1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
6 \use_default_options true
7 \maintain_unincluded_children false
9 \language_package default
12 \font_roman TeX Gyre Pagella
14 \font_typewriter default
16 \font_default_family default
17 \use_non_tex_fonts true
23 \default_output_format pdf4
25 \bibtex_command default
26 \index_command default
27 \paperfontsize default
30 \pdf_title "Sähköpajan päiväkirja"
31 \pdf_author "Marek Nečada"
33 \pdf_bookmarksnumbered false
34 \pdf_bookmarksopen false
35 \pdf_bookmarksopenlevel 1
43 \use_package amsmath 1
44 \use_package amssymb 1
47 \use_package mathdots 1
48 \use_package mathtools 1
50 \use_package stackrel 1
51 \use_package stmaryrd 1
52 \use_package undertilde 1
54 \cite_engine_type default
58 \paperorientation portrait
68 \paragraph_separation indent
69 \paragraph_indentation default
70 \quotes_language swedish
73 \paperpagestyle default
74 \tracking_changes false
84 Symmetry-adapted basis functions for honeycomb lattice at
85 \begin_inset Formula $K$
95 \begin_layout Standard
97 \begin_inset Formula $\mathbf{G}$
101 \begin_inset Formula $\Gamma^{i}\left\{ R\to\mathbf{D}^{i}\left(R\right)\right\} $
105 \begin_inset Formula $d_{i}$
109 \begin_inset Formula $\mathbf{G}$
113 Let the group ring (corresponding to the given rep indexed by
114 \begin_inset Formula $i$
117 ) elements be defined as [Bradley&Cracknell (2.2.2)]
120 W_{ts}^{i}=\frac{d_{i}}{\left|\mathbf{G}\right|}\sum_{R\in\mathbf{G}}\mathbf{D}^{i}\left(R\right)_{ts}^{*}R.
128 \begin_layout Standard
129 From [Bradley&Cracknell, theorem 2.2.1]:
132 \begin_layout Standard
134 \begin_inset Formula $\phi$
137 is an arbitrary function of
138 \begin_inset Formula $V$
141 (a linear space in which the realisation of the group operation act) such
143 \begin_inset Formula $W_{ss}^{i}\phi\ne0$
147 \begin_inset Formula $s$
150 is fixed and is a number in the range 1 to
151 \begin_inset Formula $d_{i}$
155 \begin_inset Formula $i$
158 is idx of the rep) then the funs
159 \begin_inset Formula $W_{ts}^{i}\phi=\phi_{t}^{i}$
163 \begin_inset Formula $t=1$
167 \begin_inset Formula $d_{i}$
170 , form a basis for the rep
171 \begin_inset Formula $\Gamma^{i}$
177 \begin_layout Section
178 Particle-centered transformations
181 \begin_layout Standard
182 Now let's see what are the point group actions on SVWF in the origin [Schulz]:
185 \begin_layout Standard
187 <lyxtabular version="3" rows="4" columns="3">
188 <features rotate="0" tabularvalignment="middle">
189 <column alignment="center" valignment="top">
190 <column alignment="center" valignment="top">
191 <column alignment="center" valignment="top">
193 <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
196 \begin_layout Plain Layout
197 \begin_inset Formula $Z$
201 \begin_inset Formula $2\pi/N$
209 <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
212 \begin_layout Plain Layout
213 \begin_inset Formula $C_{N}M_{l}^{m}=e^{\pm?i2\pi m/N}M_{l}^{m}$
221 <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
224 \begin_layout Plain Layout
225 \begin_inset Formula $C_{N}N_{l}^{m}=e^{\pm?i2\pi m/N}N_{l}^{m}$
235 <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
238 \begin_layout Plain Layout
239 Horizontal (xy) reflection
244 <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
247 \begin_layout Plain Layout
248 \begin_inset Formula $\sigma_{h}M_{l}^{m}=\left(-1\right)^{m+l+1}M_{l}^{m}$
256 <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
259 \begin_layout Plain Layout
260 \begin_inset Formula $\sigma_{h}N_{l}^{m}=\left(-1\right)^{m+l}N_{l}^{m}$
270 <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
273 \begin_layout Plain Layout
274 Vertical (yz) reflection
279 <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
282 \begin_layout Plain Layout
283 \begin_inset Formula $\sigma_{yz}M_{l}^{m}=-M_{l}^{-m}$
291 <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
294 \begin_layout Plain Layout
295 \begin_inset Formula $\sigma_{yz}N_{l}^{m}=N_{l}^{-m}$
305 <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
308 \begin_layout Plain Layout
309 Vertical (xz) reflection
314 <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
317 \begin_layout Plain Layout
318 \begin_inset Formula $\sigma_{xz}M_{l}^{m}=\left(-1\right)^{m+1}M_{l}^{-m}$
326 <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
329 \begin_layout Plain Layout
330 \begin_inset Formula $\sigma_{xz}N_{l}^{m}=\left(-1\right)^{m}N_{l}^{-m}$
346 \begin_layout Section
347 Transformations in a lattice
350 \begin_layout Standard