Notes on evaluating Δ_n factor in the lattice sums.
[qpms.git] / qpms / translations_python.c
blob53e4d58cb6e941503ca8e3e8410c81ee5cd54320
1 #include <math.h>
2 #include "qpms_types.h"
3 #include "qpms_specfunc.h"
4 #include "gaunt.h"
5 #include "translations.h"
6 #include "indexing.h" // TODO replace size_t and int with own index types here
7 #include <stdbool.h>
8 #include <gsl/gsl_sf_legendre.h>
9 #include <gsl/gsl_sf_bessel.h>
10 #include "tiny_inlines.h"
11 #include "assert_cython_workaround.h"
12 #include "kahansum.h"
13 #include <gsl/gsl_sf_coupling.h>
14 #include "qpms_error.h"
15 #include "normalisation.h"
17 //#ifdef QPMS_COMPILE_PYTHON_EXTENSIONS
18 #include <string.h>
20 #ifdef QPMS_USE_OMP
21 #include <omp.h>
22 #endif
24 int qpms_cython_trans_calculator_get_AB_arrays_loop(
25 const qpms_trans_calculator *c, const qpms_bessel_t J, const int resnd,
26 const int daxis, const int saxis,
27 char *A_data, const npy_intp *A_shape, const npy_intp *A_strides,
28 char *B_data, const npy_intp *B_shape, const npy_intp *B_strides,
29 const char *r_data, const npy_intp *r_shape, const npy_intp *r_strides,
30 const char *theta_data, const npy_intp *theta_shape, const npy_intp *theta_strides,
31 const char *phi_data, const npy_intp *phi_shape, const npy_intp *phi_strides,
32 const char *r_ge_d_data, const npy_intp *r_ge_d_shape, const npy_intp *r_ge_d_strides){
33 assert(daxis != saxis);
34 assert(resnd >= 2);
35 int longest_axis = 0;
36 int longestshape = 1;
37 const npy_intp *resultshape = A_shape, *resultstrides = A_strides;
38 // TODO put some restrict's everywhere?
39 for (int ax = 0; ax < resnd; ++ax){
40 assert(A_shape[ax] == B_shape[ax]);
41 assert(A_strides[ax] == B_strides[ax]);
42 if (daxis == ax || saxis == ax) continue;
43 if (A_shape[ax] > longestshape) {
44 longest_axis = ax;
45 longestshape = 1;
48 const npy_intp longlen = resultshape[longest_axis];
50 npy_intp innerloop_shape[resnd];
51 for (int ax = 0; ax < resnd; ++ax) {
52 innerloop_shape[ax] = resultshape[ax];
54 /* longest axis will be iterated in the outer (parallelized) loop.
55 * Therefore, longest axis, together with saxis and daxis,
56 * will not be iterated in the inner loop:
57 */
58 innerloop_shape[longest_axis] = 1;
59 innerloop_shape[daxis] = 1;
60 innerloop_shape[saxis] = 1;
62 // these are the 'strides' passed to the qpms_trans_calculator_get_AB_arrays_ext
63 // function, which expects 'const double *' strides, not 'char *' ones.
64 const npy_intp dstride = resultstrides[daxis] / sizeof(complex double);
65 const npy_intp sstride = resultstrides[saxis] / sizeof(complex double);
67 int errval = 0;
68 // TODO here start parallelisation
69 //#pragma omp parallel
71 npy_intp local_indices[resnd];
72 memset(local_indices, 0, sizeof(local_indices));
73 int errval_local = 0;
74 size_t longi;
75 //#pragma omp for
76 for(longi = 0; longi < longlen; ++longi) {
77 // this might be done also in the inverse order, but this is more
78 // 'c-contiguous' way of incrementing the indices
79 int ax = resnd - 1;
80 while(ax >= 0) {
81 /* calculate the correct index/pointer for each array used.
82 * This can be further optimized from O(resnd * total size of
83 * the result array) to O(total size of the result array), but
84 * fick that now
86 const char *r_p = r_data + r_strides[longest_axis] * longi;
87 const char *theta_p = theta_data + theta_strides[longest_axis] * longi;
88 const char *phi_p = phi_data + phi_strides[longest_axis] * longi;
89 const char *r_ge_d_p = r_ge_d_data + r_ge_d_strides[longest_axis] * longi;
90 char *A_p = A_data + A_strides[longest_axis] * longi;
91 char *B_p = B_data + B_strides[longest_axis] * longi;
92 for(int i = 0; i < resnd; ++i) {
93 // following two lines are probably not needed, as innerloop_shape is there 1 anyway
94 // so if i == daxis, saxis, or longest_axis, local_indices[i] is zero.
95 if (i == longest_axis) continue;
96 if (daxis == i || saxis == i) continue;
97 r_p += r_strides[i] * local_indices[i];
98 theta_p += theta_strides[i] * local_indices[i];
99 phi_p += phi_strides[i] * local_indices[i];
100 A_p += A_strides[i] * local_indices[i];
101 B_p += B_strides[i] * local_indices[i];
104 // perform the actual task here
105 errval_local |= qpms_trans_calculator_get_AB_arrays_ext(c, (complex double *)A_p,
106 (complex double *)B_p,
107 dstride, sstride,
108 // FIXME change all the _ext function types to npy_... so that
109 // these casts are not needed
110 *((double *) r_p), *((double *) theta_p), *((double *)phi_p),
111 (int)(*((npy_bool *) r_ge_d_p)), J);
112 QPMS_ENSURE_SUCCESS(errval_local);
114 // increment the last index 'digit' (ax is now resnd-1; we don't have do-while loop in python)
115 ++local_indices[ax];
116 while(local_indices[ax] == innerloop_shape[ax] && ax >= 0) {
117 // overflow to the next digit but stop when reached below the last one
118 local_indices[ax] = 0;
119 //local_indices[--ax]++; // dekrementace indexu pod nulu a následná inkrementace poruší paměť FIXME
120 ax--;
121 if (ax >= 0) local_indices[ax]++;
123 if (ax >= 0) // did not overflow, get back to the lowest index
124 ax = resnd - 1;
127 errval |= errval_local;
129 // FIXME when parallelizing
130 // TODO Here end parallelisation
131 return errval;
135 //#endif // QPMS_COMPILE_PYTHON_EXTENSIONS