1 #LyX 2.4 created this file. For more info see https://www.lyx.org/
5 \save_transient_properties true
8 \use_default_options true
9 \maintain_unincluded_children false
11 \language_package default
14 \font_roman "default" "default"
15 \font_sans "default" "default"
16 \font_typewriter "default" "default"
17 \font_math "auto" "auto"
18 \font_default_family default
19 \use_non_tex_fonts false
23 \font_typewriter_osf false
24 \font_sf_scale 100 100
25 \font_tt_scale 100 100
27 \use_dash_ligatures true
29 \default_output_format default
31 \bibtex_command default
32 \index_command default
33 \paperfontsize default
37 \use_package amsmath 1
38 \use_package amssymb 1
41 \use_package mathdots 1
42 \use_package mathtools 1
44 \use_package stackrel 1
45 \use_package stmaryrd 1
46 \use_package undertilde 1
48 \cite_engine_type default
51 \paperorientation portrait
63 \paragraph_separation indent
64 \paragraph_indentation default
66 \math_numbering_side default
71 \paperpagestyle default
73 \tracking_changes false
84 \begin_inset CommandInset label
93 \begin_layout Standard
94 If the system has nontrivial point group symmetries, group theory gives
95 additional understanding of the system properties, and can be used to reduce
96 the computational costs.
100 \begin_layout Standard
101 As an example, if our system has a
102 \begin_inset Formula $D_{2h}$
105 symmetry and our truncated
106 \begin_inset Formula $\left(I-T\trops\right)$
110 \begin_inset Formula $N\times N$
114 \begin_inset Note Note
117 \begin_layout Plain Layout
119 \begin_inset Formula $N$
127 it can be block-diagonalized into eight blocks of size about
128 \begin_inset Formula $N/8\times N/8$
131 , each of which can be LU-factorised separately (this is due to the fact
133 \begin_inset Formula $D_{2h}$
136 has eight different one-dimensional irreducible representations).
137 This can reduce both memory and time requirements to solve the scattering
139 \begin_inset CommandInset ref
141 reference "eq:Multiple-scattering problem block form"
151 \begin_layout Standard
152 In periodic systems (problems
153 \begin_inset CommandInset ref
155 reference "eq:Multiple-scattering problem unit cell block form"
163 \begin_inset CommandInset ref
165 reference "eq:lattice mode equation"
172 ) due to small number of particles per unit cell, the costliest part is
173 usually the evaluation of the lattice sums in the
174 \begin_inset Formula $W\left(\omega,\vect k\right)$
177 matrix, not the linear algebra.
178 However, the lattice modes can be searched for in each irrep separately,
179 and the irrep dimension gives a priori information about mode degeneracy.
182 \begin_layout Subsection
183 Excitation coefficients under point group operations
186 \begin_layout Standard
187 \begin_inset Note Note
190 \begin_layout Plain Layout
191 TODO Zkontrolovat všechny vzorečky zde!!!
196 In order to use the point group symmetries, we first need to know how they
197 affect our basis functions, i.e.
201 \begin_layout Standard
203 \begin_inset Formula $g$
206 be a member of orthogonal group
207 \begin_inset Formula $O(3)$
211 a 3D point rotation or reflection operation that transforms vectors in
213 \begin_inset Formula $\reals^{3}$
216 with an orthogonal matrix
217 \begin_inset Formula $R_{g}$
223 \vect r\mapsto R_{g}\vect r.
229 \begin_inset Formula $\ush lm$
233 \begin_inset Formula $l$
236 -dimensional representation of
237 \begin_inset Formula $O(3)$
241 \begin_inset CommandInset citation
244 key "dresselhaus_group_2008"
252 \ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
258 \begin_inset Formula $D_{m,m'}^{l}\left(g\right)$
261 denotes the elements of the
265 representing the operation
266 \begin_inset Formula $g$
270 By their definition, vector spherical harmonics
271 \begin_inset Formula $\vsh 2lm,\vsh 3lm$
274 transform in the same way,
277 \vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
278 \vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
283 but the remaining set
284 \begin_inset Formula $\vsh 1lm$
287 transforms differently due to their pseudovector nature stemming from the
288 cross product in their definition:
291 \vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
297 \begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$
301 \begin_inset Formula $g$
304 is a proper rotation, but for spatial inversion operation
305 \begin_inset Formula $i:\vect r\mapsto-\vect r$
309 \begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$
313 The transformation behaviour of vector spherical harmonics directly propagates
314 to the spherical vector waves, cf.
316 \begin_inset CommandInset ref
318 reference "eq:VSWF regular"
326 \begin_inset CommandInset ref
328 reference "eq:VSWF outgoing"
338 \vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
339 \vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
344 (and analogously for the regular waves
345 \begin_inset Formula $\vswfrtlm{\tau}lm$
350 \begin_inset Note Note
353 \begin_layout Plain Layout
359 For convenience, we introduce the symbol
360 \begin_inset Formula $D_{m,m'}^{\tau l}$
363 that describes the transformation of both types (
364 \begin_inset Quotes eld
368 \begin_inset Quotes erd
372 \begin_inset Quotes eld
376 \begin_inset Quotes erd
382 \vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
387 Using these, we can express the VSWF expansion
388 \begin_inset CommandInset ref
390 reference "eq:E field expansion"
397 of the electric field around origin in a rotated/reflected system,
400 \vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
405 which, together with the
406 \begin_inset Formula $T$
410 \begin_inset CommandInset ref
412 reference "eq:T-matrix definition"
419 can be used to obtain a
420 \begin_inset Formula $T$
423 -matrix of a rotated or mirror-reflected particle.
425 \begin_inset Formula $T$
429 \begin_inset Formula $T$
432 -matrix of an original particle; the
433 \begin_inset Formula $T$
436 -matrix of a particle physically transformed by operation
437 \begin_inset Formula $g\in O(3)$
441 \begin_inset Note Note
444 \begin_layout Plain Layout
453 T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle}
458 If the particle is symmetric (so that
459 \begin_inset Formula $g$
462 produces a particle indistinguishable from the original one), the
463 \begin_inset Formula $T$
466 -matrix must remain invariant under the transformation
467 \begin_inset CommandInset ref
469 reference "eq:T-matrix of a transformed particle"
477 \begin_inset Formula $T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$
481 Explicit forms of these invariance properties for the most imporant point
482 group symmetries can be found in
483 \begin_inset CommandInset citation
485 key "schulz_point-group_1999"
493 \begin_layout Standard
494 If the field expansion is done around a point
495 \begin_inset Formula $\vect r_{p}$
498 different from the global origin, as in
499 \begin_inset CommandInset ref
501 reference "eq:E field expansion multiparticle"
511 \vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
512 +\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
520 \begin_layout Standard
521 \begin_inset Float figure
528 \begin_layout Plain Layout
530 \begin_inset CommandInset include
532 filename "orbits.tex"
540 \begin_layout Plain Layout
541 \begin_inset Caption Standard
543 \begin_layout Plain Layout
544 Scatterer orbits under
545 \begin_inset Formula $D_{2}$
550 \begin_inset Formula $A,B,C,D$
553 lie outside of origin or any mirror planes, and together constitute an
554 orbit of the size equal to the order of the group,
555 \begin_inset Formula $\left|D_{2}\right|=4$
560 \begin_inset Formula $E,F$
564 \begin_inset Formula $yz$
567 plane, hence the corresponding reflection maps each of them to itself,
569 \begin_inset Formula $xz$
573 \begin_inset Formula $\pi$
577 \begin_inset Formula $z$
580 axis) maps them to each other, forming a particle orbit of size 2
581 \begin_inset Note Note
584 \begin_layout Plain Layout
592 \begin_inset Formula $O$
595 in the very origin is always mapped to itself, constituting its own orbit.
596 \begin_inset CommandInset label
598 name "fig:D2-symmetric structure particle orbits"
615 \begin_layout Standard
616 \begin_inset Note Note
619 \begin_layout Plain Layout
620 TODO restructure this
625 With these transformation properties in hand, we can proceed to the effects
626 of point symmetries on the whole many-particle system.
627 Let us have a many-particle system symmetric with respect to a point group
629 \begin_inset Formula $G$
634 \begin_inset Formula $g\in G$
637 determines a permutation of the particles:
638 \begin_inset Formula $p\mapsto\pi_{g}(p)$
642 \begin_inset Formula $p\in\mathcal{P}$
647 \begin_inset Formula $p$
650 , we will call the set of particles onto which any of the symmetries maps
652 \begin_inset Formula $p$
657 \begin_inset Formula $\left\{ \pi_{g}\left(p\right);g\in G\right\} $
665 \begin_inset Formula $p$
670 \begin_inset Formula $\mathcal{P}$
673 can therefore be divided into the different particle orbits; an example
676 \begin_inset CommandInset ref
678 reference "fig:D2-symmetric structure particle orbits"
686 The importance of the particle orbits stems from the following: in the
687 multiple-scattering problem, outside of the scatterers
688 \begin_inset Note Note
691 \begin_layout Plain Layout
700 \vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)\right.+\label{eq:rotated E field expansion around outside origin-1}\\
701 & \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\\
702 & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right.+\\
703 & \quad+\left.\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
708 This means that the field expansion coefficients
709 \begin_inset Formula $\rcoeffp p,\outcoeffp p$
715 \rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
716 \outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
721 Obviously, the expansion coefficients belonging to particles in different
722 orbits do not mix together.
723 As before, we introduce a short-hand block-matrix notation for
724 \begin_inset CommandInset ref
726 reference "eq:excitation coefficient under symmetry operation"
733 (TODO avoid notation clash here in a more consistent and readable way!)
736 \begin_layout Standard
739 \rcoeff & \mapsto J\left(g\right)a,\nonumber \\
740 \outcoeff & \mapsto J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form}
746 \begin_inset Note Note
749 \begin_layout Plain Layout
751 \begin_inset Formula $D\left(g\right)$
755 \begin_inset Formula $g\in G$
758 will play a crucial role blablabla
763 If the particle indices are ordered in a way that the particles belonging
764 to the same orbit are grouped together,
765 \begin_inset Formula $J\left(g\right)$
768 will be a block-diagonal unitary matrix, each block (also unitary) representing
770 \begin_inset Formula $g$
773 on one particle orbit.
775 \begin_inset Formula $J\left(g\right)$
778 s make together a (reducible) linear representation of
779 \begin_inset Formula $G$
785 \begin_layout Subsection
789 \begin_layout Standard
790 Knowledge of symmetry group actions
791 \begin_inset Formula $J\left(g\right)$
794 on the field expansion coefficients give us the possibility to construct
795 a symmetry adapted basis in which we can block-diagonalise the multiple-scatter
797 \begin_inset Formula $\left(I-TS\right)$
802 \begin_inset Formula $\Gamma_{n}$
806 \begin_inset Formula $d_{n}$
809 -dimensional irreducible matrix representations of
810 \begin_inset Formula $G$
813 consisting of matrices
814 \begin_inset Formula $D^{\Gamma_{n}}\left(g\right)$
818 Then the projection operators
821 P_{kl}^{\left(\Gamma_{n}\right)}\equiv\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{kl}^{*}J\left(g\right),\quad k,l=1,\dots,d_{n}
826 project the full scattering system field expansion coefficient vectors
827 \begin_inset Formula $\rcoeff,\outcoeff$
830 onto a subspace corresponding to the irreducible representation
831 \begin_inset Formula $\Gamma_{n}$
835 The projectors can be used to construct a unitary transformation
836 \begin_inset Formula $U$
842 U_{nri;p\tau lm}=\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{rr}^{*}J\left(g\right)_{p'\tau'l'm'(nri);p\tau lm}\label{eq:SAB unitary transformation operator}
848 \begin_inset Formula $r$
852 \begin_inset Formula $1$
856 \begin_inset Formula $d_{n}$
860 \begin_inset Formula $i$
863 goes from 1 through the multiplicity of irreducible representation
864 \begin_inset Formula $\Gamma_{n}$
867 in the (reducible) representation of
868 \begin_inset Formula $G$
871 spanned by the field expansion coefficients
872 \begin_inset Formula $\rcoeff$
876 \begin_inset Formula $\outcoeff$
881 \begin_inset Formula $p',\tau',l',m'$
884 are given by an arbitrary bijective mapping
885 \begin_inset Formula $\left(n,r,i\right)\mapsto\left(p',\tau',l',m'\right)$
888 with the constraint that for given
889 \begin_inset Formula $n,r,i$
892 there are at least some non-zero elements
893 \begin_inset Formula $U_{nri;p\tau lm}$
897 For details, we refer the reader to textbooks about group representation
899 \begin_inset Note Note
902 \begin_layout Plain Layout
903 or linear representations?
910 \begin_inset CommandInset citation
913 key "dresselhaus_group_2008"
919 \begin_inset CommandInset citation
922 key "bradley_mathematical_1972"
928 The transformation given by
929 \begin_inset Formula $U$
932 transforms the excitation coefficient vectors
933 \begin_inset Formula $\rcoeff,\outcoeff$
938 symmetry-adapted basis
944 \begin_layout Standard
945 One can show that if an operator
946 \begin_inset Formula $M$
949 acting on the excitation coefficient vectors is invariant under the operations
951 \begin_inset Formula $G$
957 \forall g\in G:J\left(g\right)MJ\left(g\right)^{\dagger}=M,
962 then in the symmetry-adapted basis,
963 \begin_inset Formula $M$
966 is block diagonal, or more specifically
969 M_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M{}_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
975 \begin_inset Formula $T$
979 \begin_inset Formula $\trops$
982 operators (and trivially also the identity
983 \begin_inset Formula $I$
987 \begin_inset CommandInset ref
989 reference "eq:Multiple-scattering problem block form"
996 are invariant under the actions of whole system symmetry group, so
997 \begin_inset Formula $\left(I-T\trops\right)$
1000 is also invariant, hence
1001 \begin_inset Formula $U\left(I-T\trops\right)U^{\dagger}$
1004 is a block-diagonal matrix, and the problem
1005 \begin_inset CommandInset ref
1007 reference "eq:Multiple-scattering problem block form"
1014 can be solved for each block separately.
1017 \begin_layout Standard
1018 From the computational perspective, it is important to note that
1019 \begin_inset Formula $U$
1022 is at least as sparse as
1023 \begin_inset Formula $J\left(g\right)$
1027 \begin_inset Quotes eld
1031 \begin_inset Quotes erd
1034 diagonal), hence the block-diagonalisation can be performed fast.
1036 \begin_inset Note Note
1039 \begin_layout Plain Layout
1048 \begin_layout Subsection
1052 \begin_layout Standard
1053 For periodic systems, we can in similar manner also block-diagonalise the
1055 \begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-W\left(\omega,\vect k\right)T\left(\omega\right)\right)$
1058 from the left hand side of eqs.
1060 \begin_inset CommandInset ref
1062 reference "eq:Multiple-scattering problem unit cell block form"
1070 \begin_inset CommandInset ref
1072 reference "eq:lattice mode equation"
1080 Hovewer, in this case,
1081 \begin_inset Formula $W\left(\omega,\vect k\right)$
1084 is in general not invariant under the whole point group symmetry subgroup
1085 of the system geometry due to the
1086 \begin_inset Formula $\vect k$
1090 In other words, only those point symmetries that the
1091 \begin_inset Formula $e^{i\vect k\cdot\vect r}$
1094 modulation does not break are preserved, and no preservation of point symmetrie
1096 \begin_inset Formula $\vect k$
1099 lies somewhere in the high-symmetry parts of the Brillouin zone.
1100 However, the high-symmetry points are usually the ones of the highest physical
1101 interest, for it is where the band edges
1102 \begin_inset Note Note
1105 \begin_layout Plain Layout
1107 \begin_inset Quotes eld
1111 \begin_inset Quotes erd
1119 are typically located.
1122 \begin_layout Standard
1123 The transformation to the symmetry adapted basis
1124 \begin_inset Formula $U$
1127 is constructed in a similar way as in the finite case, but because we do
1128 not work with all the (infinite number of) scatterers but only with one
1129 unit cell, additional phase factors
1130 \begin_inset Formula $e^{i\vect k\cdot\vect r_{p}}$
1133 appear in the per-unit-cell group action
1134 \begin_inset Formula $J(g)$
1138 This is illustrated in Fig.
1140 \begin_inset CommandInset ref
1142 reference "Phase factor illustration"
1150 \begin_inset Float figure
1157 \begin_layout Plain Layout
1161 \begin_layout Plain Layout
1162 \begin_inset Caption Standard
1164 \begin_layout Plain Layout
1165 \begin_inset CommandInset label
1167 name "Phase factor illustration"
1179 \begin_layout Plain Layout
1188 \begin_layout Standard
1189 More rigorous analysis can be found e.g.
1191 \begin_inset CommandInset citation
1193 after "chapters 10–11"
1194 key "dresselhaus_group_2008"
1202 \begin_layout Standard
1203 \begin_inset Note Note
1206 \begin_layout Plain Layout
1207 In the group-theoretical terminology, blablabla little groups blabla bla...
1215 \begin_layout Standard
1216 \begin_inset Note Note
1219 \begin_layout Plain Layout
1220 A general overview of utilizing group theory to find lattice modes at high-symme
1221 try points of the Brillouin zone can be found e.g.
1223 \begin_inset CommandInset citation
1225 after "chapters 10–11"
1226 key "dresselhaus_group_2008"
1231 ; here we use the same notation.
1234 \begin_layout Plain Layout
1235 We analyse the symmetries of the system in the same VSWF representation
1237 \begin_inset Formula $T$
1240 -matrix formalism introduced above.
1241 We are interested in the modes at the
1242 \begin_inset Formula $\Kp$
1245 -point of the hexagonal lattice, which has the
1246 \begin_inset Formula $D_{3h}$
1250 The six irreducible representations (irreps) of the
1251 \begin_inset Formula $D_{3h}$
1254 group are known and are available in the literature in their explicit forms.
1255 In order to find and classify the modes, we need to find a decomposition
1256 of the lattice mode representation
1257 \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
1261 \begin_inset Formula $D_{3h}$
1265 The equivalence representation
1266 \begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
1270 \begin_inset Formula $E'$
1273 representation as can be deduced from
1274 \begin_inset CommandInset citation
1277 key "dresselhaus_group_2008"
1283 (11.19) and the character table for
1284 \begin_inset Formula $D_{3h}$
1289 \begin_inset Formula $\Gamma_{\mathrm{vec.}}$
1292 operates on a space spanned by the VSWFs around each nanoparticle in the
1293 unit cell (the effects of point group operations on VSWFs are described
1295 \begin_inset CommandInset citation
1297 key "schulz_point-group_1999"
1303 This space can be then decomposed into invariant subspaces of the
1304 \begin_inset Formula $D_{3h}$
1307 using the projectors
1308 \begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
1312 \begin_inset CommandInset citation
1315 key "dresselhaus_group_2008"
1321 This way, we obtain a symmetry adapted basis
1322 \begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
1325 as linear combinations of VSWFs
1326 \begin_inset Formula $\vswfs lm{p,t}$
1329 around the constituting nanoparticles (labeled
1330 \begin_inset Formula $p$
1334 \begin_inset Formula
1336 \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
1342 \begin_inset Formula $\Gamma$
1345 stands for one of the six different irreps of
1346 \begin_inset Formula $D_{3h}$
1350 \begin_inset Formula $r$
1353 labels the different realisations of the same irrep, and the last index
1355 \begin_inset Formula $i$
1359 \begin_inset Formula $d_{\Gamma}$
1362 (the dimensionality of
1363 \begin_inset Formula $\Gamma$
1366 ) labels the different partners of the same given irrep.
1367 The number of how many times is each irrep contained in
1368 \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
1373 \begin_inset Formula $r$
1377 \begin_inset Formula $\Gamma$
1380 ) depends on the multipole degree cutoff
1381 \begin_inset Formula $l_{\mathrm{max}}$
1387 \begin_layout Plain Layout
1389 \begin_inset Formula $\Kp$
1392 -point shall lie in the irreducible spaces of only one of the six possible
1393 irreps and it can be shown via
1394 \begin_inset CommandInset citation
1397 key "dresselhaus_group_2008"
1403 \begin_inset Formula $\Kp$
1407 \begin_inset Formula $M\left(\omega,\vect k\right)$
1410 defined above takes a block-diagonal form in the symmetry-adapted basis,
1412 \begin_inset Formula
1414 M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
1419 This enables us to decompose the matrix according to the irreps and to solve
1420 the singular value problem in each irrep separately, as done in Fig.
1422 \begin_inset CommandInset ref
1424 reference "smfig:dispersions"