Fix missing import in finiterectlat-scatter.py
[qpms.git] / besseltransforms / ksmall / 5-5-3
blobd5216b84d8d8e63d822cf248a6b3dd90639d4a6f
1 Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
2 Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(3,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 3 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
4                                             I k0 x     Pi                         -5 c x + I k0 x     Pi                        -4 c x + I k0 x     Pi                        -3 c x + I k0 x     Pi                        -2 c x + I k0 x     Pi                        -(c x) + I k0 x     Pi                      I k0 x     Pi                      -5 c x + I k0 x     Pi                    -4 c x + I k0 x     Pi                    -3 c x + I k0 x     Pi                    -2 c x + I k0 x     Pi                    -(c x) + I k0 x     Pi                   I k0 x     Pi                   -5 c x + I k0 x     Pi                  -4 c x + I k0 x     Pi                  -3 c x + I k0 x     Pi                  -2 c x + I k0 x     Pi                  -(c x) + I k0 x     Pi                I k0 x     Pi                 -5 c x + I k0 x     Pi                -4 c x + I k0 x     Pi                -3 c x + I k0 x     Pi                -2 c x + I k0 x     Pi                -(c x) + I k0 x     Pi           I k0 x      2       Pi           -5 c x + I k0 x      2       Pi             -4 c x + I k0 x      2       Pi              -3 c x + I k0 x      2       Pi              -2 c x + I k0 x      2       Pi             -(c x) + I k0 x      2       Pi                          I k0 x     Pi                          -5 c x + I k0 x     Pi                         -4 c x + I k0 x     Pi                         -3 c x + I k0 x     Pi                         -2 c x + I k0 x     Pi                         -(c x) + I k0 x     Pi                       I k0 x     Pi                       -5 c x + I k0 x     Pi                      -4 c x + I k0 x     Pi                      -3 c x + I k0 x     Pi                      -2 c x + I k0 x     Pi                      -(c x) + I k0 x     Pi                    I k0 x     Pi                     -5 c x + I k0 x     Pi                   -4 c x + I k0 x     Pi                   -3 c x + I k0 x     Pi                   -2 c x + I k0 x     Pi                   -(c x) + I k0 x     Pi                 I k0 x     Pi                  -5 c x + I k0 x     Pi                 -4 c x + I k0 x     Pi                 -3 c x + I k0 x     Pi                 -2 c x + I k0 x     Pi                 -(c x) + I k0 x     Pi               I k0 x     Pi                -5 c x + I k0 x     Pi               -4 c x + I k0 x     Pi               -3 c x + I k0 x     Pi               -2 c x + I k0 x     Pi               -(c x) + I k0 x     Pi
5                               -41247931725 E       Cos[-- + k x]     41247931725 E                Cos[-- + k x]   206239658625 E                Cos[-- + k x]   206239658625 E                Cos[-- + k x]   206239658625 E                Cos[-- + k x]   206239658625 E                Cos[-- + k x]     11486475 E       Cos[-- + k x]     11486475 E                Cos[-- + k x]   57432375 E                Cos[-- + k x]   57432375 E                Cos[-- + k x]   57432375 E                Cos[-- + k x]   57432375 E                Cos[-- + k x]     45045 E       Cos[-- + k x]     45045 E                Cos[-- + k x]   225225 E                Cos[-- + k x]   225225 E                Cos[-- + k x]   225225 E                Cos[-- + k x]   225225 E                Cos[-- + k x]    945 E       Cos[-- + k x]     945 E                Cos[-- + k x]   4725 E                Cos[-- + k x]   4725 E                Cos[-- + k x]   4725 E                Cos[-- + k x]   4725 E                Cos[-- + k x]   E       Sqrt[--] Cos[-- + k x]   E                Sqrt[--] Cos[-- + k x]   5 E                Sqrt[--] Cos[-- + k x]   10 E                Sqrt[--] Cos[-- + k x]   10 E                Sqrt[--] Cos[-- + k x]   5 E                Sqrt[--] Cos[-- + k x]    1159525191825 E       Sin[-- + k x]    1159525191825 E                Sin[-- + k x]   5797625959125 E                Sin[-- + k x]   5797625959125 E                Sin[-- + k x]   5797625959125 E                Sin[-- + k x]   5797625959125 E                Sin[-- + k x]     218243025 E       Sin[-- + k x]     218243025 E                Sin[-- + k x]   1091215125 E                Sin[-- + k x]   1091215125 E                Sin[-- + k x]   1091215125 E                Sin[-- + k x]   1091215125 E                Sin[-- + k x]     405405 E       Sin[-- + k x]      405405 E                Sin[-- + k x]   2027025 E                Sin[-- + k x]   2027025 E                Sin[-- + k x]   2027025 E                Sin[-- + k x]   2027025 E                Sin[-- + k x]    3465 E       Sin[-- + k x]     3465 E                Sin[-- + k x]   17325 E                Sin[-- + k x]   17325 E                Sin[-- + k x]   17325 E                Sin[-- + k x]   17325 E                Sin[-- + k x]    35 E       Sin[-- + k x]     35 E                Sin[-- + k x]   175 E                Sin[-- + k x]   175 E                Sin[-- + k x]   175 E                Sin[-- + k x]   175 E                Sin[-- + k x]
6                                                        4                                              4                                             4                                             4                                             4                                             4                                  4                                           4                                         4                                         4                                         4                                         4                               4                                        4                                       4                                       4                                       4                                       4                            4                                      4                                     4                                     4                                     4                                     4                        Pi      4                                 Pi      4                                   Pi      4                                    Pi      4                                    Pi      4                                   Pi      4                                      4                                               4                                              4                                              4                                              4                                              4                                   4                                            4                                           4                                           4                                           4                                           4                                4                                          4                                        4                                        4                                        4                                        4                             4                                       4                                      4                                      4                                      4                                      4                           4                                     4                                    4                                    4                                    4                                    4
7 Integrate::idiv: Integral of ------------------------------------- + ------------------------------------------ - ------------------------------------------- + ------------------------------------------- - ------------------------------------------- + ------------------------------------------- + ---------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- - ------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- - ---------------------------- + ---------------------------------- - ----------------------------------- + ----------------------------------- - ----------------------------------- + ----------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - ---------------------------------------- + ----------------------------------------- - ----------------------------------------- + ----------------------------------------- - ----------------------------------------- - --------------------------------- + ------------------------------------- - -------------------------------------- + -------------------------------------- - -------------------------------------- + -------------------------------------- + ----------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + --------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- does not converge on {0, Infinity}.
8                                          17/2   5             25/2                 17/2   5             25/2                     17/2   5             25/2                    17/2   5             25/2                     17/2   5             25/2                      17/2   5             25/2               13/2   5             21/2              13/2   5             21/2                 13/2   5             21/2                 13/2   5             21/2                 13/2   5             21/2                 13/2   5             21/2             9/2   5             17/2            9/2   5             17/2                9/2   5             17/2               9/2   5             17/2                9/2   5             17/2                 9/2   5             17/2          5/2   5             13/2          5/2   5             13/2             5/2   5             13/2              5/2   5             13/2              5/2   5             13/2              5/2   5             13/2                        5  9/2                               5  9/2                                     5  9/2                                       5  9/2                                       5  9/2                                      5  9/2                            19/2   5             27/2                  19/2   5             27/2                      19/2   5             27/2                      19/2   5             27/2                      19/2   5             27/2                      19/2   5             27/2                 15/2   5             23/2               15/2   5             23/2                   15/2   5             23/2                  15/2   5             23/2                   15/2   5             23/2                    15/2   5             23/2              11/2   5             19/2             11/2   5             19/2               11/2   5             19/2                11/2   5             19/2                11/2   5             19/2                11/2   5             19/2           7/2   5             15/2           7/2   5             15/2              7/2   5             15/2               7/2   5             15/2               7/2   5             15/2               7/2   5             15/2          3/2   5             11/2         3/2   5             11/2            3/2   5             11/2             3/2   5             11/2             3/2   5             11/2             3/2   5             11/2
9                              1073741824 k     k0  Sqrt[2 Pi] x         1073741824 k     k0  Sqrt[2 Pi] x             1073741824 k     k0  Sqrt[2 Pi] x             536870912 k     k0  Sqrt[2 Pi] x              536870912 k     k0  Sqrt[2 Pi] x              1073741824 k     k0  Sqrt[2 Pi] x          2097152 k     k0  Sqrt[2 Pi] x         2097152 k     k0  Sqrt[2 Pi] x            2097152 k     k0  Sqrt[2 Pi] x            1048576 k     k0  Sqrt[2 Pi] x            1048576 k     k0  Sqrt[2 Pi] x            2097152 k     k0  Sqrt[2 Pi] x          16384 k    k0  Sqrt[2 Pi] x         16384 k    k0  Sqrt[2 Pi] x             16384 k    k0  Sqrt[2 Pi] x             8192 k    k0  Sqrt[2 Pi] x              8192 k    k0  Sqrt[2 Pi] x              16384 k    k0  Sqrt[2 Pi] x          64 k    k0  Sqrt[2 Pi] x          64 k    k0  Sqrt[2 Pi] x             64 k    k0  Sqrt[2 Pi] x              32 k    k0  Sqrt[2 Pi] x              32 k    k0  Sqrt[2 Pi] x              64 k    k0  Sqrt[2 Pi] x                  Sqrt[k] k0  x                        Sqrt[k] k0  x                              Sqrt[k] k0  x                                Sqrt[k] k0  x                                Sqrt[k] k0  x                               Sqrt[k] k0  x                   8589934592 k     k0  Sqrt[2 Pi] x          8589934592 k     k0  Sqrt[2 Pi] x              8589934592 k     k0  Sqrt[2 Pi] x              4294967296 k     k0  Sqrt[2 Pi] x              4294967296 k     k0  Sqrt[2 Pi] x              8589934592 k     k0  Sqrt[2 Pi] x           16777216 k     k0  Sqrt[2 Pi] x         16777216 k     k0  Sqrt[2 Pi] x             16777216 k     k0  Sqrt[2 Pi] x             8388608 k     k0  Sqrt[2 Pi] x              8388608 k     k0  Sqrt[2 Pi] x              16777216 k     k0  Sqrt[2 Pi] x          131072 k     k0  Sqrt[2 Pi] x         131072 k     k0  Sqrt[2 Pi] x           131072 k     k0  Sqrt[2 Pi] x             65536 k     k0  Sqrt[2 Pi] x             65536 k     k0  Sqrt[2 Pi] x            131072 k     k0  Sqrt[2 Pi] x          512 k    k0  Sqrt[2 Pi] x          512 k    k0  Sqrt[2 Pi] x             512 k    k0  Sqrt[2 Pi] x              256 k    k0  Sqrt[2 Pi] x              256 k    k0  Sqrt[2 Pi] x              512 k    k0  Sqrt[2 Pi] x           4 k    k0  Sqrt[2 Pi] x          4 k    k0  Sqrt[2 Pi] x             4 k    k0  Sqrt[2 Pi] x              2 k    k0  Sqrt[2 Pi] x              2 k    k0  Sqrt[2 Pi] x              4 k    k0  Sqrt[2 Pi] x
10 Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
12 Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
13 Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5]