1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
6 \use_default_options true
10 \maintain_unincluded_children false
12 \language_package default
15 \font_roman TeX Gyre Pagella
17 \font_typewriter default
19 \font_default_family default
20 \use_non_tex_fonts true
26 \default_output_format pdf4
28 \bibtex_command default
29 \index_command default
33 \pdf_title "Sähköpajan päiväkirja"
34 \pdf_author "Marek Nečada"
36 \pdf_bookmarksnumbered false
37 \pdf_bookmarksopen false
38 \pdf_bookmarksopenlevel 1
46 \use_package amsmath 1
47 \use_package amssymb 1
50 \use_package mathdots 1
51 \use_package mathtools 1
53 \use_package stackrel 1
54 \use_package stmaryrd 1
55 \use_package undertilde 1
57 \cite_engine_type default
61 \paperorientation portrait
75 \paragraph_separation indent
76 \paragraph_indentation default
77 \quotes_language english
80 \paperpagestyle default
81 \tracking_changes false
90 \begin_layout Standard
91 \begin_inset FormulaMacro
92 \newcommand{\uoft}[1]{\mathfrak{F}#1}
96 \begin_inset FormulaMacro
97 \newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
101 \begin_inset FormulaMacro
102 \newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
106 \begin_inset FormulaMacro
107 \newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
111 \begin_inset FormulaMacro
112 \newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
116 \begin_inset FormulaMacro
117 \newcommand{\vect}[1]{\mathbf{#1}}
121 \begin_inset FormulaMacro
122 \newcommand{\ud}{\mathrm{d}}
126 \begin_inset FormulaMacro
127 \newcommand{\basis}[1]{\mathfrak{#1}}
131 \begin_inset FormulaMacro
132 \newcommand{\dc}[1]{Ш_{#1}}
136 \begin_inset FormulaMacro
137 \newcommand{\rec}[1]{#1^{-1}}
141 \begin_inset FormulaMacro
142 \newcommand{\recb}[1]{#1^{\widehat{-1}}}
146 \begin_inset FormulaMacro
147 \newcommand{\ints}{\mathbb{Z}}
151 \begin_inset FormulaMacro
152 \newcommand{\nats}{\mathbb{N}}
156 \begin_inset FormulaMacro
157 \newcommand{\reals}{\mathbb{R}}
161 \begin_inset FormulaMacro
162 \newcommand{\ush}[2]{Y_{#1,#2}}
166 \begin_inset FormulaMacro
167 \newcommand{\hgfr}{\mathbf{F}}
171 \begin_inset FormulaMacro
172 \newcommand{\ph}{\mathrm{ph}}
176 \begin_inset FormulaMacro
177 \newcommand{\kor}[1]{\underline{#1}}
181 \begin_inset FormulaMacro
182 \newcommand{\koru}[1]{\overline{#1}}
186 \begin_inset FormulaMacro
191 \begin_inset FormulaMacro
192 \newcommand{\bra}[1]{\left\langle #1\right|}
196 \begin_inset FormulaMacro
197 \newcommand{\ket}[1]{\left|#1\right\rangle }
201 \begin_inset FormulaMacro
202 \newcommand{\sci}[1]{\mathfrak{#1}}
209 Radiation power balance in nanoparticles
216 \begin_layout Abstract
217 This memo deals with the formulae for radiation transfer, absorption, extinction
218 for single particle and composite system of several nanoparticles.
219 I also derive some natural conditions on the
220 \begin_inset Formula $T$
226 \begin_layout Section*
230 \begin_layout Standard
231 If not stated otherwise, Kristensson's notation and normalisation conventions
232 are used in this memo.
233 That means, among other things, that the
234 \begin_inset Formula $T$
237 -matrix is dimensionless and the expansion coefficients of spherical waves
239 \begin_inset Formula $\sqrt{\mbox{power}}$
245 \begin_layout Section
249 \begin_layout Subsection
250 Power transfer formula, absorption
253 \begin_layout Standard
254 The power radiated away by a linear scatterer at fixed harmonic frequency
255 is according to [Kris (2.28)]
258 P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
264 \begin_inset Formula $n$
267 is a multiindex describing the type (E/M) and multipole degree and order
269 \begin_inset Formula $f_{n}$
272 is the coefficient corresponding to
276 (Hankel function based) and
277 \begin_inset Formula $a_{n}$
284 (first-order Bessel function based) waves.
287 \begin_layout Standard
288 This is minus the power absorbed by the nanoparticle, and unless the particle
289 has some gain mechanism, this cannot be positive.
290 The basic condition for a physical nanoparticle therefore reads
293 P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)\le0.\label{eq:Absorption is never negative}
301 \begin_layout Subsection
303 \begin_inset Formula $T$
309 \begin_layout Standard
310 For a linear scatterer, the outgoing and regular wave coefficients are connected
312 \begin_inset Formula $T$
318 f_{n}=\sum_{n'}T_{nn'}a_{n'}.\label{eq:T-matrix definition}
326 \begin_layout Standard
328 \begin_inset CommandInset ref
330 reference "eq:Absorption is never negative"
334 enables us to derive some conditions on the
335 \begin_inset Formula $T$
339 Let the particle be driven by a wave of a single type
340 \begin_inset Formula $m$
343 only so the coefficients of all other components of the driving field are
345 \begin_inset Formula $a_{n}=\delta_{nm}$
350 \begin_inset CommandInset ref
352 reference "eq:Absorption is never negative"
357 \begin_inset CommandInset ref
359 reference "eq:T-matrix definition"
366 P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\label{eq:Absorption is never negative with T}\\
367 & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
368 & = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
373 a condition that should be ensured to be true e.g.
375 \begin_inset Formula $T$
378 -matrices generated by SCUFF-EM.
382 For a particle of spherical symmetry
383 \begin_inset Formula $T_{nm}\propto\delta_{nm}$
387 \begin_inset CommandInset ref
389 reference "eq:Absorption is never negative for single wave type"
394 \begin_inset Formula $-\Re T_{mm}\ge\left|T_{mm}\right|^{2}$
397 which in turn implies
398 \begin_inset Formula $\left|T_{mm}\right|<1$
402 (Any similar conclusion for the general case?)
405 \begin_layout Problem
407 \begin_inset CommandInset ref
409 reference "eq:Absorption is never negative for single wave type"
413 is the consequence of the condition
414 \begin_inset CommandInset ref
416 reference "eq:Absorption is never negative"
422 \begin_inset CommandInset ref
424 reference "eq:Absorption is never negative"
429 \begin_inset CommandInset ref
431 reference "eq:Absorption is never negative for single wave type"
438 \begin_layout Standard
439 Let me rewrite the expression
440 \begin_inset CommandInset ref
442 reference "eq:Absorption is never negative with T"
446 (without any assumptions about the values of the coefficients
447 \begin_inset Formula $a_{n}$
450 ) in Dirac notation where the ket
451 \begin_inset Formula $\ket a$
454 is the vector of all the exciting wave coefficients
455 \begin_inset Formula $a_{n}$
460 \begin_inset Formula $\ket{e_{m}}$
463 is the unit vector containing one for the wave indexed by
464 \begin_inset Formula $m$
467 and zeros for the rest, so that
468 \begin_inset Formula $T_{mn}=\bra{e_{m}}T\ket{e_{n}}$
472 The general expression
473 \begin_inset CommandInset ref
475 reference "eq:Absorption is never negative with T"
480 \begin_inset CommandInset ref
482 reference "eq:Absorption is never negative"
489 P & = & \frac{1}{2}\left(\sum_{n}\left|\bra{e_{n}}T\ket a\right|^{2}+\Re\bra aT\ket a\right)\nonumber \\
490 & = & \frac{1}{2}\left(\sum_{n}\bra aT^{\dagger}\ket{e_{n}}\bra{e_{n}}T\ket a+\frac{1}{2}\left(\bra aT\ket a+\bra aT\ket a^{*}\right)\right)\nonumber \\
491 & = & \frac{1}{2}\bra aT^{\dagger}T\ket a+\frac{1}{4}\bra a\left(T+T^{\dagger}\right)\ket a\le0\qquad\forall\ket a,\label{eq:Absorption is never negative in Dirac notation}
496 giving the following condition on the
497 \begin_inset Formula $T$
503 \begin_layout Proposition
505 \begin_inset Formula $T$
509 \begin_inset Formula $T$
512 is unphysical unless the matrix
515 W\equiv\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}\label{eq:Definition of the power matrix}
520 is negative (semi)definite.
523 \begin_layout Standard
525 \begin_inset Formula $W$
528 is self-adjoint and it has a clear interpretation given by
529 \begin_inset CommandInset ref
531 reference "eq:Absorption is never negative in Dirac notation"
535 – for an exciting field given by its expansion coefficient vector
536 \begin_inset Formula $\ket a$
540 \begin_inset Formula $-P=-\bra aW\ket a$
543 is the power absorbed by the scatterer.
546 \begin_layout Subsection
550 \begin_layout Standard
551 Radiation energy conserving scatterer is not very realistic, but it might
552 provide some simplifications necessary for developing the topological theory.
555 \begin_layout Standard
556 A scatterer always conserves the radiation energy iff
557 \begin_inset Formula $W=0$
564 \frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}=0.
572 \begin_layout Subsubsection
574 \begin_inset Formula $T$
580 \begin_layout Standard
581 To get some insight into what does this mean, it might be useful to start
583 \begin_inset Formula $T$
587 \begin_inset Formula $T_{mn}=t_{n}\delta_{mn}$
591 a spherical particle).
593 \begin_inset Formula $m$
596 -th matrix element we have
599 \left(\Re t_{n}\right)^{2}+\left(\Im t_{n}\right)^{2}+\Re t_{n}=0
607 \left(\Re t_{n}+\frac{1}{2}\right)^{2}+\left(\Im t_{n}\right)^{2}=\left(\frac{1}{2}\right)^{2}
612 which gives a relation between the real and imaginary parts of the scattering
615 \begin_inset Quotes eld
619 \begin_inset Quotes erd
623 \begin_inset Formula $t_{n}=0$
626 (no scattering at all) and
627 \begin_inset Formula $t_{n}=-1$
631 In general, the possible values lie on a half-unit circle in the complex
632 plane with the centre at
633 \begin_inset Formula $-1/2$
637 The half-unit disk delimited by the circle is the (realistic) lossy region,
638 while everything outside it represents (unrealistic) system with gain.
641 \begin_layout Subsection
645 \begin_layout Subsubsection
646 How much does the sph.
648 degree cutoff affect the eigenvalues of
649 \begin_inset Formula $W$
655 \begin_layout Standard
656 When I simulated a cylindrical nanoparticle in scuff-tmatrix (
657 \begin_inset Formula $l_{\mathrm{max}}=2$
660 , 50 nm height, 50 nm radius, Palik Ag permittivity) and then with the same
661 parameters, just with the imaginary part of permittivity set to zero (i.e.
662 without losses), I got almost the same results, including very similar
664 \begin_inset Formula $W$
667 (although it should then be basically zero).
668 This is probably a problem of the BEM method, but it could also be consequence
672 \begin_layout Standard
673 For comparison, when I tried exact Mie results for a sphere with
674 \begin_inset Formula $\Im\epsilon=0$
678 \begin_inset Formula $W=0$
683 \begin_inset Formula $T$
686 -matrix of a sphere is diagonal, hence the cutoff does not affect the eigenvalue
687 s of resulting (also diagonal)
688 \begin_inset Formula $W$
691 -matrix (below the cutoff, of course).
694 \begin_layout Section
698 \begin_layout Standard
699 The purpose of this section is to clarify the formulae for absorption and
700 extinction in a system of multiple scatterers.
701 Let the scatterers be indexed by fraktur letters, so the power
702 \begin_inset Quotes eld
706 \begin_inset Quotes erd
710 \begin_inset Formula $\sci k$
714 \begin_inset Formula $P^{\sci k}$
718 Quantities without such indices apply
719 \begin_inset Note Note
722 \begin_layout Plain Layout
728 to the whole system, so
729 \begin_inset Formula $P$
732 will now denote the total power generated by the system.
734 \begin_inset Formula $\ket{a_{0}^{\sci k}}$
737 is the expansion of the external driving field in the location of nanoparticle
739 \begin_inset Formula $\sci k$
743 \begin_inset Formula $\ket{a^{\sci k}}$
746 is the expansion of the external field together with the fields scattered
747 from other nanoparticles,
750 \ket{a^{\sci k}}=\ket{a_{0}^{\sci k}}+\sum_{\sci l\ne\sci k}S_{\sci k\leftarrow\sci l}\ket{f^{\sci l}}.
756 \begin_inset Formula $\ket{f^{\sci l}}=T^{\sci l}\ket{a^{\sci l}}$
759 , this gives the scattering problem in terms of
760 \begin_inset Formula $\ket{a^{\sci k}}$
766 \ket{a^{\sci k}}=\ket{a_{0}^{\sci k}}+\sum_{\sci l\ne\sci k}S_{\sci k\leftarrow\sci l}T^{\sci l}\ket{a^{\sci l}}
771 or, in the indexless notation for the whole system
774 \ket a & = & \ket{a_{0}}+ST\ket a,\\
775 \left(1-ST\right)\ket a & = & \ket{a_{0}}
780 Alternatively, multiplication by
781 \begin_inset Formula $T$
784 from the left gives the problem in terms of the outgoing wave coefficients,
787 \ket f & = & T\ket{a_{0}}+TS\ket f,\\
788 \left(1-TS\right)\ket f & = & T\ket{a_{0}}.
796 \begin_layout Standard