
102 C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
103 C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
104 C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
106 C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
107 C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
108 C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
109 C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
110 C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
111 C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
112 C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
113 C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
114 C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
115 C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
116 C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
117 C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
118 C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
119 C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
120 C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
121 C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
122 C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
123 C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
124 C OR -PI/2+P.
126 C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
127 C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
128 C COMMERCE, 1955.
130 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
131 C BY D. E. AMOS, SAND83-0083, MAY, 1983.
133 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
134 C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
136 C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
137 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
138 C 1018, MAY, 1985
140 C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
141 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
142 C MATH. SOFTWARE, 1986
144 C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
145 C***END PROLOGUE ZBESJ
147 C COMPLEX CI,CSGN,CY,Z,ZN
148 DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG,
149 * ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR,
150 * D1MACH, BB, FN, AZ, AZABS, ASCLE, RTOL, ATOL, STI
151 INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH
152 DIMENSION CYR(N), CYI(N)
153 DATA HPI /1.57079632679489662D0/
155 C***FIRST EXECUTABLE STATEMENT ZBESJ
156 IERR = 0
157 NZ=0
158 IF (FNU.LT.0.0D0) IERR=1
159 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
160 IF (N.LT.1) IERR=1
161 IF (IERR.NE.0) RETURN
162 C-----------------------------------------------------------------------
163 C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
164 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
165 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
166 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
167 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
168 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
169 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
170 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
171 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
172 C-----------------------------------------------------------------------
173 TOL = DMAX1(D1MACH(4),1.0D-18)
174 K1 = I1MACH(15)
175 K2 = I1MACH(16)
176 R1M5 = D1MACH(5)
177 K = MIN0(IABS(K1),IABS(K2))
178 ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
179 K1 = I1MACH(14) - 1
180 AA = R1M5*DBLE(FLOAT(K1))
181 DIG = DMIN1(AA,18.0D0)
182 AA = AA*2.303D0
183 ALIM = ELIM + DMAX1(-AA,-41.45D0)
184 RL = 1.2D0*DIG + 3.0D0
185 FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
186 C-----------------------------------------------------------------------
187 C TEST FOR PROPER RANGE
188 C-----------------------------------------------------------------------
189 AZ = AZABS(ZR,ZI)
190 FN = FNU+DBLE(FLOAT(N-1))
191 AA = 0.5D0/TOL
192 BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
193 AA = DMIN1(AA,BB)
194 IF (AZ.GT.AA) GO TO 260
195 IF (FN.GT.AA) GO TO 260
196 AA = DSQRT(AA)
197 IF (AZ.GT.AA) IERR=3
198 IF (FN.GT.AA) IERR=3
199 C-----------------------------------------------------------------------
200 C CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
201 C WHEN FNU IS LARGE
202 C-----------------------------------------------------------------------
203 CII = 1.0D0
204 INU = INT(SNGL(FNU))
205 INUH = INU/2
206 IR = INU - 2*INUH
207 ARG = (FNU-DBLE(FLOAT(INU-IR)))*HPI
208 CSGNR = DCOS(ARG)
209 CSGNI = DSIN(ARG)
210 IF (MOD(INUH,2).EQ.0) GO TO 40
211 CSGNR = -CSGNR
212 CSGNI = -CSGNI
213 40 CONTINUE
214 C-----------------------------------------------------------------------
215 C ZN IS IN THE RIGHT HALF PLANE
216 C-----------------------------------------------------------------------
217 ZNR = ZI
218 ZNI = -ZR
219 IF (ZI.GE.0.0D0) GO TO 50
220 ZNR = -ZNR
221 ZNI = -ZNI
222 CSGNI = -CSGNI
223 CII = -CII
224 50 CONTINUE
225 CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
226 * ELIM, ALIM)
227 IF (NZ.LT.0) GO TO 130
228 NL = N - NZ
229 IF (NL.EQ.0) RETURN
230 RTOL = 1.0D0/TOL
231 ASCLE = D1MACH(1)*RTOL*1.0D+3
232 DO 60 I=1,NL
233 C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
234 C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
235 C CYR(I) = STR
236 AA = CYR(I)
237 BB = CYI(I)
238 ATOL = 1.0D0
239 IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
240 AA = AA*RTOL
241 BB = BB*RTOL
242 ATOL = TOL
243 55 CONTINUE
244 STR = AA*CSGNR - BB*CSGNI
245 STI = AA*CSGNI + BB*CSGNR
246 CYR(I) = STR*ATOL
247 CYI(I) = STI*ATOL
248 STR = -CSGNI*CII
249 CSGNI = CSGNR*CII
250 CSGNR = STR
251 60 CONTINUE
252 RETURN
253 130 CONTINUE
254 IF(NZ.EQ.(-2)) GO TO 140
255 NZ = 0
256 IERR = 2
257 RETURN
258 140 CONTINUE
259 NZ=0
260 IERR=5
261 RETURN
262 260 CONTINUE
263 NZ=0
264 IERR=4
265 RETURN