1 Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
2 Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,3)*Power(x,2)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
4 I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
5 13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
7 Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ----------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - -------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
8 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2
9 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
10 Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
11 Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5]