Fix missing import in finiterectlat-scatter.py
[qpms.git] / faddeeva / Faddeeva.cc
blob786ba2c063b56512a9855cc12ce7b9d4b1163047
1 // -*- mode:c++; tab-width:2; indent-tabs-mode:nil; -*-
3 /* Copyright (c) 2012 Massachusetts Institute of Technology
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * The above copyright notice and this permission notice shall be
14 * included in all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 /* (Note that this file can be compiled with either C++, in which
26 case it uses C++ std::complex<double>, or C, in which case it
27 uses C99 double complex.) */
29 /* Available at: http://ab-initio.mit.edu/Faddeeva
31 Computes various error functions (erf, erfc, erfi, erfcx),
32 including the Dawson integral, in the complex plane, based
33 on algorithms for the computation of the Faddeeva function
34 w(z) = exp(-z^2) * erfc(-i*z).
35 Given w(z), the error functions are mostly straightforward
36 to compute, except for certain regions where we have to
37 switch to Taylor expansions to avoid cancellation errors
38 [e.g. near the origin for erf(z)].
40 To compute the Faddeeva function, we use a combination of two
41 algorithms:
43 For sufficiently large |z|, we use a continued-fraction expansion
44 for w(z) similar to those described in:
46 Walter Gautschi, "Efficient computation of the complex error
47 function," SIAM J. Numer. Anal. 7(1), pp. 187-198 (1970)
49 G. P. M. Poppe and C. M. J. Wijers, "More efficient computation
50 of the complex error function," ACM Trans. Math. Soft. 16(1),
51 pp. 38-46 (1990).
53 Unlike those papers, however, we switch to a completely different
54 algorithm for smaller |z|:
56 Mofreh R. Zaghloul and Ahmed N. Ali, "Algorithm 916: Computing the
57 Faddeyeva and Voigt Functions," ACM Trans. Math. Soft. 38(2), 15
58 (2011).
60 (I initially used this algorithm for all z, but it turned out to be
61 significantly slower than the continued-fraction expansion for
62 larger |z|. On the other hand, it is competitive for smaller |z|,
63 and is significantly more accurate than the Poppe & Wijers code
64 in some regions, e.g. in the vicinity of z=1+1i.)
66 Note that this is an INDEPENDENT RE-IMPLEMENTATION of these algorithms,
67 based on the description in the papers ONLY. In particular, I did
68 not refer to the authors' Fortran or Matlab implementations, respectively,
69 (which are under restrictive ACM copyright terms and therefore unusable
70 in free/open-source software).
72 Steven G. Johnson, Massachusetts Institute of Technology
73 http://math.mit.edu/~stevenj
74 October 2012.
76 -- Note that Algorithm 916 assumes that the erfc(x) function,
77 or rather the scaled function erfcx(x) = exp(x*x)*erfc(x),
78 is supplied for REAL arguments x. I originally used an
79 erfcx routine derived from DERFC in SLATEC, but I have
80 since replaced it with a much faster routine written by
81 me which uses a combination of continued-fraction expansions
82 and a lookup table of Chebyshev polynomials. For speed,
83 I implemented a similar algorithm for Im[w(x)] of real x,
84 since this comes up frequently in the other error functions.
86 A small test program is included the end, which checks
87 the w(z) etc. results against several known values. To compile
88 the test function, compile with -DTEST_FADDEEVA (that is,
89 #define TEST_FADDEEVA).
91 If HAVE_CONFIG_H is #defined (e.g. by compiling with -DHAVE_CONFIG_H),
92 then we #include "config.h", which is assumed to be a GNU autoconf-style
93 header defining HAVE_* macros to indicate the presence of features. In
94 particular, if HAVE_ISNAN and HAVE_ISINF are #defined, we use those
95 functions in math.h instead of defining our own, and if HAVE_ERF and/or
96 HAVE_ERFC are defined we use those functions from <cmath> for erf and
97 erfc of real arguments, respectively, instead of defining our own.
99 REVISION HISTORY:
100 4 October 2012: Initial public release (SGJ)
101 5 October 2012: Revised (SGJ) to fix spelling error,
102 start summation for large x at round(x/a) (> 1)
103 rather than ceil(x/a) as in the original
104 paper, which should slightly improve performance
105 (and, apparently, slightly improves accuracy)
106 19 October 2012: Revised (SGJ) to fix bugs for large x, large -y,
107 and 15<x<26. Performance improvements. Prototype
108 now supplies default value for relerr.
109 24 October 2012: Switch to continued-fraction expansion for
110 sufficiently large z, for performance reasons.
111 Also, avoid spurious overflow for |z| > 1e154.
112 Set relerr argument to min(relerr,0.1).
113 27 October 2012: Enhance accuracy in Re[w(z)] taken by itself,
114 by switching to Alg. 916 in a region near
115 the real-z axis where continued fractions
116 have poor relative accuracy in Re[w(z)]. Thanks
117 to M. Zaghloul for the tip.
118 29 October 2012: Replace SLATEC-derived erfcx routine with
119 completely rewritten code by me, using a very
120 different algorithm which is much faster.
121 30 October 2012: Implemented special-case code for real z
122 (where real part is exp(-x^2) and imag part is
123 Dawson integral), using algorithm similar to erfx.
124 Export ImFaddeeva_w function to make Dawson's
125 integral directly accessible.
126 3 November 2012: Provide implementations of erf, erfc, erfcx,
127 and Dawson functions in Faddeeva:: namespace,
128 in addition to Faddeeva::w. Provide header
129 file Faddeeva.hh.
130 4 November 2012: Slightly faster erf for real arguments.
131 Updated MATLAB and Octave plugins.
132 27 November 2012: Support compilation with either C++ or
133 plain C (using C99 complex numbers).
134 For real x, use standard-library erf(x)
135 and erfc(x) if available (for C99 or C++11).
136 #include "config.h" if HAVE_CONFIG_H is #defined.
137 15 December 2012: Portability fixes (copysign, Inf/NaN creation),
138 use CMPLX/__builtin_complex if available in C,
139 slight accuracy improvements to erf and dawson
140 functions near the origin. Use gnulib functions
141 if GNULIB_NAMESPACE is defined.
142 18 December 2012: Slight tweaks (remove recomputation of x*x in Dawson)
143 12 May 2015: Bugfix for systems lacking copysign function.
146 /////////////////////////////////////////////////////////////////////////
147 /* If this file is compiled as a part of a larger project,
148 support using an autoconf-style config.h header file
149 (with various "HAVE_*" #defines to indicate features)
150 if HAVE_CONFIG_H is #defined (in GNU autotools style). */
152 #ifdef HAVE_CONFIG_H
153 # include "config.h"
154 #endif
156 /////////////////////////////////////////////////////////////////////////
157 // macros to allow us to use either C++ or C (with C99 features)
159 #ifdef __cplusplus
161 # include "Faddeeva.hh"
163 # include <cfloat>
164 # include <cmath>
165 # include <limits>
166 using namespace std;
168 // use std::numeric_limits, since 1./0. and 0./0. fail with some compilers (MS)
169 # define Inf numeric_limits<double>::infinity()
170 # define NaN numeric_limits<double>::quiet_NaN()
172 typedef complex<double> cmplx;
174 // Use C-like complex syntax, since the C syntax is more restrictive
175 # define cexp(z) exp(z)
176 # define creal(z) real(z)
177 # define cimag(z) imag(z)
178 # define cpolar(r,t) polar(r,t)
180 # define C(a,b) cmplx(a,b)
182 # define FADDEEVA(name) Faddeeva::name
183 # define FADDEEVA_RE(name) Faddeeva::name
185 // isnan/isinf were introduced in C++11
186 # if (__cplusplus < 201103L) && (!defined(HAVE_ISNAN) || !defined(HAVE_ISINF))
187 static inline bool my_isnan(double x) { return x != x; }
188 # define isnan my_isnan
189 static inline bool my_isinf(double x) { return 1/x == 0.; }
190 # define isinf my_isinf
191 # elif (__cplusplus >= 201103L)
192 // g++ gets confused between the C and C++ isnan/isinf functions
193 # define isnan std::isnan
194 # define isinf std::isinf
195 # endif
197 // copysign was introduced in C++11 (and is also in POSIX and C99)
198 # if defined(_WIN32) || defined(__WIN32__)
199 # define copysign _copysign // of course MS had to be different
200 # elif defined(GNULIB_NAMESPACE) // we are using using gnulib <cmath>
201 # define copysign GNULIB_NAMESPACE::copysign
202 # elif (__cplusplus < 201103L) && !defined(HAVE_COPYSIGN) && !defined(__linux__) && !(defined(__APPLE__) && defined(__MACH__)) && !defined(_AIX)
203 static inline double my_copysign(double x, double y) { return x<0 != y<0 ? -x : x; }
204 # define copysign my_copysign
205 # endif
207 // If we are using the gnulib <cmath> (e.g. in the GNU Octave sources),
208 // gnulib generates a link warning if we use ::floor instead of gnulib::floor.
209 // This warning is completely innocuous because the only difference between
210 // gnulib::floor and the system ::floor (and only on ancient OSF systems)
211 // has to do with floor(-0), which doesn't occur in the usage below, but
212 // the Octave developers prefer that we silence the warning.
213 # ifdef GNULIB_NAMESPACE
214 # define floor GNULIB_NAMESPACE::floor
215 # endif
217 #else // !__cplusplus, i.e. pure C (requires C99 features)
219 # include "Faddeeva.h"
221 # define _GNU_SOURCE // enable GNU libc NAN extension if possible
223 # include <float.h>
224 # include <math.h>
226 typedef double complex cmplx;
228 # define FADDEEVA(name) Faddeeva_ ## name
229 # define FADDEEVA_RE(name) Faddeeva_ ## name ## _re
231 /* Constructing complex numbers like 0+i*NaN is problematic in C99
232 without the C11 CMPLX macro, because 0.+I*NAN may give NaN+i*NAN if
233 I is a complex (rather than imaginary) constant. For some reason,
234 however, it works fine in (pre-4.7) gcc if I define Inf and NaN as
235 1/0 and 0/0 (and only if I compile with optimization -O1 or more),
236 but not if I use the INFINITY or NAN macros. */
238 /* __builtin_complex was introduced in gcc 4.7, but the C11 CMPLX macro
239 may not be defined unless we are using a recent (2012) version of
240 glibc and compile with -std=c11... note that icc lies about being
241 gcc and probably doesn't have this builtin(?), so exclude icc explicitly */
242 # if !defined(CMPLX) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)) && !(defined(__ICC) || defined(__INTEL_COMPILER))
243 # define CMPLX(a,b) __builtin_complex((double) (a), (double) (b))
244 # endif
246 # ifdef CMPLX // C11
247 # define C(a,b) CMPLX(a,b)
248 # define Inf INFINITY // C99 infinity
249 # ifdef NAN // GNU libc extension
250 # define NaN NAN
251 # else
252 # define NaN (0./0.) // NaN
253 # endif
254 # else
255 # define C(a,b) ((a) + I*(b))
256 # define Inf (1./0.)
257 # define NaN (0./0.)
258 # endif
260 static inline cmplx cpolar(double r, double t)
262 if (r == 0.0 && !isnan(t))
263 return 0.0;
264 else
265 return C(r * cos(t), r * sin(t));
268 #endif // !__cplusplus, i.e. pure C (requires C99 features)
270 /////////////////////////////////////////////////////////////////////////
271 // Auxiliary routines to compute other special functions based on w(z)
273 // compute erfcx(z) = exp(z^2) erfz(z)
274 cmplx FADDEEVA(erfcx)(cmplx z, double relerr)
276 return FADDEEVA(w)(C(-cimag(z), creal(z)), relerr);
279 // compute the error function erf(x)
280 double FADDEEVA_RE(erf)(double x)
282 #if !defined(__cplusplus)
283 return erf(x); // C99 supplies erf in math.h
284 #elif (__cplusplus >= 201103L) || defined(HAVE_ERF)
285 return ::erf(x); // C++11 supplies std::erf in cmath
286 #else
287 double mx2 = -x*x;
288 if (mx2 < -750) // underflow
289 return (x >= 0 ? 1.0 : -1.0);
291 if (x >= 0) {
292 if (x < 8e-2) goto taylor;
293 return 1.0 - exp(mx2) * FADDEEVA_RE(erfcx)(x);
295 else { // x < 0
296 if (x > -8e-2) goto taylor;
297 return exp(mx2) * FADDEEVA_RE(erfcx)(-x) - 1.0;
300 // Use Taylor series for small |x|, to avoid cancellation inaccuracy
301 // erf(x) = 2/sqrt(pi) * x * (1 - x^2/3 + x^4/10 - x^6/42 + x^8/216 + ...)
302 taylor:
303 return x * (1.1283791670955125739
304 + mx2 * (0.37612638903183752464
305 + mx2 * (0.11283791670955125739
306 + mx2 * (0.026866170645131251760
307 + mx2 * 0.0052239776254421878422))));
308 #endif
311 // compute the error function erf(z)
312 cmplx FADDEEVA(erf)(cmplx z, double relerr)
314 double x = creal(z), y = cimag(z);
316 if (y == 0)
317 return C(FADDEEVA_RE(erf)(x),
318 y); // preserve sign of 0
319 if (x == 0) // handle separately for speed & handling of y = Inf or NaN
320 return C(x, // preserve sign of 0
321 /* handle y -> Inf limit manually, since
322 exp(y^2) -> Inf but Im[w(y)] -> 0, so
323 IEEE will give us a NaN when it should be Inf */
324 y*y > 720 ? (y > 0 ? Inf : -Inf)
325 : exp(y*y) * FADDEEVA(w_im)(y));
327 double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow
328 double mIm_z2 = -2*x*y; // Im(-z^2)
329 if (mRe_z2 < -750) // underflow
330 return (x >= 0 ? 1.0 : -1.0);
332 /* Handle positive and negative x via different formulas,
333 using the mirror symmetries of w, to avoid overflow/underflow
334 problems from multiplying exponentially large and small quantities. */
335 if (x >= 0) {
336 if (x < 8e-2) {
337 if (fabs(y) < 1e-2)
338 goto taylor;
339 else if (fabs(mIm_z2) < 5e-3 && x < 5e-3)
340 goto taylor_erfi;
342 /* don't use complex exp function, since that will produce spurious NaN
343 values when multiplying w in an overflow situation. */
344 return 1.0 - exp(mRe_z2) *
345 (C(cos(mIm_z2), sin(mIm_z2))
346 * FADDEEVA(w)(C(-y,x), relerr));
348 else { // x < 0
349 if (x > -8e-2) { // duplicate from above to avoid fabs(x) call
350 if (fabs(y) < 1e-2)
351 goto taylor;
352 else if (fabs(mIm_z2) < 5e-3 && x > -5e-3)
353 goto taylor_erfi;
355 else if (isnan(x))
356 return C(NaN, y == 0 ? 0 : NaN);
357 /* don't use complex exp function, since that will produce spurious NaN
358 values when multiplying w in an overflow situation. */
359 return exp(mRe_z2) *
360 (C(cos(mIm_z2), sin(mIm_z2))
361 * FADDEEVA(w)(C(y,-x), relerr)) - 1.0;
364 // Use Taylor series for small |z|, to avoid cancellation inaccuracy
365 // erf(z) = 2/sqrt(pi) * z * (1 - z^2/3 + z^4/10 - z^6/42 + z^8/216 + ...)
366 taylor:
368 cmplx mz2 = C(mRe_z2, mIm_z2); // -z^2
369 return z * (1.1283791670955125739
370 + mz2 * (0.37612638903183752464
371 + mz2 * (0.11283791670955125739
372 + mz2 * (0.026866170645131251760
373 + mz2 * 0.0052239776254421878422))));
376 /* for small |x| and small |xy|,
377 use Taylor series to avoid cancellation inaccuracy:
378 erf(x+iy) = erf(iy)
379 + 2*exp(y^2)/sqrt(pi) *
380 [ x * (1 - x^2 * (1+2y^2)/3 + x^4 * (3+12y^2+4y^4)/30 + ...
381 - i * x^2 * y * (1 - x^2 * (3+2y^2)/6 + ...) ]
382 where:
383 erf(iy) = exp(y^2) * Im[w(y)]
385 taylor_erfi:
387 double x2 = x*x, y2 = y*y;
388 double expy2 = exp(y2);
389 return C
390 (expy2 * x * (1.1283791670955125739
391 - x2 * (0.37612638903183752464
392 + 0.75225277806367504925*y2)
393 + x2*x2 * (0.11283791670955125739
394 + y2 * (0.45135166683820502956
395 + 0.15045055561273500986*y2))),
396 expy2 * (FADDEEVA(w_im)(y)
397 - x2*y * (1.1283791670955125739
398 - x2 * (0.56418958354775628695
399 + 0.37612638903183752464*y2))));
403 // erfi(z) = -i erf(iz)
404 cmplx FADDEEVA(erfi)(cmplx z, double relerr)
406 cmplx e = FADDEEVA(erf)(C(-cimag(z),creal(z)), relerr);
407 return C(cimag(e), -creal(e));
410 // erfi(x) = -i erf(ix)
411 double FADDEEVA_RE(erfi)(double x)
413 return x*x > 720 ? (x > 0 ? Inf : -Inf)
414 : exp(x*x) * FADDEEVA(w_im)(x);
417 // erfc(x) = 1 - erf(x)
418 double FADDEEVA_RE(erfc)(double x)
420 #if !defined(__cplusplus)
421 return erfc(x); // C99 supplies erfc in math.h
422 #elif (__cplusplus >= 201103L) || defined(HAVE_ERFC)
423 return ::erfc(x); // C++11 supplies std::erfc in cmath
424 #else
425 if (x*x > 750) // underflow
426 return (x >= 0 ? 0.0 : 2.0);
427 return x >= 0 ? exp(-x*x) * FADDEEVA_RE(erfcx)(x)
428 : 2. - exp(-x*x) * FADDEEVA_RE(erfcx)(-x);
429 #endif
432 // erfc(z) = 1 - erf(z)
433 cmplx FADDEEVA(erfc)(cmplx z, double relerr)
435 double x = creal(z), y = cimag(z);
437 if (x == 0.)
438 return C(1,
439 /* handle y -> Inf limit manually, since
440 exp(y^2) -> Inf but Im[w(y)] -> 0, so
441 IEEE will give us a NaN when it should be Inf */
442 y*y > 720 ? (y > 0 ? -Inf : Inf)
443 : -exp(y*y) * FADDEEVA(w_im)(y));
444 if (y == 0.) {
445 if (x*x > 750) // underflow
446 return C(x >= 0 ? 0.0 : 2.0,
447 -y); // preserve sign of 0
448 return C(x >= 0 ? exp(-x*x) * FADDEEVA_RE(erfcx)(x)
449 : 2. - exp(-x*x) * FADDEEVA_RE(erfcx)(-x),
450 -y); // preserve sign of zero
453 double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow
454 double mIm_z2 = -2*x*y; // Im(-z^2)
455 if (mRe_z2 < -750) // underflow
456 return (x >= 0 ? 0.0 : 2.0);
458 if (x >= 0)
459 return cexp(C(mRe_z2, mIm_z2))
460 * FADDEEVA(w)(C(-y,x), relerr);
461 else
462 return 2.0 - cexp(C(mRe_z2, mIm_z2))
463 * FADDEEVA(w)(C(y,-x), relerr);
466 // compute Dawson(x) = sqrt(pi)/2 * exp(-x^2) * erfi(x)
467 double FADDEEVA_RE(Dawson)(double x)
469 const double spi2 = 0.8862269254527580136490837416705725913990; // sqrt(pi)/2
470 return spi2 * FADDEEVA(w_im)(x);
473 // compute Dawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)
474 cmplx FADDEEVA(Dawson)(cmplx z, double relerr)
476 const double spi2 = 0.8862269254527580136490837416705725913990; // sqrt(pi)/2
477 double x = creal(z), y = cimag(z);
479 // handle axes separately for speed & proper handling of x or y = Inf or NaN
480 if (y == 0)
481 return C(spi2 * FADDEEVA(w_im)(x),
482 -y); // preserve sign of 0
483 if (x == 0) {
484 double y2 = y*y;
485 if (y2 < 2.5e-5) { // Taylor expansion
486 return C(x, // preserve sign of 0
487 y * (1.
488 + y2 * (0.6666666666666666666666666666666666666667
489 + y2 * 0.26666666666666666666666666666666666667)));
491 return C(x, // preserve sign of 0
492 spi2 * (y >= 0
493 ? exp(y2) - FADDEEVA_RE(erfcx)(y)
494 : FADDEEVA_RE(erfcx)(-y) - exp(y2)));
497 double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow
498 double mIm_z2 = -2*x*y; // Im(-z^2)
499 cmplx mz2 = C(mRe_z2, mIm_z2); // -z^2
501 /* Handle positive and negative x via different formulas,
502 using the mirror symmetries of w, to avoid overflow/underflow
503 problems from multiplying exponentially large and small quantities. */
504 if (y >= 0) {
505 if (y < 5e-3) {
506 if (fabs(x) < 5e-3)
507 goto taylor;
508 else if (fabs(mIm_z2) < 5e-3)
509 goto taylor_realaxis;
511 cmplx res = cexp(mz2) - FADDEEVA(w)(z, relerr);
512 return spi2 * C(-cimag(res), creal(res));
514 else { // y < 0
515 if (y > -5e-3) { // duplicate from above to avoid fabs(x) call
516 if (fabs(x) < 5e-3)
517 goto taylor;
518 else if (fabs(mIm_z2) < 5e-3)
519 goto taylor_realaxis;
521 else if (isnan(y))
522 return C(x == 0 ? 0 : NaN, NaN);
523 cmplx res = FADDEEVA(w)(-z, relerr) - cexp(mz2);
524 return spi2 * C(-cimag(res), creal(res));
527 // Use Taylor series for small |z|, to avoid cancellation inaccuracy
528 // dawson(z) = z - 2/3 z^3 + 4/15 z^5 + ...
529 taylor:
530 return z * (1.
531 + mz2 * (0.6666666666666666666666666666666666666667
532 + mz2 * 0.2666666666666666666666666666666666666667));
534 /* for small |y| and small |xy|,
535 use Taylor series to avoid cancellation inaccuracy:
536 dawson(x + iy)
537 = D + y^2 (D + x - 2Dx^2)
538 + y^4 (D/2 + 5x/6 - 2Dx^2 - x^3/3 + 2Dx^4/3)
539 + iy [ (1-2Dx) + 2/3 y^2 (1 - 3Dx - x^2 + 2Dx^3)
540 + y^4/15 (4 - 15Dx - 9x^2 + 20Dx^3 + 2x^4 - 4Dx^5) ] + ...
541 where D = dawson(x)
543 However, for large |x|, 2Dx -> 1 which gives cancellation problems in
544 this series (many of the leading terms cancel). So, for large |x|,
545 we need to substitute a continued-fraction expansion for D.
547 dawson(x) = 0.5 / (x-0.5/(x-1/(x-1.5/(x-2/(x-2.5/(x...))))))
549 The 6 terms shown here seems to be the minimum needed to be
550 accurate as soon as the simpler Taylor expansion above starts
551 breaking down. Using this 6-term expansion, factoring out the
552 denominator, and simplifying with Maple, we obtain:
554 Re dawson(x + iy) * (-15 + 90x^2 - 60x^4 + 8x^6) / x
555 = 33 - 28x^2 + 4x^4 + y^2 (18 - 4x^2) + 4 y^4
556 Im dawson(x + iy) * (-15 + 90x^2 - 60x^4 + 8x^6) / y
557 = -15 + 24x^2 - 4x^4 + 2/3 y^2 (6x^2 - 15) - 4 y^4
559 Finally, for |x| > 5e7, we can use a simpler 1-term continued-fraction
560 expansion for the real part, and a 2-term expansion for the imaginary
561 part. (This avoids overflow problems for huge |x|.) This yields:
563 Re dawson(x + iy) = [1 + y^2 (1 + y^2/2 - (xy)^2/3)] / (2x)
564 Im dawson(x + iy) = y [ -1 - 2/3 y^2 + y^4/15 (2x^2 - 4) ] / (2x^2 - 1)
567 taylor_realaxis:
569 double x2 = x*x;
570 if (x2 > 1600) { // |x| > 40
571 double y2 = y*y;
572 if (x2 > 25e14) {// |x| > 5e7
573 double xy2 = (x*y)*(x*y);
574 return C((0.5 + y2 * (0.5 + 0.25*y2
575 - 0.16666666666666666667*xy2)) / x,
576 y * (-1 + y2 * (-0.66666666666666666667
577 + 0.13333333333333333333*xy2
578 - 0.26666666666666666667*y2))
579 / (2*x2 - 1));
581 return (1. / (-15 + x2*(90 + x2*(-60 + 8*x2)))) *
582 C(x * (33 + x2 * (-28 + 4*x2)
583 + y2 * (18 - 4*x2 + 4*y2)),
584 y * (-15 + x2 * (24 - 4*x2)
585 + y2 * (4*x2 - 10 - 4*y2)));
587 else {
588 double D = spi2 * FADDEEVA(w_im)(x);
589 double y2 = y*y;
590 return C
591 (D + y2 * (D + x - 2*D*x2)
592 + y2*y2 * (D * (0.5 - x2 * (2 - 0.66666666666666666667*x2))
593 + x * (0.83333333333333333333
594 - 0.33333333333333333333 * x2)),
595 y * (1 - 2*D*x
596 + y2 * 0.66666666666666666667 * (1 - x2 - D*x * (3 - 2*x2))
597 + y2*y2 * (0.26666666666666666667 -
598 x2 * (0.6 - 0.13333333333333333333 * x2)
599 - D*x * (1 - x2 * (1.3333333333333333333
600 - 0.26666666666666666667 * x2)))));
605 /////////////////////////////////////////////////////////////////////////
607 // return sinc(x) = sin(x)/x, given both x and sin(x)
608 // [since we only use this in cases where sin(x) has already been computed]
609 static inline double sinc(double x, double sinx) {
610 return fabs(x) < 1e-4 ? 1 - (0.1666666666666666666667)*x*x : sinx / x;
613 // sinh(x) via Taylor series, accurate to machine precision for |x| < 1e-2
614 static inline double sinh_taylor(double x) {
615 return x * (1 + (x*x) * (0.1666666666666666666667
616 + 0.00833333333333333333333 * (x*x)));
619 static inline double sqr(double x) { return x*x; }
621 // precomputed table of expa2n2[n-1] = exp(-a2*n*n)
622 // for double-precision a2 = 0.26865... in FADDEEVA(w), below.
623 static const double expa2n2[] = {
624 7.64405281671221563e-01,
625 3.41424527166548425e-01,
626 8.91072646929412548e-02,
627 1.35887299055460086e-02,
628 1.21085455253437481e-03,
629 6.30452613933449404e-05,
630 1.91805156577114683e-06,
631 3.40969447714832381e-08,
632 3.54175089099469393e-10,
633 2.14965079583260682e-12,
634 7.62368911833724354e-15,
635 1.57982797110681093e-17,
636 1.91294189103582677e-20,
637 1.35344656764205340e-23,
638 5.59535712428588720e-27,
639 1.35164257972401769e-30,
640 1.90784582843501167e-34,
641 1.57351920291442930e-38,
642 7.58312432328032845e-43,
643 2.13536275438697082e-47,
644 3.51352063787195769e-52,
645 3.37800830266396920e-57,
646 1.89769439468301000e-62,
647 6.22929926072668851e-68,
648 1.19481172006938722e-73,
649 1.33908181133005953e-79,
650 8.76924303483223939e-86,
651 3.35555576166254986e-92,
652 7.50264110688173024e-99,
653 9.80192200745410268e-106,
654 7.48265412822268959e-113,
655 3.33770122566809425e-120,
656 8.69934598159861140e-128,
657 1.32486951484088852e-135,
658 1.17898144201315253e-143,
659 6.13039120236180012e-152,
660 1.86258785950822098e-160,
661 3.30668408201432783e-169,
662 3.43017280887946235e-178,
663 2.07915397775808219e-187,
664 7.36384545323984966e-197,
665 1.52394760394085741e-206,
666 1.84281935046532100e-216,
667 1.30209553802992923e-226,
668 5.37588903521080531e-237,
669 1.29689584599763145e-247,
670 1.82813078022866562e-258,
671 1.50576355348684241e-269,
672 7.24692320799294194e-281,
673 2.03797051314726829e-292,
674 3.34880215927873807e-304,
675 0.0 // underflow (also prevents reads past array end, below)
678 /////////////////////////////////////////////////////////////////////////
680 cmplx FADDEEVA(w)(cmplx z, double relerr)
682 if (creal(z) == 0.0)
683 return C(FADDEEVA_RE(erfcx)(cimag(z)),
684 creal(z)); // give correct sign of 0 in cimag(w)
685 else if (cimag(z) == 0)
686 return C(exp(-sqr(creal(z))),
687 FADDEEVA(w_im)(creal(z)));
689 double a, a2, c;
690 if (relerr <= DBL_EPSILON) {
691 relerr = DBL_EPSILON;
692 a = 0.518321480430085929872; // pi / sqrt(-log(eps*0.5))
693 c = 0.329973702884629072537; // (2/pi) * a;
694 a2 = 0.268657157075235951582; // a^2
696 else {
697 const double pi = 3.14159265358979323846264338327950288419716939937510582;
698 if (relerr > 0.1) relerr = 0.1; // not sensible to compute < 1 digit
699 a = pi / sqrt(-log(relerr*0.5));
700 c = (2/pi)*a;
701 a2 = a*a;
703 const double x = fabs(creal(z));
704 const double y = cimag(z), ya = fabs(y);
706 cmplx ret = 0.; // return value
708 double sum1 = 0, sum2 = 0, sum3 = 0, sum4 = 0, sum5 = 0;
710 #define USE_CONTINUED_FRACTION 1 // 1 to use continued fraction for large |z|
712 #if USE_CONTINUED_FRACTION
713 if (ya > 7 || (x > 6 // continued fraction is faster
714 /* As pointed out by M. Zaghloul, the continued
715 fraction seems to give a large relative error in
716 Re w(z) for |x| ~ 6 and small |y|, so use
717 algorithm 816 in this region: */
718 && (ya > 0.1 || (x > 8 && ya > 1e-10) || x > 28))) {
720 /* Poppe & Wijers suggest using a number of terms
721 nu = 3 + 1442 / (26*rho + 77)
722 where rho = sqrt((x/x0)^2 + (y/y0)^2) where x0=6.3, y0=4.4.
723 (They only use this expansion for rho >= 1, but rho a little less
724 than 1 seems okay too.)
725 Instead, I did my own fit to a slightly different function
726 that avoids the hypotenuse calculation, using NLopt to minimize
727 the sum of the squares of the errors in nu with the constraint
728 that the estimated nu be >= minimum nu to attain machine precision.
729 I also separate the regions where nu == 2 and nu == 1. */
730 const double ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi)
731 double xs = y < 0 ? -creal(z) : creal(z); // compute for -z if y < 0
732 if (x + ya > 4000) { // nu <= 2
733 if (x + ya > 1e7) { // nu == 1, w(z) = i/sqrt(pi) / z
734 // scale to avoid overflow
735 if (x > ya) {
736 double yax = ya / xs;
737 double denom = ispi / (xs + yax*ya);
738 ret = C(denom*yax, denom);
740 else if (isinf(ya))
741 return ((isnan(x) || y < 0)
742 ? C(NaN,NaN) : C(0,0));
743 else {
744 double xya = xs / ya;
745 double denom = ispi / (xya*xs + ya);
746 ret = C(denom, denom*xya);
749 else { // nu == 2, w(z) = i/sqrt(pi) * z / (z*z - 0.5)
750 double dr = xs*xs - ya*ya - 0.5, di = 2*xs*ya;
751 double denom = ispi / (dr*dr + di*di);
752 ret = C(denom * (xs*di-ya*dr), denom * (xs*dr+ya*di));
755 else { // compute nu(z) estimate and do general continued fraction
756 const double c0=3.9, c1=11.398, c2=0.08254, c3=0.1421, c4=0.2023; // fit
757 double nu = floor(c0 + c1 / (c2*x + c3*ya + c4));
758 double wr = xs, wi = ya;
759 for (nu = 0.5 * (nu - 1); nu > 0.4; nu -= 0.5) {
760 // w <- z - nu/w:
761 double denom = nu / (wr*wr + wi*wi);
762 wr = xs - wr * denom;
763 wi = ya + wi * denom;
765 { // w(z) = i/sqrt(pi) / w:
766 double denom = ispi / (wr*wr + wi*wi);
767 ret = C(denom*wi, denom*wr);
770 if (y < 0) {
771 // use w(z) = 2.0*exp(-z*z) - w(-z),
772 // but be careful of overflow in exp(-z*z)
773 // = exp(-(xs*xs-ya*ya) -2*i*xs*ya)
774 return 2.0*cexp(C((ya-xs)*(xs+ya), 2*xs*y)) - ret;
776 else
777 return ret;
779 #else // !USE_CONTINUED_FRACTION
780 if (x + ya > 1e7) { // w(z) = i/sqrt(pi) / z, to machine precision
781 const double ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi)
782 double xs = y < 0 ? -creal(z) : creal(z); // compute for -z if y < 0
783 // scale to avoid overflow
784 if (x > ya) {
785 double yax = ya / xs;
786 double denom = ispi / (xs + yax*ya);
787 ret = C(denom*yax, denom);
789 else {
790 double xya = xs / ya;
791 double denom = ispi / (xya*xs + ya);
792 ret = C(denom, denom*xya);
794 if (y < 0) {
795 // use w(z) = 2.0*exp(-z*z) - w(-z),
796 // but be careful of overflow in exp(-z*z)
797 // = exp(-(xs*xs-ya*ya) -2*i*xs*ya)
798 return 2.0*cexp(C((ya-xs)*(xs+ya), 2*xs*y)) - ret;
800 else
801 return ret;
803 #endif // !USE_CONTINUED_FRACTION
805 /* Note: The test that seems to be suggested in the paper is x <
806 sqrt(-log(DBL_MIN)), about 26.6, since otherwise exp(-x^2)
807 underflows to zero and sum1,sum2,sum4 are zero. However, long
808 before this occurs, the sum1,sum2,sum4 contributions are
809 negligible in double precision; I find that this happens for x >
810 about 6, for all y. On the other hand, I find that the case
811 where we compute all of the sums is faster (at least with the
812 precomputed expa2n2 table) until about x=10. Furthermore, if we
813 try to compute all of the sums for x > 20, I find that we
814 sometimes run into numerical problems because underflow/overflow
815 problems start to appear in the various coefficients of the sums,
816 below. Therefore, we use x < 10 here. */
817 else if (x < 10) {
818 double prod2ax = 1, prodm2ax = 1;
819 double expx2;
821 if (isnan(y))
822 return C(y,y);
824 /* Somewhat ugly copy-and-paste duplication here, but I see significant
825 speedups from using the special-case code with the precomputed
826 exponential, and the x < 5e-4 special case is needed for accuracy. */
828 if (relerr == DBL_EPSILON) { // use precomputed exp(-a2*(n*n)) table
829 if (x < 5e-4) { // compute sum4 and sum5 together as sum5-sum4
830 const double x2 = x*x;
831 expx2 = 1 - x2 * (1 - 0.5*x2); // exp(-x*x) via Taylor
832 // compute exp(2*a*x) and exp(-2*a*x) via Taylor, to double precision
833 const double ax2 = 1.036642960860171859744*x; // 2*a*x
834 const double exp2ax =
835 1 + ax2 * (1 + ax2 * (0.5 + 0.166666666666666666667*ax2));
836 const double expm2ax =
837 1 - ax2 * (1 - ax2 * (0.5 - 0.166666666666666666667*ax2));
838 for (int n = 1; 1; ++n) {
839 const double coef = expa2n2[n-1] * expx2 / (a2*(n*n) + y*y);
840 prod2ax *= exp2ax;
841 prodm2ax *= expm2ax;
842 sum1 += coef;
843 sum2 += coef * prodm2ax;
844 sum3 += coef * prod2ax;
846 // really = sum5 - sum4
847 sum5 += coef * (2*a) * n * sinh_taylor((2*a)*n*x);
849 // test convergence via sum3
850 if (coef * prod2ax < relerr * sum3) break;
853 else { // x > 5e-4, compute sum4 and sum5 separately
854 expx2 = exp(-x*x);
855 const double exp2ax = exp((2*a)*x), expm2ax = 1 / exp2ax;
856 for (int n = 1; 1; ++n) {
857 const double coef = expa2n2[n-1] * expx2 / (a2*(n*n) + y*y);
858 prod2ax *= exp2ax;
859 prodm2ax *= expm2ax;
860 sum1 += coef;
861 sum2 += coef * prodm2ax;
862 sum4 += (coef * prodm2ax) * (a*n);
863 sum3 += coef * prod2ax;
864 sum5 += (coef * prod2ax) * (a*n);
865 // test convergence via sum5, since this sum has the slowest decay
866 if ((coef * prod2ax) * (a*n) < relerr * sum5) break;
870 else { // relerr != DBL_EPSILON, compute exp(-a2*(n*n)) on the fly
871 const double exp2ax = exp((2*a)*x), expm2ax = 1 / exp2ax;
872 if (x < 5e-4) { // compute sum4 and sum5 together as sum5-sum4
873 const double x2 = x*x;
874 expx2 = 1 - x2 * (1 - 0.5*x2); // exp(-x*x) via Taylor
875 for (int n = 1; 1; ++n) {
876 const double coef = exp(-a2*(n*n)) * expx2 / (a2*(n*n) + y*y);
877 prod2ax *= exp2ax;
878 prodm2ax *= expm2ax;
879 sum1 += coef;
880 sum2 += coef * prodm2ax;
881 sum3 += coef * prod2ax;
883 // really = sum5 - sum4
884 sum5 += coef * (2*a) * n * sinh_taylor((2*a)*n*x);
886 // test convergence via sum3
887 if (coef * prod2ax < relerr * sum3) break;
890 else { // x > 5e-4, compute sum4 and sum5 separately
891 expx2 = exp(-x*x);
892 for (int n = 1; 1; ++n) {
893 const double coef = exp(-a2*(n*n)) * expx2 / (a2*(n*n) + y*y);
894 prod2ax *= exp2ax;
895 prodm2ax *= expm2ax;
896 sum1 += coef;
897 sum2 += coef * prodm2ax;
898 sum4 += (coef * prodm2ax) * (a*n);
899 sum3 += coef * prod2ax;
900 sum5 += (coef * prod2ax) * (a*n);
901 // test convergence via sum5, since this sum has the slowest decay
902 if ((coef * prod2ax) * (a*n) < relerr * sum5) break;
906 const double expx2erfcxy = // avoid spurious overflow for large negative y
907 y > -6 // for y < -6, erfcx(y) = 2*exp(y*y) to double precision
908 ? expx2*FADDEEVA_RE(erfcx)(y) : 2*exp(y*y-x*x);
909 if (y > 5) { // imaginary terms cancel
910 const double sinxy = sin(x*y);
911 ret = (expx2erfcxy - c*y*sum1) * cos(2*x*y)
912 + (c*x*expx2) * sinxy * sinc(x*y, sinxy);
914 else {
915 double xs = creal(z);
916 const double sinxy = sin(xs*y);
917 const double sin2xy = sin(2*xs*y), cos2xy = cos(2*xs*y);
918 const double coef1 = expx2erfcxy - c*y*sum1;
919 const double coef2 = c*xs*expx2;
920 ret = C(coef1 * cos2xy + coef2 * sinxy * sinc(xs*y, sinxy),
921 coef2 * sinc(2*xs*y, sin2xy) - coef1 * sin2xy);
924 else { // x large: only sum3 & sum5 contribute (see above note)
925 if (isnan(x))
926 return C(x,x);
927 if (isnan(y))
928 return C(y,y);
930 #if USE_CONTINUED_FRACTION
931 ret = exp(-x*x); // |y| < 1e-10, so we only need exp(-x*x) term
932 #else
933 if (y < 0) {
934 /* erfcx(y) ~ 2*exp(y*y) + (< 1) if y < 0, so
935 erfcx(y)*exp(-x*x) ~ 2*exp(y*y-x*x) term may not be negligible
936 if y*y - x*x > -36 or so. So, compute this term just in case.
937 We also need the -exp(-x*x) term to compute Re[w] accurately
938 in the case where y is very small. */
939 ret = cpolar(2*exp(y*y-x*x) - exp(-x*x), -2*creal(z)*y);
941 else
942 ret = exp(-x*x); // not negligible in real part if y very small
943 #endif
944 // (round instead of ceil as in original paper; note that x/a > 1 here)
945 double n0 = floor(x/a + 0.5); // sum in both directions, starting at n0
946 double dx = a*n0 - x;
947 sum3 = exp(-dx*dx) / (a2*(n0*n0) + y*y);
948 sum5 = a*n0 * sum3;
949 double exp1 = exp(4*a*dx), exp1dn = 1;
950 int dn;
951 for (dn = 1; n0 - dn > 0; ++dn) { // loop over n0-dn and n0+dn terms
952 double np = n0 + dn, nm = n0 - dn;
953 double tp = exp(-sqr(a*dn+dx));
954 double tm = tp * (exp1dn *= exp1); // trick to get tm from tp
955 tp /= (a2*(np*np) + y*y);
956 tm /= (a2*(nm*nm) + y*y);
957 sum3 += tp + tm;
958 sum5 += a * (np * tp + nm * tm);
959 if (a * (np * tp + nm * tm) < relerr * sum5) goto finish;
961 while (1) { // loop over n0+dn terms only (since n0-dn <= 0)
962 double np = n0 + dn++;
963 double tp = exp(-sqr(a*dn+dx)) / (a2*(np*np) + y*y);
964 sum3 += tp;
965 sum5 += a * np * tp;
966 if (a * np * tp < relerr * sum5) goto finish;
969 finish:
970 return ret + C((0.5*c)*y*(sum2+sum3),
971 (0.5*c)*copysign(sum5-sum4, creal(z)));
974 /////////////////////////////////////////////////////////////////////////
976 /* erfcx(x) = exp(x^2) erfc(x) function, for real x, written by
977 Steven G. Johnson, October 2012.
979 This function combines a few different ideas.
981 First, for x > 50, it uses a continued-fraction expansion (same as
982 for the Faddeeva function, but with algebraic simplifications for z=i*x).
984 Second, for 0 <= x <= 50, it uses Chebyshev polynomial approximations,
985 but with two twists:
987 a) It maps x to y = 4 / (4+x) in [0,1]. This simple transformation,
988 inspired by a similar transformation in the octave-forge/specfun
989 erfcx by Soren Hauberg, results in much faster Chebyshev convergence
990 than other simple transformations I have examined.
992 b) Instead of using a single Chebyshev polynomial for the entire
993 [0,1] y interval, we break the interval up into 100 equal
994 subintervals, with a switch/lookup table, and use much lower
995 degree Chebyshev polynomials in each subinterval. This greatly
996 improves performance in my tests.
998 For x < 0, we use the relationship erfcx(-x) = 2 exp(x^2) - erfc(x),
999 with the usual checks for overflow etcetera.
1001 Performance-wise, it seems to be substantially faster than either
1002 the SLATEC DERFC function [or an erfcx function derived therefrom]
1003 or Cody's CALERF function (from netlib.org/specfun), while
1004 retaining near machine precision in accuracy. */
1006 /* Given y100=100*y, where y = 4/(4+x) for x >= 0, compute erfc(x).
1008 Uses a look-up table of 100 different Chebyshev polynomials
1009 for y intervals [0,0.01], [0.01,0.02], ...., [0.99,1], generated
1010 with the help of Maple and a little shell script. This allows
1011 the Chebyshev polynomials to be of significantly lower degree (about 1/4)
1012 compared to fitting the whole [0,1] interval with a single polynomial. */
1013 static double erfcx_y100(double y100)
1015 switch ((int) y100) {
1016 case 0: {
1017 double t = 2*y100 - 1;
1018 return 0.70878032454106438663e-3 + (0.71234091047026302958e-3 + (0.35779077297597742384e-5 + (0.17403143962587937815e-7 + (0.81710660047307788845e-10 + (0.36885022360434957634e-12 + 0.15917038551111111111e-14 * t) * t) * t) * t) * t) * t;
1020 case 1: {
1021 double t = 2*y100 - 3;
1022 return 0.21479143208285144230e-2 + (0.72686402367379996033e-3 + (0.36843175430938995552e-5 + (0.18071841272149201685e-7 + (0.85496449296040325555e-10 + (0.38852037518534291510e-12 + 0.16868473576888888889e-14 * t) * t) * t) * t) * t) * t;
1024 case 2: {
1025 double t = 2*y100 - 5;
1026 return 0.36165255935630175090e-2 + (0.74182092323555510862e-3 + (0.37948319957528242260e-5 + (0.18771627021793087350e-7 + (0.89484715122415089123e-10 + (0.40935858517772440862e-12 + 0.17872061464888888889e-14 * t) * t) * t) * t) * t) * t;
1028 case 3: {
1029 double t = 2*y100 - 7;
1030 return 0.51154983860031979264e-2 + (0.75722840734791660540e-3 + (0.39096425726735703941e-5 + (0.19504168704300468210e-7 + (0.93687503063178993915e-10 + (0.43143925959079664747e-12 + 0.18939926435555555556e-14 * t) * t) * t) * t) * t) * t;
1032 case 4: {
1033 double t = 2*y100 - 9;
1034 return 0.66457513172673049824e-2 + (0.77310406054447454920e-3 + (0.40289510589399439385e-5 + (0.20271233238288381092e-7 + (0.98117631321709100264e-10 + (0.45484207406017752971e-12 + 0.20076352213333333333e-14 * t) * t) * t) * t) * t) * t;
1036 case 5: {
1037 double t = 2*y100 - 11;
1038 return 0.82082389970241207883e-2 + (0.78946629611881710721e-3 + (0.41529701552622656574e-5 + (0.21074693344544655714e-7 + (0.10278874108587317989e-9 + (0.47965201390613339638e-12 + 0.21285907413333333333e-14 * t) * t) * t) * t) * t) * t;
1040 case 6: {
1041 double t = 2*y100 - 13;
1042 return 0.98039537275352193165e-2 + (0.80633440108342840956e-3 + (0.42819241329736982942e-5 + (0.21916534346907168612e-7 + (0.10771535136565470914e-9 + (0.50595972623692822410e-12 + 0.22573462684444444444e-14 * t) * t) * t) * t) * t) * t;
1044 case 7: {
1045 double t = 2*y100 - 15;
1046 return 0.11433927298290302370e-1 + (0.82372858383196561209e-3 + (0.44160495311765438816e-5 + (0.22798861426211986056e-7 + (0.11291291745879239736e-9 + (0.53386189365816880454e-12 + 0.23944209546666666667e-14 * t) * t) * t) * t) * t) * t;
1048 case 8: {
1049 double t = 2*y100 - 17;
1050 return 0.13099232878814653979e-1 + (0.84167002467906968214e-3 + (0.45555958988457506002e-5 + (0.23723907357214175198e-7 + (0.11839789326602695603e-9 + (0.56346163067550237877e-12 + 0.25403679644444444444e-14 * t) * t) * t) * t) * t) * t;
1052 case 9: {
1053 double t = 2*y100 - 19;
1054 return 0.14800987015587535621e-1 + (0.86018092946345943214e-3 + (0.47008265848816866105e-5 + (0.24694040760197315333e-7 + (0.12418779768752299093e-9 + (0.59486890370320261949e-12 + 0.26957764568888888889e-14 * t) * t) * t) * t) * t) * t;
1056 case 10: {
1057 double t = 2*y100 - 21;
1058 return 0.16540351739394069380e-1 + (0.87928458641241463952e-3 + (0.48520195793001753903e-5 + (0.25711774900881709176e-7 + (0.13030128534230822419e-9 + (0.62820097586874779402e-12 + 0.28612737351111111111e-14 * t) * t) * t) * t) * t) * t;
1060 case 11: {
1061 double t = 2*y100 - 23;
1062 return 0.18318536789842392647e-1 + (0.89900542647891721692e-3 + (0.50094684089553365810e-5 + (0.26779777074218070482e-7 + (0.13675822186304615566e-9 + (0.66358287745352705725e-12 + 0.30375273884444444444e-14 * t) * t) * t) * t) * t) * t;
1064 case 12: {
1065 double t = 2*y100 - 25;
1066 return 0.20136801964214276775e-1 + (0.91936908737673676012e-3 + (0.51734830914104276820e-5 + (0.27900878609710432673e-7 + (0.14357976402809042257e-9 + (0.70114790311043728387e-12 + 0.32252476000000000000e-14 * t) * t) * t) * t) * t) * t;
1068 case 13: {
1069 double t = 2*y100 - 27;
1070 return 0.21996459598282740954e-1 + (0.94040248155366777784e-3 + (0.53443911508041164739e-5 + (0.29078085538049374673e-7 + (0.15078844500329731137e-9 + (0.74103813647499204269e-12 + 0.34251892320000000000e-14 * t) * t) * t) * t) * t) * t;
1072 case 14: {
1073 double t = 2*y100 - 29;
1074 return 0.23898877187226319502e-1 + (0.96213386835900177540e-3 + (0.55225386998049012752e-5 + (0.30314589961047687059e-7 + (0.15840826497296335264e-9 + (0.78340500472414454395e-12 + 0.36381553564444444445e-14 * t) * t) * t) * t) * t) * t;
1076 case 15: {
1077 double t = 2*y100 - 31;
1078 return 0.25845480155298518485e-1 + (0.98459293067820123389e-3 + (0.57082915920051843672e-5 + (0.31613782169164830118e-7 + (0.16646478745529630813e-9 + (0.82840985928785407942e-12 + 0.38649975768888888890e-14 * t) * t) * t) * t) * t) * t;
1080 case 16: {
1081 double t = 2*y100 - 33;
1082 return 0.27837754783474696598e-1 + (0.10078108563256892757e-2 + (0.59020366493792212221e-5 + (0.32979263553246520417e-7 + (0.17498524159268458073e-9 + (0.87622459124842525110e-12 + 0.41066206488888888890e-14 * t) * t) * t) * t) * t) * t;
1084 case 17: {
1085 double t = 2*y100 - 35;
1086 return 0.29877251304899307550e-1 + (0.10318204245057349310e-2 + (0.61041829697162055093e-5 + (0.34414860359542720579e-7 + (0.18399863072934089607e-9 + (0.92703227366365046533e-12 + 0.43639844053333333334e-14 * t) * t) * t) * t) * t) * t;
1088 case 18: {
1089 double t = 2*y100 - 37;
1090 return 0.31965587178596443475e-1 + (0.10566560976716574401e-2 + (0.63151633192414586770e-5 + (0.35924638339521924242e-7 + (0.19353584758781174038e-9 + (0.98102783859889264382e-12 + 0.46381060817777777779e-14 * t) * t) * t) * t) * t) * t;
1092 case 19: {
1093 double t = 2*y100 - 39;
1094 return 0.34104450552588334840e-1 + (0.10823541191350532574e-2 + (0.65354356159553934436e-5 + (0.37512918348533521149e-7 + (0.20362979635817883229e-9 + (0.10384187833037282363e-11 + 0.49300625262222222221e-14 * t) * t) * t) * t) * t) * t;
1096 case 20: {
1097 double t = 2*y100 - 41;
1098 return 0.36295603928292425716e-1 + (0.11089526167995268200e-2 + (0.67654845095518363577e-5 + (0.39184292949913591646e-7 + (0.21431552202133775150e-9 + (0.10994259106646731797e-11 + 0.52409949102222222221e-14 * t) * t) * t) * t) * t) * t;
1100 case 21: {
1101 double t = 2*y100 - 43;
1102 return 0.38540888038840509795e-1 + (0.11364917134175420009e-2 + (0.70058230641246312003e-5 + (0.40943644083718586939e-7 + (0.22563034723692881631e-9 + (0.11642841011361992885e-11 + 0.55721092871111111110e-14 * t) * t) * t) * t) * t) * t;
1104 case 22: {
1105 double t = 2*y100 - 45;
1106 return 0.40842225954785960651e-1 + (0.11650136437945673891e-2 + (0.72569945502343006619e-5 + (0.42796161861855042273e-7 + (0.23761401711005024162e-9 + (0.12332431172381557035e-11 + 0.59246802364444444445e-14 * t) * t) * t) * t) * t) * t;
1108 case 23: {
1109 double t = 2*y100 - 47;
1110 return 0.43201627431540222422e-1 + (0.11945628793917272199e-2 + (0.75195743532849206263e-5 + (0.44747364553960993492e-7 + (0.25030885216472953674e-9 + (0.13065684400300476484e-11 + 0.63000532853333333334e-14 * t) * t) * t) * t) * t) * t;
1112 case 24: {
1113 double t = 2*y100 - 49;
1114 return 0.45621193513810471438e-1 + (0.12251862608067529503e-2 + (0.77941720055551920319e-5 + (0.46803119830954460212e-7 + (0.26375990983978426273e-9 + (0.13845421370977119765e-11 + 0.66996477404444444445e-14 * t) * t) * t) * t) * t) * t;
1116 case 25: {
1117 double t = 2*y100 - 51;
1118 return 0.48103121413299865517e-1 + (0.12569331386432195113e-2 + (0.80814333496367673980e-5 + (0.48969667335682018324e-7 + (0.27801515481905748484e-9 + (0.14674637611609884208e-11 + 0.71249589351111111110e-14 * t) * t) * t) * t) * t) * t;
1120 case 26: {
1121 double t = 2*y100 - 53;
1122 return 0.50649709676983338501e-1 + (0.12898555233099055810e-2 + (0.83820428414568799654e-5 + (0.51253642652551838659e-7 + (0.29312563849675507232e-9 + (0.15556512782814827846e-11 + 0.75775607822222222221e-14 * t) * t) * t) * t) * t) * t;
1124 case 27: {
1125 double t = 2*y100 - 55;
1126 return 0.53263363664388864181e-1 + (0.13240082443256975769e-2 + (0.86967260015007658418e-5 + (0.53662102750396795566e-7 + (0.30914568786634796807e-9 + (0.16494420240828493176e-11 + 0.80591079644444444445e-14 * t) * t) * t) * t) * t) * t;
1128 case 28: {
1129 double t = 2*y100 - 57;
1130 return 0.55946601353500013794e-1 + (0.13594491197408190706e-2 + (0.90262520233016380987e-5 + (0.56202552975056695376e-7 + (0.32613310410503135996e-9 + (0.17491936862246367398e-11 + 0.85713381688888888890e-14 * t) * t) * t) * t) * t) * t;
1132 case 29: {
1133 double t = 2*y100 - 59;
1134 return 0.58702059496154081813e-1 + (0.13962391363223647892e-2 + (0.93714365487312784270e-5 + (0.58882975670265286526e-7 + (0.34414937110591753387e-9 + (0.18552853109751857859e-11 + 0.91160736711111111110e-14 * t) * t) * t) * t) * t) * t;
1136 case 30: {
1137 double t = 2*y100 - 61;
1138 return 0.61532500145144778048e-1 + (0.14344426411912015247e-2 + (0.97331446201016809696e-5 + (0.61711860507347175097e-7 + (0.36325987418295300221e-9 + (0.19681183310134518232e-11 + 0.96952238400000000000e-14 * t) * t) * t) * t) * t) * t;
1140 case 31: {
1141 double t = 2*y100 - 63;
1142 return 0.64440817576653297993e-1 + (0.14741275456383131151e-2 + (0.10112293819576437838e-4 + (0.64698236605933246196e-7 + (0.38353412915303665586e-9 + (0.20881176114385120186e-11 + 0.10310784480000000000e-13 * t) * t) * t) * t) * t) * t;
1144 case 32: {
1145 double t = 2*y100 - 65;
1146 return 0.67430045633130393282e-1 + (0.15153655418916540370e-2 + (0.10509857606888328667e-4 + (0.67851706529363332855e-7 + (0.40504602194811140006e-9 + (0.22157325110542534469e-11 + 0.10964842115555555556e-13 * t) * t) * t) * t) * t) * t;
1148 case 33: {
1149 double t = 2*y100 - 67;
1150 return 0.70503365513338850709e-1 + (0.15582323336495709827e-2 + (0.10926868866865231089e-4 + (0.71182482239613507542e-7 + (0.42787405890153386710e-9 + (0.23514379522274416437e-11 + 0.11659571751111111111e-13 * t) * t) * t) * t) * t) * t;
1152 case 34: {
1153 double t = 2*y100 - 69;
1154 return 0.73664114037944596353e-1 + (0.16028078812438820413e-2 + (0.11364423678778207991e-4 + (0.74701423097423182009e-7 + (0.45210162777476488324e-9 + (0.24957355004088569134e-11 + 0.12397238257777777778e-13 * t) * t) * t) * t) * t) * t;
1156 case 35: {
1157 double t = 2*y100 - 71;
1158 return 0.76915792420819562379e-1 + (0.16491766623447889354e-2 + (0.11823685320041302169e-4 + (0.78420075993781544386e-7 + (0.47781726956916478925e-9 + (0.26491544403815724749e-11 + 0.13180196462222222222e-13 * t) * t) * t) * t) * t) * t;
1160 case 36: {
1161 double t = 2*y100 - 73;
1162 return 0.80262075578094612819e-1 + (0.16974279491709504117e-2 + (0.12305888517309891674e-4 + (0.82350717698979042290e-7 + (0.50511496109857113929e-9 + (0.28122528497626897696e-11 + 0.14010889635555555556e-13 * t) * t) * t) * t) * t) * t;
1164 case 37: {
1165 double t = 2*y100 - 75;
1166 return 0.83706822008980357446e-1 + (0.17476561032212656962e-2 + (0.12812343958540763368e-4 + (0.86506399515036435592e-7 + (0.53409440823869467453e-9 + (0.29856186620887555043e-11 + 0.14891851591111111111e-13 * t) * t) * t) * t) * t) * t;
1168 case 38: {
1169 double t = 2*y100 - 77;
1170 return 0.87254084284461718231e-1 + (0.17999608886001962327e-2 + (0.13344443080089492218e-4 + (0.90900994316429008631e-7 + (0.56486134972616465316e-9 + (0.31698707080033956934e-11 + 0.15825697795555555556e-13 * t) * t) * t) * t) * t) * t;
1172 case 39: {
1173 double t = 2*y100 - 79;
1174 return 0.90908120182172748487e-1 + (0.18544478050657699758e-2 + (0.13903663143426120077e-4 + (0.95549246062549906177e-7 + (0.59752787125242054315e-9 + (0.33656597366099099413e-11 + 0.16815130613333333333e-13 * t) * t) * t) * t) * t) * t;
1176 case 40: {
1177 double t = 2*y100 - 81;
1178 return 0.94673404508075481121e-1 + (0.19112284419887303347e-2 + (0.14491572616545004930e-4 + (0.10046682186333613697e-6 + (0.63221272959791000515e-9 + (0.35736693975589130818e-11 + 0.17862931591111111111e-13 * t) * t) * t) * t) * t) * t;
1180 case 41: {
1181 double t = 2*y100 - 83;
1182 return 0.98554641648004456555e-1 + (0.19704208544725622126e-2 + (0.15109836875625443935e-4 + (0.10567036667675984067e-6 + (0.66904168640019354565e-9 + (0.37946171850824333014e-11 + 0.18971959040000000000e-13 * t) * t) * t) * t) * t) * t;
1184 case 42: {
1185 double t = 2*y100 - 85;
1186 return 0.10255677889470089531e0 + (0.20321499629472857418e-2 + (0.15760224242962179564e-4 + (0.11117756071353507391e-6 + (0.70814785110097658502e-9 + (0.40292553276632563925e-11 + 0.20145143075555555556e-13 * t) * t) * t) * t) * t) * t;
1188 case 43: {
1189 double t = 2*y100 - 87;
1190 return 0.10668502059865093318e0 + (0.20965479776148731610e-2 + (0.16444612377624983565e-4 + (0.11700717962026152749e-6 + (0.74967203250938418991e-9 + (0.42783716186085922176e-11 + 0.21385479360000000000e-13 * t) * t) * t) * t) * t) * t;
1192 case 44: {
1193 double t = 2*y100 - 89;
1194 return 0.11094484319386444474e0 + (0.21637548491908170841e-2 + (0.17164995035719657111e-4 + (0.12317915750735938089e-6 + (0.79376309831499633734e-9 + (0.45427901763106353914e-11 + 0.22696025653333333333e-13 * t) * t) * t) * t) * t) * t;
1196 case 45: {
1197 double t = 2*y100 - 91;
1198 return 0.11534201115268804714e0 + (0.22339187474546420375e-2 + (0.17923489217504226813e-4 + (0.12971465288245997681e-6 + (0.84057834180389073587e-9 + (0.48233721206418027227e-11 + 0.24079890062222222222e-13 * t) * t) * t) * t) * t) * t;
1200 case 46: {
1201 double t = 2*y100 - 93;
1202 return 0.11988259392684094740e0 + (0.23071965691918689601e-2 + (0.18722342718958935446e-4 + (0.13663611754337957520e-6 + (0.89028385488493287005e-9 + (0.51210161569225846701e-11 + 0.25540227111111111111e-13 * t) * t) * t) * t) * t) * t;
1204 case 47: {
1205 double t = 2*y100 - 95;
1206 return 0.12457298393509812907e0 + (0.23837544771809575380e-2 + (0.19563942105711612475e-4 + (0.14396736847739470782e-6 + (0.94305490646459247016e-9 + (0.54366590583134218096e-11 + 0.27080225920000000000e-13 * t) * t) * t) * t) * t) * t;
1208 case 48: {
1209 double t = 2*y100 - 97;
1210 return 0.12941991566142438816e0 + (0.24637684719508859484e-2 + (0.20450821127475879816e-4 + (0.15173366280523906622e-6 + (0.99907632506389027739e-9 + (0.57712760311351625221e-11 + 0.28703099555555555556e-13 * t) * t) * t) * t) * t) * t;
1212 case 49: {
1213 double t = 2*y100 - 99;
1214 return 0.13443048593088696613e0 + (0.25474249981080823877e-2 + (0.21385669591362915223e-4 + (0.15996177579900443030e-6 + (0.10585428844575134013e-8 + (0.61258809536787882989e-11 + 0.30412080142222222222e-13 * t) * t) * t) * t) * t) * t;
1216 case 50: {
1217 double t = 2*y100 - 101;
1218 return 0.13961217543434561353e0 + (0.26349215871051761416e-2 + (0.22371342712572567744e-4 + (0.16868008199296822247e-6 + (0.11216596910444996246e-8 + (0.65015264753090890662e-11 + 0.32210394506666666666e-13 * t) * t) * t) * t) * t) * t;
1220 case 51: {
1221 double t = 2*y100 - 103;
1222 return 0.14497287157673800690e0 + (0.27264675383982439814e-2 + (0.23410870961050950197e-4 + (0.17791863939526376477e-6 + (0.11886425714330958106e-8 + (0.68993039665054288034e-11 + 0.34101266222222222221e-13 * t) * t) * t) * t) * t) * t;
1224 case 52: {
1225 double t = 2*y100 - 105;
1226 return 0.15052089272774618151e0 + (0.28222846410136238008e-2 + (0.24507470422713397006e-4 + (0.18770927679626136909e-6 + (0.12597184587583370712e-8 + (0.73203433049229821618e-11 + 0.36087889048888888890e-13 * t) * t) * t) * t) * t) * t;
1228 case 53: {
1229 double t = 2*y100 - 107;
1230 return 0.15626501395774612325e0 + (0.29226079376196624949e-2 + (0.25664553693768450545e-4 + (0.19808568415654461964e-6 + (0.13351257759815557897e-8 + (0.77658124891046760667e-11 + 0.38173420035555555555e-13 * t) * t) * t) * t) * t) * t;
1232 case 54: {
1233 double t = 2*y100 - 109;
1234 return 0.16221449434620737567e0 + (0.30276865332726475672e-2 + (0.26885741326534564336e-4 + (0.20908350604346384143e-6 + (0.14151148144240728728e-8 + (0.82369170665974313027e-11 + 0.40360957457777777779e-13 * t) * t) * t) * t) * t) * t;
1236 case 55: {
1237 double t = 2*y100 - 111;
1238 return 0.16837910595412130659e0 + (0.31377844510793082301e-2 + (0.28174873844911175026e-4 + (0.22074043807045782387e-6 + (0.14999481055996090039e-8 + (0.87348993661930809254e-11 + 0.42653528977777777779e-13 * t) * t) * t) * t) * t) * t;
1240 case 56: {
1241 double t = 2*y100 - 113;
1242 return 0.17476916455659369953e0 + (0.32531815370903068316e-2 + (0.29536024347344364074e-4 + (0.23309632627767074202e-6 + (0.15899007843582444846e-8 + (0.92610375235427359475e-11 + 0.45054073102222222221e-13 * t) * t) * t) * t) * t) * t;
1244 case 57: {
1245 double t = 2*y100 - 115;
1246 return 0.18139556223643701364e0 + (0.33741744168096996041e-2 + (0.30973511714709500836e-4 + (0.24619326937592290996e-6 + (0.16852609412267750744e-8 + (0.98166442942854895573e-11 + 0.47565418097777777779e-13 * t) * t) * t) * t) * t) * t;
1248 case 58: {
1249 double t = 2*y100 - 117;
1250 return 0.18826980194443664549e0 + (0.35010775057740317997e-2 + (0.32491914440014267480e-4 + (0.26007572375886319028e-6 + (0.17863299617388376116e-8 + (0.10403065638343878679e-10 + 0.50190265831111111110e-13 * t) * t) * t) * t) * t) * t;
1252 case 59: {
1253 double t = 2*y100 - 119;
1254 return 0.19540403413693967350e0 + (0.36342240767211326315e-2 + (0.34096085096200907289e-4 + (0.27479061117017637474e-6 + (0.18934228504790032826e-8 + (0.11021679075323598664e-10 + 0.52931171733333333334e-13 * t) * t) * t) * t) * t) * t;
1256 case 60: {
1257 double t = 2*y100 - 121;
1258 return 0.20281109560651886959e0 + (0.37739673859323597060e-2 + (0.35791165457592409054e-4 + (0.29038742889416172404e-6 + (0.20068685374849001770e-8 + (0.11673891799578381999e-10 + 0.55790523093333333334e-13 * t) * t) * t) * t) * t) * t;
1260 case 61: {
1261 double t = 2*y100 - 123;
1262 return 0.21050455062669334978e0 + (0.39206818613925652425e-2 + (0.37582602289680101704e-4 + (0.30691836231886877385e-6 + (0.21270101645763677824e-8 + (0.12361138551062899455e-10 + 0.58770520160000000000e-13 * t) * t) * t) * t) * t) * t;
1264 case 62: {
1265 double t = 2*y100 - 125;
1266 return 0.21849873453703332479e0 + (0.40747643554689586041e-2 + (0.39476163820986711501e-4 + (0.32443839970139918836e-6 + (0.22542053491518680200e-8 + (0.13084879235290858490e-10 + 0.61873153262222222221e-13 * t) * t) * t) * t) * t) * t;
1268 case 63: {
1269 double t = 2*y100 - 127;
1270 return 0.22680879990043229327e0 + (0.42366354648628516935e-2 + (0.41477956909656896779e-4 + (0.34300544894502810002e-6 + (0.23888264229264067658e-8 + (0.13846596292818514601e-10 + 0.65100183751111111110e-13 * t) * t) * t) * t) * t) * t;
1272 case 64: {
1273 double t = 2*y100 - 129;
1274 return 0.23545076536988703937e0 + (0.44067409206365170888e-2 + (0.43594444916224700881e-4 + (0.36268045617760415178e-6 + (0.25312606430853202748e-8 + (0.14647791812837903061e-10 + 0.68453122631111111110e-13 * t) * t) * t) * t) * t) * t;
1276 case 65: {
1277 double t = 2*y100 - 131;
1278 return 0.24444156740777432838e0 + (0.45855530511605787178e-2 + (0.45832466292683085475e-4 + (0.38352752590033030472e-6 + (0.26819103733055603460e-8 + (0.15489984390884756993e-10 + 0.71933206364444444445e-13 * t) * t) * t) * t) * t) * t;
1280 case 66: {
1281 double t = 2*y100 - 133;
1282 return 0.25379911500634264643e0 + (0.47735723208650032167e-2 + (0.48199253896534185372e-4 + (0.40561404245564732314e-6 + (0.28411932320871165585e-8 + (0.16374705736458320149e-10 + 0.75541379822222222221e-13 * t) * t) * t) * t) * t) * t;
1284 case 67: {
1285 double t = 2*y100 - 135;
1286 return 0.26354234756393613032e0 + (0.49713289477083781266e-2 + (0.50702455036930367504e-4 + (0.42901079254268185722e-6 + (0.30095422058900481753e-8 + (0.17303497025347342498e-10 + 0.79278273368888888890e-13 * t) * t) * t) * t) * t) * t;
1288 case 68: {
1289 double t = 2*y100 - 137;
1290 return 0.27369129607732343398e0 + (0.51793846023052643767e-2 + (0.53350152258326602629e-4 + (0.45379208848865015485e-6 + (0.31874057245814381257e-8 + (0.18277905010245111046e-10 + 0.83144182364444444445e-13 * t) * t) * t) * t) * t) * t;
1292 case 69: {
1293 double t = 2*y100 - 139;
1294 return 0.28426714781640316172e0 + (0.53983341916695141966e-2 + (0.56150884865255810638e-4 + (0.48003589196494734238e-6 + (0.33752476967570796349e-8 + (0.19299477888083469086e-10 + 0.87139049137777777779e-13 * t) * t) * t) * t) * t) * t;
1296 case 70: {
1297 double t = 2*y100 - 141;
1298 return 0.29529231465348519920e0 + (0.56288077305420795663e-2 + (0.59113671189913307427e-4 + (0.50782393781744840482e-6 + (0.35735475025851713168e-8 + (0.20369760937017070382e-10 + 0.91262442613333333334e-13 * t) * t) * t) * t) * t) * t;
1300 case 71: {
1301 double t = 2*y100 - 143;
1302 return 0.30679050522528838613e0 + (0.58714723032745403331e-2 + (0.62248031602197686791e-4 + (0.53724185766200945789e-6 + (0.37827999418960232678e-8 + (0.21490291930444538307e-10 + 0.95513539182222222221e-13 * t) * t) * t) * t) * t) * t;
1304 case 72: {
1305 double t = 2*y100 - 145;
1306 return 0.31878680111173319425e0 + (0.61270341192339103514e-2 + (0.65564012259707640976e-4 + (0.56837930287837738996e-6 + (0.40035151353392378882e-8 + (0.22662596341239294792e-10 + 0.99891109760000000000e-13 * t) * t) * t) * t) * t) * t;
1308 case 73: {
1309 double t = 2*y100 - 147;
1310 return 0.33130773722152622027e0 + (0.63962406646798080903e-2 + (0.69072209592942396666e-4 + (0.60133006661885941812e-6 + (0.42362183765883466691e-8 + (0.23888182347073698382e-10 + 0.10439349811555555556e-12 * t) * t) * t) * t) * t) * t;
1312 case 74: {
1313 double t = 2*y100 - 149;
1314 return 0.34438138658041336523e0 + (0.66798829540414007258e-2 + (0.72783795518603561144e-4 + (0.63619220443228800680e-6 + (0.44814499336514453364e-8 + (0.25168535651285475274e-10 + 0.10901861383111111111e-12 * t) * t) * t) * t) * t) * t;
1316 case 75: {
1317 double t = 2*y100 - 151;
1318 return 0.35803744972380175583e0 + (0.69787978834882685031e-2 + (0.76710543371454822497e-4 + (0.67306815308917386747e-6 + (0.47397647975845228205e-8 + (0.26505114141143050509e-10 + 0.11376390933333333333e-12 * t) * t) * t) * t) * t) * t;
1320 case 76: {
1321 double t = 2*y100 - 153;
1322 return 0.37230734890119724188e0 + (0.72938706896461381003e-2 + (0.80864854542670714092e-4 + (0.71206484718062688779e-6 + (0.50117323769745883805e-8 + (0.27899342394100074165e-10 + 0.11862637614222222222e-12 * t) * t) * t) * t) * t) * t;
1324 case 77: {
1325 double t = 2*y100 - 155;
1326 return 0.38722432730555448223e0 + (0.76260375162549802745e-2 + (0.85259785810004603848e-4 + (0.75329383305171327677e-6 + (0.52979361368388119355e-8 + (0.29352606054164086709e-10 + 0.12360253370666666667e-12 * t) * t) * t) * t) * t) * t;
1328 case 78: {
1329 double t = 2*y100 - 157;
1330 return 0.40282355354616940667e0 + (0.79762880915029728079e-2 + (0.89909077342438246452e-4 + (0.79687137961956194579e-6 + (0.55989731807360403195e-8 + (0.30866246101464869050e-10 + 0.12868841946666666667e-12 * t) * t) * t) * t) * t) * t;
1332 case 79: {
1333 double t = 2*y100 - 159;
1334 return 0.41914223158913787649e0 + (0.83456685186950463538e-2 + (0.94827181359250161335e-4 + (0.84291858561783141014e-6 + (0.59154537751083485684e-8 + (0.32441553034347469291e-10 + 0.13387957943111111111e-12 * t) * t) * t) * t) * t) * t;
1336 case 80: {
1337 double t = 2*y100 - 161;
1338 return 0.43621971639463786896e0 + (0.87352841828289495773e-2 + (0.10002929142066799966e-3 + (0.89156148280219880024e-6 + (0.62480008150788597147e-8 + (0.34079760983458878910e-10 + 0.13917107176888888889e-12 * t) * t) * t) * t) * t) * t;
1340 case 81: {
1341 double t = 2*y100 - 163;
1342 return 0.45409763548534330981e0 + (0.91463027755548240654e-2 + (0.10553137232446167258e-3 + (0.94293113464638623798e-6 + (0.65972492312219959885e-8 + (0.35782041795476563662e-10 + 0.14455745872000000000e-12 * t) * t) * t) * t) * t) * t;
1344 case 82: {
1345 double t = 2*y100 - 165;
1346 return 0.47282001668512331468e0 + (0.95799574408860463394e-2 + (0.11135019058000067469e-3 + (0.99716373005509038080e-6 + (0.69638453369956970347e-8 + (0.37549499088161345850e-10 + 0.15003280712888888889e-12 * t) * t) * t) * t) * t) * t;
1348 case 83: {
1349 double t = 2*y100 - 167;
1350 return 0.49243342227179841649e0 + (0.10037550043909497071e-1 + (0.11750334542845234952e-3 + (0.10544006716188967172e-5 + (0.73484461168242224872e-8 + (0.39383162326435752965e-10 + 0.15559069118222222222e-12 * t) * t) * t) * t) * t) * t;
1352 case 84: {
1353 double t = 2*y100 - 169;
1354 return 0.51298708979209258326e0 + (0.10520454564612427224e-1 + (0.12400930037494996655e-3 + (0.11147886579371265246e-5 + (0.77517184550568711454e-8 + (0.41283980931872622611e-10 + 0.16122419680000000000e-12 * t) * t) * t) * t) * t) * t;
1356 case 85: {
1357 double t = 2*y100 - 171;
1358 return 0.53453307979101369843e0 + (0.11030120618800726938e-1 + (0.13088741519572269581e-3 + (0.11784797595374515432e-5 + (0.81743383063044825400e-8 + (0.43252818449517081051e-10 + 0.16692592640000000000e-12 * t) * t) * t) * t) * t) * t;
1360 case 86: {
1361 double t = 2*y100 - 173;
1362 return 0.55712643071169299478e0 + (0.11568077107929735233e-1 + (0.13815797838036651289e-3 + (0.12456314879260904558e-5 + (0.86169898078969313597e-8 + (0.45290446811539652525e-10 + 0.17268801084444444444e-12 * t) * t) * t) * t) * t) * t;
1364 case 87: {
1365 double t = 2*y100 - 175;
1366 return 0.58082532122519320968e0 + (0.12135935999503877077e-1 + (0.14584223996665838559e-3 + (0.13164068573095710742e-5 + (0.90803643355106020163e-8 + (0.47397540713124619155e-10 + 0.17850211608888888889e-12 * t) * t) * t) * t) * t) * t;
1368 case 88: {
1369 double t = 2*y100 - 177;
1370 return 0.60569124025293375554e0 + (0.12735396239525550361e-1 + (0.15396244472258863344e-3 + (0.13909744385382818253e-5 + (0.95651595032306228245e-8 + (0.49574672127669041550e-10 + 0.18435945564444444444e-12 * t) * t) * t) * t) * t) * t;
1372 case 89: {
1373 double t = 2*y100 - 179;
1374 return 0.63178916494715716894e0 + (0.13368247798287030927e-1 + (0.16254186562762076141e-3 + (0.14695084048334056083e-5 + (0.10072078109604152350e-7 + (0.51822304995680707483e-10 + 0.19025081422222222222e-12 * t) * t) * t) * t) * t) * t;
1376 case 90: {
1377 double t = 2*y100 - 181;
1378 return 0.65918774689725319200e0 + (0.14036375850601992063e-1 + (0.17160483760259706354e-3 + (0.15521885688723188371e-5 + (0.10601827031535280590e-7 + (0.54140790105837520499e-10 + 0.19616655146666666667e-12 * t) * t) * t) * t) * t) * t;
1380 case 91: {
1381 double t = 2*y100 - 183;
1382 return 0.68795950683174433822e0 + (0.14741765091365869084e-1 + (0.18117679143520433835e-3 + (0.16392004108230585213e-5 + (0.11155116068018043001e-7 + (0.56530360194925690374e-10 + 0.20209663662222222222e-12 * t) * t) * t) * t) * t) * t;
1384 case 92: {
1385 double t = 2*y100 - 185;
1386 return 0.71818103808729967036e0 + (0.15486504187117112279e-1 + (0.19128428784550923217e-3 + (0.17307350969359975848e-5 + (0.11732656736113607751e-7 + (0.58991125287563833603e-10 + 0.20803065333333333333e-12 * t) * t) * t) * t) * t) * t;
1388 case 93: {
1389 double t = 2*y100 - 187;
1390 return 0.74993321911726254661e0 + (0.16272790364044783382e-1 + (0.20195505163377912645e-3 + (0.18269894883203346953e-5 + (0.12335161021630225535e-7 + (0.61523068312169087227e-10 + 0.21395783431111111111e-12 * t) * t) * t) * t) * t) * t;
1392 case 94: {
1393 double t = 2*y100 - 189;
1394 return 0.78330143531283492729e0 + (0.17102934132652429240e-1 + (0.21321800585063327041e-3 + (0.19281661395543913713e-5 + (0.12963340087354341574e-7 + (0.64126040998066348872e-10 + 0.21986708942222222222e-12 * t) * t) * t) * t) * t) * t;
1396 case 95: {
1397 double t = 2*y100 - 191;
1398 return 0.81837581041023811832e0 + (0.17979364149044223802e-1 + (0.22510330592753129006e-3 + (0.20344732868018175389e-5 + (0.13617902941839949718e-7 + (0.66799760083972474642e-10 + 0.22574701262222222222e-12 * t) * t) * t) * t) * t) * t;
1400 case 96: {
1401 double t = 2*y100 - 193;
1402 return 0.85525144775685126237e0 + (0.18904632212547561026e-1 + (0.23764237370371255638e-3 + (0.21461248251306387979e-5 + (0.14299555071870523786e-7 + (0.69543803864694171934e-10 + 0.23158593688888888889e-12 * t) * t) * t) * t) * t) * t;
1404 case 97: {
1405 double t = 2*y100 - 195;
1406 return 0.89402868170849933734e0 + (0.19881418399127202569e-1 + (0.25086793128395995798e-3 + (0.22633402747585233180e-5 + (0.15008997042116532283e-7 + (0.72357609075043941261e-10 + 0.23737194737777777778e-12 * t) * t) * t) * t) * t) * t;
1408 case 98: {
1409 double t = 2*y100 - 197;
1410 return 0.93481333942870796363e0 + (0.20912536329780368893e-1 + (0.26481403465998477969e-3 + (0.23863447359754921676e-5 + (0.15746923065472184451e-7 + (0.75240468141720143653e-10 + 0.24309291271111111111e-12 * t) * t) * t) * t) * t) * t;
1412 case 99: {
1413 double t = 2*y100 - 199;
1414 return 0.97771701335885035464e0 + (0.22000938572830479551e-1 + (0.27951610702682383001e-3 + (0.25153688325245314530e-5 + (0.16514019547822821453e-7 + (0.78191526829368231251e-10 + 0.24873652355555555556e-12 * t) * t) * t) * t) * t) * t;
1417 // we only get here if y = 1, i.e. |x| < 4*eps, in which case
1418 // erfcx is within 1e-15 of 1..
1419 return 1.0;
1422 double FADDEEVA_RE(erfcx)(double x)
1424 if (x >= 0) {
1425 if (x > 50) { // continued-fraction expansion is faster
1426 const double ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi)
1427 if (x > 5e7) // 1-term expansion, important to avoid overflow
1428 return ispi / x;
1429 /* 5-term expansion (rely on compiler for CSE), simplified from:
1430 ispi / (x+0.5/(x+1/(x+1.5/(x+2/x)))) */
1431 return ispi*((x*x) * (x*x+4.5) + 2) / (x * ((x*x) * (x*x+5) + 3.75));
1433 return erfcx_y100(400/(4+x));
1435 else
1436 return x < -26.7 ? HUGE_VAL : (x < -6.1 ? 2*exp(x*x)
1437 : 2*exp(x*x) - erfcx_y100(400/(4-x)));
1440 /////////////////////////////////////////////////////////////////////////
1441 /* Compute a scaled Dawson integral
1442 FADDEEVA(w_im)(x) = 2*Dawson(x)/sqrt(pi)
1443 equivalent to the imaginary part w(x) for real x.
1445 Uses methods similar to the erfcx calculation above: continued fractions
1446 for large |x|, a lookup table of Chebyshev polynomials for smaller |x|,
1447 and finally a Taylor expansion for |x|<0.01.
1449 Steven G. Johnson, October 2012. */
1451 /* Given y100=100*y, where y = 1/(1+x) for x >= 0, compute w_im(x).
1453 Uses a look-up table of 100 different Chebyshev polynomials
1454 for y intervals [0,0.01], [0.01,0.02], ...., [0.99,1], generated
1455 with the help of Maple and a little shell script. This allows
1456 the Chebyshev polynomials to be of significantly lower degree (about 1/30)
1457 compared to fitting the whole [0,1] interval with a single polynomial. */
1458 static double w_im_y100(double y100, double x) {
1459 switch ((int) y100) {
1460 case 0: {
1461 double t = 2*y100 - 1;
1462 return 0.28351593328822191546e-2 + (0.28494783221378400759e-2 + (0.14427470563276734183e-4 + (0.10939723080231588129e-6 + (0.92474307943275042045e-9 + (0.89128907666450075245e-11 + 0.92974121935111111110e-13 * t) * t) * t) * t) * t) * t;
1464 case 1: {
1465 double t = 2*y100 - 3;
1466 return 0.85927161243940350562e-2 + (0.29085312941641339862e-2 + (0.15106783707725582090e-4 + (0.11716709978531327367e-6 + (0.10197387816021040024e-8 + (0.10122678863073360769e-10 + 0.10917479678400000000e-12 * t) * t) * t) * t) * t) * t;
1468 case 2: {
1469 double t = 2*y100 - 5;
1470 return 0.14471159831187703054e-1 + (0.29703978970263836210e-2 + (0.15835096760173030976e-4 + (0.12574803383199211596e-6 + (0.11278672159518415848e-8 + (0.11547462300333495797e-10 + 0.12894535335111111111e-12 * t) * t) * t) * t) * t) * t;
1472 case 3: {
1473 double t = 2*y100 - 7;
1474 return 0.20476320420324610618e-1 + (0.30352843012898665856e-2 + (0.16617609387003727409e-4 + (0.13525429711163116103e-6 + (0.12515095552507169013e-8 + (0.13235687543603382345e-10 + 0.15326595042666666667e-12 * t) * t) * t) * t) * t) * t;
1476 case 4: {
1477 double t = 2*y100 - 9;
1478 return 0.26614461952489004566e-1 + (0.31034189276234947088e-2 + (0.17460268109986214274e-4 + (0.14582130824485709573e-6 + (0.13935959083809746345e-8 + (0.15249438072998932900e-10 + 0.18344741882133333333e-12 * t) * t) * t) * t) * t) * t;
1480 case 5: {
1481 double t = 2*y100 - 11;
1482 return 0.32892330248093586215e-1 + (0.31750557067975068584e-2 + (0.18369907582308672632e-4 + (0.15761063702089457882e-6 + (0.15577638230480894382e-8 + (0.17663868462699097951e-10 + (0.22126732680711111111e-12 + 0.30273474177737853668e-14 * t) * t) * t) * t) * t) * t) * t;
1484 case 6: {
1485 double t = 2*y100 - 13;
1486 return 0.39317207681134336024e-1 + (0.32504779701937539333e-2 + (0.19354426046513400534e-4 + (0.17081646971321290539e-6 + (0.17485733959327106250e-8 + (0.20593687304921961410e-10 + (0.26917401949155555556e-12 + 0.38562123837725712270e-14 * t) * t) * t) * t) * t) * t) * t;
1488 case 7: {
1489 double t = 2*y100 - 15;
1490 return 0.45896976511367738235e-1 + (0.33300031273110976165e-2 + (0.20423005398039037313e-4 + (0.18567412470376467303e-6 + (0.19718038363586588213e-8 + (0.24175006536781219807e-10 + (0.33059982791466666666e-12 + 0.49756574284439426165e-14 * t) * t) * t) * t) * t) * t) * t;
1492 case 8: {
1493 double t = 2*y100 - 17;
1494 return 0.52640192524848962855e-1 + (0.34139883358846720806e-2 + (0.21586390240603337337e-4 + (0.20247136501568904646e-6 + (0.22348696948197102935e-8 + (0.28597516301950162548e-10 + (0.41045502119111111110e-12 + 0.65151614515238361946e-14 * t) * t) * t) * t) * t) * t) * t;
1496 case 9: {
1497 double t = 2*y100 - 19;
1498 return 0.59556171228656770456e-1 + (0.35028374386648914444e-2 + (0.22857246150998562824e-4 + (0.22156372146525190679e-6 + (0.25474171590893813583e-8 + (0.34122390890697400584e-10 + (0.51593189879111111110e-12 + 0.86775076853908006938e-14 * t) * t) * t) * t) * t) * t) * t;
1500 case 10: {
1501 double t = 2*y100 - 21;
1502 return 0.66655089485108212551e-1 + (0.35970095381271285568e-2 + (0.24250626164318672928e-4 + (0.24339561521785040536e-6 + (0.29221990406518411415e-8 + (0.41117013527967776467e-10 + (0.65786450716444444445e-12 + 0.11791885745450623331e-13 * t) * t) * t) * t) * t) * t) * t;
1504 case 11: {
1505 double t = 2*y100 - 23;
1506 return 0.73948106345519174661e-1 + (0.36970297216569341748e-2 + (0.25784588137312868792e-4 + (0.26853012002366752770e-6 + (0.33763958861206729592e-8 + (0.50111549981376976397e-10 + (0.85313857496888888890e-12 + 0.16417079927706899860e-13 * t) * t) * t) * t) * t) * t) * t;
1508 case 12: {
1509 double t = 2*y100 - 25;
1510 return 0.81447508065002963203e-1 + (0.38035026606492705117e-2 + (0.27481027572231851896e-4 + (0.29769200731832331364e-6 + (0.39336816287457655076e-8 + (0.61895471132038157624e-10 + (0.11292303213511111111e-11 + 0.23558532213703884304e-13 * t) * t) * t) * t) * t) * t) * t;
1512 case 13: {
1513 double t = 2*y100 - 27;
1514 return 0.89166884027582716628e-1 + (0.39171301322438946014e-2 + (0.29366827260422311668e-4 + (0.33183204390350724895e-6 + (0.46276006281647330524e-8 + (0.77692631378169813324e-10 + (0.15335153258844444444e-11 + 0.35183103415916026911e-13 * t) * t) * t) * t) * t) * t) * t;
1516 case 14: {
1517 double t = 2*y100 - 29;
1518 return 0.97121342888032322019e-1 + (0.40387340353207909514e-2 + (0.31475490395950776930e-4 + (0.37222714227125135042e-6 + (0.55074373178613809996e-8 + (0.99509175283990337944e-10 + (0.21552645758222222222e-11 + 0.55728651431872687605e-13 * t) * t) * t) * t) * t) * t) * t;
1520 case 15: {
1521 double t = 2*y100 - 31;
1522 return 0.10532778218603311137e0 + (0.41692873614065380607e-2 + (0.33849549774889456984e-4 + (0.42064596193692630143e-6 + (0.66494579697622432987e-8 + (0.13094103581931802337e-9 + (0.31896187409777777778e-11 + 0.97271974184476560742e-13 * t) * t) * t) * t) * t) * t) * t;
1524 case 16: {
1525 double t = 2*y100 - 33;
1526 return 0.11380523107427108222e0 + (0.43099572287871821013e-2 + (0.36544324341565929930e-4 + (0.47965044028581857764e-6 + (0.81819034238463698796e-8 + (0.17934133239549647357e-9 + (0.50956666166186293627e-11 + (0.18850487318190638010e-12 + 0.79697813173519853340e-14 * t) * t) * t) * t) * t) * t) * t) * t;
1528 case 17: {
1529 double t = 2*y100 - 35;
1530 return 0.12257529703447467345e0 + (0.44621675710026986366e-2 + (0.39634304721292440285e-4 + (0.55321553769873381819e-6 + (0.10343619428848520870e-7 + (0.26033830170470368088e-9 + (0.87743837749108025357e-11 + (0.34427092430230063401e-12 + 0.10205506615709843189e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1532 case 18: {
1533 double t = 2*y100 - 37;
1534 return 0.13166276955656699478e0 + (0.46276970481783001803e-2 + (0.43225026380496399310e-4 + (0.64799164020016902656e-6 + (0.13580082794704641782e-7 + (0.39839800853954313927e-9 + (0.14431142411840000000e-10 + 0.42193457308830027541e-12 * t) * t) * t) * t) * t) * t) * t;
1536 case 19: {
1537 double t = 2*y100 - 39;
1538 return 0.14109647869803356475e0 + (0.48088424418545347758e-2 + (0.47474504753352150205e-4 + (0.77509866468724360352e-6 + (0.18536851570794291724e-7 + (0.60146623257887570439e-9 + (0.18533978397305276318e-10 + (0.41033845938901048380e-13 - 0.46160680279304825485e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1540 case 20: {
1541 double t = 2*y100 - 41;
1542 return 0.15091057940548936603e0 + (0.50086864672004685703e-2 + (0.52622482832192230762e-4 + (0.95034664722040355212e-6 + (0.25614261331144718769e-7 + (0.80183196716888606252e-9 + (0.12282524750534352272e-10 + (-0.10531774117332273617e-11 - 0.86157181395039646412e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1544 case 21: {
1545 double t = 2*y100 - 43;
1546 return 0.16114648116017010770e0 + (0.52314661581655369795e-2 + (0.59005534545908331315e-4 + (0.11885518333915387760e-5 + (0.33975801443239949256e-7 + (0.82111547144080388610e-9 + (-0.12357674017312854138e-10 + (-0.24355112256914479176e-11 - 0.75155506863572930844e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1548 case 22: {
1549 double t = 2*y100 - 45;
1550 return 0.17185551279680451144e0 + (0.54829002967599420860e-2 + (0.67013226658738082118e-4 + (0.14897400671425088807e-5 + (0.40690283917126153701e-7 + (0.44060872913473778318e-9 + (-0.52641873433280000000e-10 - 0.30940587864543343124e-11 * t) * t) * t) * t) * t) * t) * t;
1552 case 23: {
1553 double t = 2*y100 - 47;
1554 return 0.18310194559815257381e0 + (0.57701559375966953174e-2 + (0.76948789401735193483e-4 + (0.18227569842290822512e-5 + (0.41092208344387212276e-7 + (-0.44009499965694442143e-9 + (-0.92195414685628803451e-10 + (-0.22657389705721753299e-11 + 0.10004784908106839254e-12 * t) * t) * t) * t) * t) * t) * t) * t;
1556 case 24: {
1557 double t = 2*y100 - 49;
1558 return 0.19496527191546630345e0 + (0.61010853144364724856e-2 + (0.88812881056342004864e-4 + (0.21180686746360261031e-5 + (0.30652145555130049203e-7 + (-0.16841328574105890409e-8 + (-0.11008129460612823934e-9 + (-0.12180794204544515779e-12 + 0.15703325634590334097e-12 * t) * t) * t) * t) * t) * t) * t) * t;
1560 case 25: {
1561 double t = 2*y100 - 51;
1562 return 0.20754006813966575720e0 + (0.64825787724922073908e-2 + (0.10209599627522311893e-3 + (0.22785233392557600468e-5 + (0.73495224449907568402e-8 + (-0.29442705974150112783e-8 + (-0.94082603434315016546e-10 + (0.23609990400179321267e-11 + 0.14141908654269023788e-12 * t) * t) * t) * t) * t) * t) * t) * t;
1564 case 26: {
1565 double t = 2*y100 - 53;
1566 return 0.22093185554845172146e0 + (0.69182878150187964499e-2 + (0.11568723331156335712e-3 + (0.22060577946323627739e-5 + (-0.26929730679360840096e-7 + (-0.38176506152362058013e-8 + (-0.47399503861054459243e-10 + (0.40953700187172127264e-11 + 0.69157730376118511127e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1568 case 27: {
1569 double t = 2*y100 - 55;
1570 return 0.23524827304057813918e0 + (0.74063350762008734520e-2 + (0.12796333874615790348e-3 + (0.18327267316171054273e-5 + (-0.66742910737957100098e-7 + (-0.40204740975496797870e-8 + (0.14515984139495745330e-10 + (0.44921608954536047975e-11 - 0.18583341338983776219e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1572 case 28: {
1573 double t = 2*y100 - 57;
1574 return 0.25058626331812744775e0 + (0.79377285151602061328e-2 + (0.13704268650417478346e-3 + (0.11427511739544695861e-5 + (-0.10485442447768377485e-6 + (-0.34850364756499369763e-8 + (0.72656453829502179208e-10 + (0.36195460197779299406e-11 - 0.84882136022200714710e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1576 case 29: {
1577 double t = 2*y100 - 59;
1578 return 0.26701724900280689785e0 + (0.84959936119625864274e-2 + (0.14112359443938883232e-3 + (0.17800427288596909634e-6 + (-0.13443492107643109071e-6 + (-0.23512456315677680293e-8 + (0.11245846264695936769e-9 + (0.19850501334649565404e-11 - 0.11284666134635050832e-12 * t) * t) * t) * t) * t) * t) * t) * t;
1580 case 30: {
1581 double t = 2*y100 - 61;
1582 return 0.28457293586253654144e0 + (0.90581563892650431899e-2 + (0.13880520331140646738e-3 + (-0.97262302362522896157e-6 + (-0.15077100040254187366e-6 + (-0.88574317464577116689e-9 + (0.12760311125637474581e-9 + (0.20155151018282695055e-12 - 0.10514169375181734921e-12 * t) * t) * t) * t) * t) * t) * t) * t;
1584 case 31: {
1585 double t = 2*y100 - 63;
1586 return 0.30323425595617385705e0 + (0.95968346790597422934e-2 + (0.12931067776725883939e-3 + (-0.21938741702795543986e-5 + (-0.15202888584907373963e-6 + (0.61788350541116331411e-9 + (0.11957835742791248256e-9 + (-0.12598179834007710908e-11 - 0.75151817129574614194e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1588 case 32: {
1589 double t = 2*y100 - 65;
1590 return 0.32292521181517384379e0 + (0.10082957727001199408e-1 + (0.11257589426154962226e-3 + (-0.33670890319327881129e-5 + (-0.13910529040004008158e-6 + (0.19170714373047512945e-8 + (0.94840222377720494290e-10 + (-0.21650018351795353201e-11 - 0.37875211678024922689e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1592 case 33: {
1593 double t = 2*y100 - 67;
1594 return 0.34351233557911753862e0 + (0.10488575435572745309e-1 + (0.89209444197248726614e-4 + (-0.43893459576483345364e-5 + (-0.11488595830450424419e-6 + (0.28599494117122464806e-8 + (0.61537542799857777779e-10 - 0.24935749227658002212e-11 * t) * t) * t) * t) * t) * t) * t;
1596 case 34: {
1597 double t = 2*y100 - 69;
1598 return 0.36480946642143669093e0 + (0.10789304203431861366e-1 + (0.60357993745283076834e-4 + (-0.51855862174130669389e-5 + (-0.83291664087289801313e-7 + (0.33898011178582671546e-8 + (0.27082948188277716482e-10 + (-0.23603379397408694974e-11 + 0.19328087692252869842e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1600 case 35: {
1601 double t = 2*y100 - 71;
1602 return 0.38658679935694939199e0 + (0.10966119158288804999e-1 + (0.27521612041849561426e-4 + (-0.57132774537670953638e-5 + (-0.48404772799207914899e-7 + (0.35268354132474570493e-8 + (-0.32383477652514618094e-11 + (-0.19334202915190442501e-11 + 0.32333189861286460270e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1604 case 36: {
1605 double t = 2*y100 - 73;
1606 return 0.40858275583808707870e0 + (0.11006378016848466550e-1 + (-0.76396376685213286033e-5 + (-0.59609835484245791439e-5 + (-0.13834610033859313213e-7 + (0.33406952974861448790e-8 + (-0.26474915974296612559e-10 + (-0.13750229270354351983e-11 + 0.36169366979417390637e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1608 case 37: {
1609 double t = 2*y100 - 75;
1610 return 0.43051714914006682977e0 + (0.10904106549500816155e-1 + (-0.43477527256787216909e-4 + (-0.59429739547798343948e-5 + (0.17639200194091885949e-7 + (0.29235991689639918688e-8 + (-0.41718791216277812879e-10 + (-0.81023337739508049606e-12 + 0.33618915934461994428e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1612 case 38: {
1613 double t = 2*y100 - 77;
1614 return 0.45210428135559607406e0 + (0.10659670756384400554e-1 + (-0.78488639913256978087e-4 + (-0.56919860886214735936e-5 + (0.44181850467477733407e-7 + (0.23694306174312688151e-8 + (-0.49492621596685443247e-10 + (-0.31827275712126287222e-12 + 0.27494438742721623654e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1616 case 39: {
1617 double t = 2*y100 - 79;
1618 return 0.47306491195005224077e0 + (0.10279006119745977570e-1 + (-0.11140268171830478306e-3 + (-0.52518035247451432069e-5 + (0.64846898158889479518e-7 + (0.17603624837787337662e-8 + (-0.51129481592926104316e-10 + (0.62674584974141049511e-13 + 0.20055478560829935356e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1620 case 40: {
1621 double t = 2*y100 - 81;
1622 return 0.49313638965719857647e0 + (0.97725799114772017662e-2 + (-0.14122854267291533334e-3 + (-0.46707252568834951907e-5 + (0.79421347979319449524e-7 + (0.11603027184324708643e-8 + (-0.48269605844397175946e-10 + (0.32477251431748571219e-12 + 0.12831052634143527985e-13 * t) * t) * t) * t) * t) * t) * t) * t;
1624 case 41: {
1625 double t = 2*y100 - 83;
1626 return 0.51208057433416004042e0 + (0.91542422354009224951e-2 + (-0.16726530230228647275e-3 + (-0.39964621752527649409e-5 + (0.88232252903213171454e-7 + (0.61343113364949928501e-9 + (-0.42516755603130443051e-10 + (0.47910437172240209262e-12 + 0.66784341874437478953e-14 * t) * t) * t) * t) * t) * t) * t) * t;
1628 case 42: {
1629 double t = 2*y100 - 85;
1630 return 0.52968945458607484524e0 + (0.84400880445116786088e-2 + (-0.18908729783854258774e-3 + (-0.32725905467782951931e-5 + (0.91956190588652090659e-7 + (0.14593989152420122909e-9 + (-0.35239490687644444445e-10 + 0.54613829888448694898e-12 * t) * t) * t) * t) * t) * t) * t;
1632 case 43: {
1633 double t = 2*y100 - 87;
1634 return 0.54578857454330070965e0 + (0.76474155195880295311e-2 + (-0.20651230590808213884e-3 + (-0.25364339140543131706e-5 + (0.91455367999510681979e-7 + (-0.23061359005297528898e-9 + (-0.27512928625244444444e-10 + 0.54895806008493285579e-12 * t) * t) * t) * t) * t) * t) * t;
1636 case 44: {
1637 double t = 2*y100 - 89;
1638 return 0.56023851910298493910e0 + (0.67938321739997196804e-2 + (-0.21956066613331411760e-3 + (-0.18181127670443266395e-5 + (0.87650335075416845987e-7 + (-0.51548062050366615977e-9 + (-0.20068462174044444444e-10 + 0.50912654909758187264e-12 * t) * t) * t) * t) * t) * t) * t;
1640 case 45: {
1641 double t = 2*y100 - 91;
1642 return 0.57293478057455721150e0 + (0.58965321010394044087e-2 + (-0.22841145229276575597e-3 + (-0.11404605562013443659e-5 + (0.81430290992322326296e-7 + (-0.71512447242755357629e-9 + (-0.13372664928000000000e-10 + 0.44461498336689298148e-12 * t) * t) * t) * t) * t) * t) * t;
1644 case 46: {
1645 double t = 2*y100 - 93;
1646 return 0.58380635448407827360e0 + (0.49717469530842831182e-2 + (-0.23336001540009645365e-3 + (-0.51952064448608850822e-6 + (0.73596577815411080511e-7 + (-0.84020916763091566035e-9 + (-0.76700972702222222221e-11 + 0.36914462807972467044e-12 * t) * t) * t) * t) * t) * t) * t;
1648 case 47: {
1649 double t = 2*y100 - 95;
1650 return 0.59281340237769489597e0 + (0.40343592069379730568e-2 + (-0.23477963738658326185e-3 + (0.34615944987790224234e-7 + (0.64832803248395814574e-7 + (-0.90329163587627007971e-9 + (-0.30421940400000000000e-11 + 0.29237386653743536669e-12 * t) * t) * t) * t) * t) * t) * t;
1652 case 48: {
1653 double t = 2*y100 - 97;
1654 return 0.59994428743114271918e0 + (0.30976579788271744329e-2 + (-0.23308875765700082835e-3 + (0.51681681023846925160e-6 + (0.55694594264948268169e-7 + (-0.91719117313243464652e-9 + (0.53982743680000000000e-12 + 0.22050829296187771142e-12 * t) * t) * t) * t) * t) * t) * t;
1656 case 49: {
1657 double t = 2*y100 - 99;
1658 return 0.60521224471819875444e0 + (0.21732138012345456060e-2 + (-0.22872428969625997456e-3 + (0.92588959922653404233e-6 + (0.46612665806531930684e-7 + (-0.89393722514414153351e-9 + (0.31718550353777777778e-11 + 0.15705458816080549117e-12 * t) * t) * t) * t) * t) * t) * t;
1660 case 50: {
1661 double t = 2*y100 - 101;
1662 return 0.60865189969791123620e0 + (0.12708480848877451719e-2 + (-0.22212090111534847166e-3 + (0.12636236031532793467e-5 + (0.37904037100232937574e-7 + (-0.84417089968101223519e-9 + (0.49843180828444444445e-11 + 0.10355439441049048273e-12 * t) * t) * t) * t) * t) * t) * t;
1664 case 51: {
1665 double t = 2*y100 - 103;
1666 return 0.61031580103499200191e0 + (0.39867436055861038223e-3 + (-0.21369573439579869291e-3 + (0.15339402129026183670e-5 + (0.29787479206646594442e-7 + (-0.77687792914228632974e-9 + (0.61192452741333333334e-11 + 0.60216691829459295780e-13 * t) * t) * t) * t) * t) * t) * t;
1668 case 52: {
1669 double t = 2*y100 - 105;
1670 return 0.61027109047879835868e0 + (-0.43680904508059878254e-3 + (-0.20383783788303894442e-3 + (0.17421743090883439959e-5 + (0.22400425572175715576e-7 + (-0.69934719320045128997e-9 + (0.67152759655111111110e-11 + 0.26419960042578359995e-13 * t) * t) * t) * t) * t) * t) * t;
1672 case 53: {
1673 double t = 2*y100 - 107;
1674 return 0.60859639489217430521e0 + (-0.12305921390962936873e-2 + (-0.19290150253894682629e-3 + (0.18944904654478310128e-5 + (0.15815530398618149110e-7 + (-0.61726850580964876070e-9 + 0.68987888999111111110e-11 * t) * t) * t) * t) * t) * t;
1676 case 54: {
1677 double t = 2*y100 - 109;
1678 return 0.60537899426486075181e0 + (-0.19790062241395705751e-2 + (-0.18120271393047062253e-3 + (0.19974264162313241405e-5 + (0.10055795094298172492e-7 + (-0.53491997919318263593e-9 + (0.67794550295111111110e-11 - 0.17059208095741511603e-13 * t) * t) * t) * t) * t) * t) * t;
1680 case 55: {
1681 double t = 2*y100 - 111;
1682 return 0.60071229457904110537e0 + (-0.26795676776166354354e-2 + (-0.16901799553627508781e-3 + (0.20575498324332621581e-5 + (0.51077165074461745053e-8 + (-0.45536079828057221858e-9 + (0.64488005516444444445e-11 - 0.29311677573152766338e-13 * t) * t) * t) * t) * t) * t) * t;
1684 case 56: {
1685 double t = 2*y100 - 113;
1686 return 0.59469361520112714738e0 + (-0.33308208190600993470e-2 + (-0.15658501295912405679e-3 + (0.20812116912895417272e-5 + (0.93227468760614182021e-9 + (-0.38066673740116080415e-9 + (0.59806790359111111110e-11 - 0.36887077278950440597e-13 * t) * t) * t) * t) * t) * t) * t;
1688 case 57: {
1689 double t = 2*y100 - 115;
1690 return 0.58742228631775388268e0 + (-0.39321858196059227251e-2 + (-0.14410441141450122535e-3 + (0.20743790018404020716e-5 + (-0.25261903811221913762e-8 + (-0.31212416519526924318e-9 + (0.54328422462222222221e-11 - 0.40864152484979815972e-13 * t) * t) * t) * t) * t) * t) * t;
1692 case 58: {
1693 double t = 2*y100 - 117;
1694 return 0.57899804200033018447e0 + (-0.44838157005618913447e-2 + (-0.13174245966501437965e-3 + (0.20425306888294362674e-5 + (-0.53330296023875447782e-8 + (-0.25041289435539821014e-9 + (0.48490437205333333334e-11 - 0.42162206939169045177e-13 * t) * t) * t) * t) * t) * t) * t;
1696 case 59: {
1697 double t = 2*y100 - 119;
1698 return 0.56951968796931245974e0 + (-0.49864649488074868952e-2 + (-0.11963416583477567125e-3 + (0.19906021780991036425e-5 + (-0.75580140299436494248e-8 + (-0.19576060961919820491e-9 + (0.42613011928888888890e-11 - 0.41539443304115604377e-13 * t) * t) * t) * t) * t) * t) * t;
1700 case 60: {
1701 double t = 2*y100 - 121;
1702 return 0.55908401930063918964e0 + (-0.54413711036826877753e-2 + (-0.10788661102511914628e-3 + (0.19229663322982839331e-5 + (-0.92714731195118129616e-8 + (-0.14807038677197394186e-9 + (0.36920870298666666666e-11 - 0.39603726688419162617e-13 * t) * t) * t) * t) * t) * t) * t;
1704 case 61: {
1705 double t = 2*y100 - 123;
1706 return 0.54778496152925675315e0 + (-0.58501497933213396670e-2 + (-0.96582314317855227421e-4 + (0.18434405235069270228e-5 + (-0.10541580254317078711e-7 + (-0.10702303407788943498e-9 + (0.31563175582222222222e-11 - 0.36829748079110481422e-13 * t) * t) * t) * t) * t) * t) * t;
1708 case 62: {
1709 double t = 2*y100 - 125;
1710 return 0.53571290831682823999e0 + (-0.62147030670760791791e-2 + (-0.85782497917111760790e-4 + (0.17553116363443470478e-5 + (-0.11432547349815541084e-7 + (-0.72157091369041330520e-10 + (0.26630811607111111111e-11 - 0.33578660425893164084e-13 * t) * t) * t) * t) * t) * t) * t;
1712 case 63: {
1713 double t = 2*y100 - 127;
1714 return 0.52295422962048434978e0 + (-0.65371404367776320720e-2 + (-0.75530164941473343780e-4 + (0.16613725797181276790e-5 + (-0.12003521296598910761e-7 + (-0.42929753689181106171e-10 + (0.22170894940444444444e-11 - 0.30117697501065110505e-13 * t) * t) * t) * t) * t) * t) * t;
1716 case 64: {
1717 double t = 2*y100 - 129;
1718 return 0.50959092577577886140e0 + (-0.68197117603118591766e-2 + (-0.65852936198953623307e-4 + (0.15639654113906716939e-5 + (-0.12308007991056524902e-7 + (-0.18761997536910939570e-10 + (0.18198628922666666667e-11 - 0.26638355362285200932e-13 * t) * t) * t) * t) * t) * t) * t;
1720 case 65: {
1721 double t = 2*y100 - 131;
1722 return 0.49570040481823167970e0 + (-0.70647509397614398066e-2 + (-0.56765617728962588218e-4 + (0.14650274449141448497e-5 + (-0.12393681471984051132e-7 + (0.92904351801168955424e-12 + (0.14706755960177777778e-11 - 0.23272455351266325318e-13 * t) * t) * t) * t) * t) * t) * t;
1724 case 66: {
1725 double t = 2*y100 - 133;
1726 return 0.48135536250935238066e0 + (-0.72746293327402359783e-2 + (-0.48272489495730030780e-4 + (0.13661377309113939689e-5 + (-0.12302464447599382189e-7 + (0.16707760028737074907e-10 + (0.11672928324444444444e-11 - 0.20105801424709924499e-13 * t) * t) * t) * t) * t) * t) * t;
1728 case 67: {
1729 double t = 2*y100 - 135;
1730 return 0.46662374675511439448e0 + (-0.74517177649528487002e-2 + (-0.40369318744279128718e-4 + (0.12685621118898535407e-5 + (-0.12070791463315156250e-7 + (0.29105507892605823871e-10 + (0.90653314645333333334e-12 - 0.17189503312102982646e-13 * t) * t) * t) * t) * t) * t) * t;
1732 case 68: {
1733 double t = 2*y100 - 137;
1734 return 0.45156879030168268778e0 + (-0.75983560650033817497e-2 + (-0.33045110380705139759e-4 + (0.11732956732035040896e-5 + (-0.11729986947158201869e-7 + (0.38611905704166441308e-10 + (0.68468768305777777779e-12 - 0.14549134330396754575e-13 * t) * t) * t) * t) * t) * t) * t;
1736 case 69: {
1737 double t = 2*y100 - 139;
1738 return 0.43624909769330896904e0 + (-0.77168291040309554679e-2 + (-0.26283612321339907756e-4 + (0.10811018836893550820e-5 + (-0.11306707563739851552e-7 + (0.45670446788529607380e-10 + (0.49782492549333333334e-12 - 0.12191983967561779442e-13 * t) * t) * t) * t) * t) * t) * t;
1740 case 70: {
1741 double t = 2*y100 - 141;
1742 return 0.42071877443548481181e0 + (-0.78093484015052730097e-2 + (-0.20064596897224934705e-4 + (0.99254806680671890766e-6 + (-0.10823412088884741451e-7 + (0.50677203326904716247e-10 + (0.34200547594666666666e-12 - 0.10112698698356194618e-13 * t) * t) * t) * t) * t) * t) * t;
1744 case 71: {
1745 double t = 2*y100 - 143;
1746 return 0.40502758809710844280e0 + (-0.78780384460872937555e-2 + (-0.14364940764532853112e-4 + (0.90803709228265217384e-6 + (-0.10298832847014466907e-7 + (0.53981671221969478551e-10 + (0.21342751381333333333e-12 - 0.82975901848387729274e-14 * t) * t) * t) * t) * t) * t) * t;
1748 case 72: {
1749 double t = 2*y100 - 145;
1750 return 0.38922115269731446690e0 + (-0.79249269708242064120e-2 + (-0.91595258799106970453e-5 + (0.82783535102217576495e-6 + (-0.97484311059617744437e-8 + (0.55889029041660225629e-10 + (0.10851981336888888889e-12 - 0.67278553237853459757e-14 * t) * t) * t) * t) * t) * t) * t;
1752 case 73: {
1753 double t = 2*y100 - 147;
1754 return 0.37334112915460307335e0 + (-0.79519385109223148791e-2 + (-0.44219833548840469752e-5 + (0.75209719038240314732e-6 + (-0.91848251458553190451e-8 + (0.56663266668051433844e-10 + (0.23995894257777777778e-13 - 0.53819475285389344313e-14 * t) * t) * t) * t) * t) * t) * t;
1756 case 74: {
1757 double t = 2*y100 - 149;
1758 return 0.35742543583374223085e0 + (-0.79608906571527956177e-2 + (-0.12530071050975781198e-6 + (0.68088605744900552505e-6 + (-0.86181844090844164075e-8 + (0.56530784203816176153e-10 + (-0.43120012248888888890e-13 - 0.42372603392496813810e-14 * t) * t) * t) * t) * t) * t) * t;
1760 case 75: {
1761 double t = 2*y100 - 151;
1762 return 0.34150846431979618536e0 + (-0.79534924968773806029e-2 + (0.37576885610891515813e-5 + (0.61419263633090524326e-6 + (-0.80565865409945960125e-8 + (0.55684175248749269411e-10 + (-0.95486860764444444445e-13 - 0.32712946432984510595e-14 * t) * t) * t) * t) * t) * t) * t;
1764 case 76: {
1765 double t = 2*y100 - 153;
1766 return 0.32562129649136346824e0 + (-0.79313448067948884309e-2 + (0.72539159933545300034e-5 + (0.55195028297415503083e-6 + (-0.75063365335570475258e-8 + (0.54281686749699595941e-10 - 0.13545424295111111111e-12 * t) * t) * t) * t) * t) * t;
1768 case 77: {
1769 double t = 2*y100 - 155;
1770 return 0.30979191977078391864e0 + (-0.78959416264207333695e-2 + (0.10389774377677210794e-4 + (0.49404804463196316464e-6 + (-0.69722488229411164685e-8 + (0.52469254655951393842e-10 - 0.16507860650666666667e-12 * t) * t) * t) * t) * t) * t;
1772 case 78: {
1773 double t = 2*y100 - 157;
1774 return 0.29404543811214459904e0 + (-0.78486728990364155356e-2 + (0.13190885683106990459e-4 + (0.44034158861387909694e-6 + (-0.64578942561562616481e-8 + (0.50354306498006928984e-10 - 0.18614473550222222222e-12 * t) * t) * t) * t) * t) * t;
1776 case 79: {
1777 double t = 2*y100 - 159;
1778 return 0.27840427686253660515e0 + (-0.77908279176252742013e-2 + (0.15681928798708548349e-4 + (0.39066226205099807573e-6 + (-0.59658144820660420814e-8 + (0.48030086420373141763e-10 - 0.20018995173333333333e-12 * t) * t) * t) * t) * t) * t;
1780 case 80: {
1781 double t = 2*y100 - 161;
1782 return 0.26288838011163800908e0 + (-0.77235993576119469018e-2 + (0.17886516796198660969e-4 + (0.34482457073472497720e-6 + (-0.54977066551955420066e-8 + (0.45572749379147269213e-10 - 0.20852924954666666667e-12 * t) * t) * t) * t) * t) * t;
1784 case 81: {
1785 double t = 2*y100 - 163;
1786 return 0.24751539954181029717e0 + (-0.76480877165290370975e-2 + (0.19827114835033977049e-4 + (0.30263228619976332110e-6 + (-0.50545814570120129947e-8 + (0.43043879374212005966e-10 - 0.21228012028444444444e-12 * t) * t) * t) * t) * t) * t;
1788 case 82: {
1789 double t = 2*y100 - 165;
1790 return 0.23230087411688914593e0 + (-0.75653060136384041587e-2 + (0.21524991113020016415e-4 + (0.26388338542539382413e-6 + (-0.46368974069671446622e-8 + (0.40492715758206515307e-10 - 0.21238627815111111111e-12 * t) * t) * t) * t) * t) * t;
1792 case 83: {
1793 double t = 2*y100 - 167;
1794 return 0.21725840021297341931e0 + (-0.74761846305979730439e-2 + (0.23000194404129495243e-4 + (0.22837400135642906796e-6 + (-0.42446743058417541277e-8 + (0.37958104071765923728e-10 - 0.20963978568888888889e-12 * t) * t) * t) * t) * t) * t;
1796 case 84: {
1797 double t = 2*y100 - 169;
1798 return 0.20239979200788191491e0 + (-0.73815761980493466516e-2 + (0.24271552727631854013e-4 + (0.19590154043390012843e-6 + (-0.38775884642456551753e-8 + (0.35470192372162901168e-10 - 0.20470131678222222222e-12 * t) * t) * t) * t) * t) * t;
1800 case 85: {
1801 double t = 2*y100 - 171;
1802 return 0.18773523211558098962e0 + (-0.72822604530339834448e-2 + (0.25356688567841293697e-4 + (0.16626710297744290016e-6 + (-0.35350521468015310830e-8 + (0.33051896213898864306e-10 - 0.19811844544000000000e-12 * t) * t) * t) * t) * t) * t;
1804 case 86: {
1805 double t = 2*y100 - 173;
1806 return 0.17327341258479649442e0 + (-0.71789490089142761950e-2 + (0.26272046822383820476e-4 + (0.13927732375657362345e-6 + (-0.32162794266956859603e-8 + (0.30720156036105652035e-10 - 0.19034196304000000000e-12 * t) * t) * t) * t) * t) * t;
1808 case 87: {
1809 double t = 2*y100 - 175;
1810 return 0.15902166648328672043e0 + (-0.70722899934245504034e-2 + (0.27032932310132226025e-4 + (0.11474573347816568279e-6 + (-0.29203404091754665063e-8 + (0.28487010262547971859e-10 - 0.18174029063111111111e-12 * t) * t) * t) * t) * t) * t;
1812 case 88: {
1813 double t = 2*y100 - 177;
1814 return 0.14498609036610283865e0 + (-0.69628725220045029273e-2 + (0.27653554229160596221e-4 + (0.92493727167393036470e-7 + (-0.26462055548683583849e-8 + (0.26360506250989943739e-10 - 0.17261211260444444444e-12 * t) * t) * t) * t) * t) * t;
1816 case 89: {
1817 double t = 2*y100 - 179;
1818 return 0.13117165798208050667e0 + (-0.68512309830281084723e-2 + (0.28147075431133863774e-4 + (0.72351212437979583441e-7 + (-0.23927816200314358570e-8 + (0.24345469651209833155e-10 - 0.16319736960000000000e-12 * t) * t) * t) * t) * t) * t;
1820 case 90: {
1821 double t = 2*y100 - 181;
1822 return 0.11758232561160626306e0 + (-0.67378491192463392927e-2 + (0.28525664781722907847e-4 + (0.54156999310046790024e-7 + (-0.21589405340123827823e-8 + (0.22444150951727334619e-10 - 0.15368675584000000000e-12 * t) * t) * t) * t) * t) * t;
1824 case 91: {
1825 double t = 2*y100 - 183;
1826 return 0.10422112945361673560e0 + (-0.66231638959845581564e-2 + (0.28800551216363918088e-4 + (0.37758983397952149613e-7 + (-0.19435423557038933431e-8 + (0.20656766125421362458e-10 - 0.14422990012444444444e-12 * t) * t) * t) * t) * t) * t;
1828 case 92: {
1829 double t = 2*y100 - 185;
1830 return 0.91090275493541084785e-1 + (-0.65075691516115160062e-2 + (0.28982078385527224867e-4 + (0.23014165807643012781e-7 + (-0.17454532910249875958e-8 + (0.18981946442680092373e-10 - 0.13494234691555555556e-12 * t) * t) * t) * t) * t) * t;
1832 case 93: {
1833 double t = 2*y100 - 187;
1834 return 0.78191222288771379358e-1 + (-0.63914190297303976434e-2 + (0.29079759021299682675e-4 + (0.97885458059415717014e-8 + (-0.15635596116134296819e-8 + (0.17417110744051331974e-10 - 0.12591151763555555556e-12 * t) * t) * t) * t) * t) * t;
1836 case 94: {
1837 double t = 2*y100 - 189;
1838 return 0.65524757106147402224e-1 + (-0.62750311956082444159e-2 + (0.29102328354323449795e-4 + (-0.20430838882727954582e-8 + (-0.13967781903855367270e-8 + (0.15958771833747057569e-10 - 0.11720175765333333333e-12 * t) * t) * t) * t) * t) * t;
1840 case 95: {
1841 double t = 2*y100 - 191;
1842 return 0.53091065838453612773e-1 + (-0.61586898417077043662e-2 + (0.29057796072960100710e-4 + (-0.12597414620517987536e-7 + (-0.12440642607426861943e-8 + (0.14602787128447932137e-10 - 0.10885859114666666667e-12 * t) * t) * t) * t) * t) * t;
1844 case 96: {
1845 double t = 2*y100 - 193;
1846 return 0.40889797115352738582e-1 + (-0.60426484889413678200e-2 + (0.28953496450191694606e-4 + (-0.21982952021823718400e-7 + (-0.11044169117553026211e-8 + (0.13344562332430552171e-10 - 0.10091231402844444444e-12 * t) * t) * t) * t) * t) * t;
1848 case 97: case 98:
1849 case 99: case 100: { // use Taylor expansion for small x (|x| <= 0.0309...)
1850 // (2/sqrt(pi)) * (x - 2/3 x^3 + 4/15 x^5 - 8/105 x^7 + 16/945 x^9)
1851 double x2 = x*x;
1852 return x * (1.1283791670955125739
1853 - x2 * (0.75225277806367504925
1854 - x2 * (0.30090111122547001970
1855 - x2 * (0.085971746064420005629
1856 - x2 * 0.016931216931216931217))));
1859 /* Since 0 <= y100 < 101, this is only reached if x is NaN,
1860 in which case we should return NaN. */
1861 return NaN;
1864 double FADDEEVA(w_im)(double x)
1866 if (x >= 0) {
1867 if (x > 45) { // continued-fraction expansion is faster
1868 const double ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi)
1869 if (x > 5e7) // 1-term expansion, important to avoid overflow
1870 return ispi / x;
1871 /* 5-term expansion (rely on compiler for CSE), simplified from:
1872 ispi / (x-0.5/(x-1/(x-1.5/(x-2/x)))) */
1873 return ispi*((x*x) * (x*x-4.5) + 2) / (x * ((x*x) * (x*x-5) + 3.75));
1875 return w_im_y100(100/(1+x), x);
1877 else { // = -FADDEEVA(w_im)(-x)
1878 if (x < -45) { // continued-fraction expansion is faster
1879 const double ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi)
1880 if (x < -5e7) // 1-term expansion, important to avoid overflow
1881 return ispi / x;
1882 /* 5-term expansion (rely on compiler for CSE), simplified from:
1883 ispi / (x-0.5/(x-1/(x-1.5/(x-2/x)))) */
1884 return ispi*((x*x) * (x*x-4.5) + 2) / (x * ((x*x) * (x*x-5) + 3.75));
1886 return -w_im_y100(100/(1-x), -x);
1890 /////////////////////////////////////////////////////////////////////////
1892 // Compile with -DTEST_FADDEEVA to compile a little test program
1893 #ifdef TEST_FADDEEVA
1895 #ifdef __cplusplus
1896 # include <cstdio>
1897 #else
1898 # include <stdio.h>
1899 #endif
1901 // compute relative error |b-a|/|a|, handling case of NaN and Inf,
1902 static double relerr(double a, double b) {
1903 if (isnan(a) || isnan(b) || isinf(a) || isinf(b)) {
1904 if ((isnan(a) && !isnan(b)) || (!isnan(a) && isnan(b)) ||
1905 (isinf(a) && !isinf(b)) || (!isinf(a) && isinf(b)) ||
1906 (isinf(a) && isinf(b) && a*b < 0))
1907 return Inf; // "infinite" error
1908 return 0; // matching infinity/nan results counted as zero error
1910 if (a == 0)
1911 return b == 0 ? 0 : Inf;
1912 else
1913 return fabs((b-a) / a);
1916 int main(void) {
1917 double errmax_all = 0;
1919 printf("############# w(z) tests #############\n");
1920 #define NTST 57 // define instead of const for C compatibility
1921 cmplx z[NTST] = {
1922 C(624.2,-0.26123),
1923 C(-0.4,3.),
1924 C(0.6,2.),
1925 C(-1.,1.),
1926 C(-1.,-9.),
1927 C(-1.,9.),
1928 C(-0.0000000234545,1.1234),
1929 C(-3.,5.1),
1930 C(-53,30.1),
1931 C(0.0,0.12345),
1932 C(11,1),
1933 C(-22,-2),
1934 C(9,-28),
1935 C(21,-33),
1936 C(1e5,1e5),
1937 C(1e14,1e14),
1938 C(-3001,-1000),
1939 C(1e160,-1e159),
1940 C(-6.01,0.01),
1941 C(-0.7,-0.7),
1942 C(2.611780000000000e+01, 4.540909610972489e+03),
1943 C(0.8e7,0.3e7),
1944 C(-20,-19.8081),
1945 C(1e-16,-1.1e-16),
1946 C(2.3e-8,1.3e-8),
1947 C(6.3,-1e-13),
1948 C(6.3,1e-20),
1949 C(1e-20,6.3),
1950 C(1e-20,16.3),
1951 C(9,1e-300),
1952 C(6.01,0.11),
1953 C(8.01,1.01e-10),
1954 C(28.01,1e-300),
1955 C(10.01,1e-200),
1956 C(10.01,-1e-200),
1957 C(10.01,0.99e-10),
1958 C(10.01,-0.99e-10),
1959 C(1e-20,7.01),
1960 C(-1,7.01),
1961 C(5.99,7.01),
1962 C(1,0),
1963 C(55,0),
1964 C(-0.1,0),
1965 C(1e-20,0),
1966 C(0,5e-14),
1967 C(0,51),
1968 C(Inf,0),
1969 C(-Inf,0),
1970 C(0,Inf),
1971 C(0,-Inf),
1972 C(Inf,Inf),
1973 C(Inf,-Inf),
1974 C(NaN,NaN),
1975 C(NaN,0),
1976 C(0,NaN),
1977 C(NaN,Inf),
1978 C(Inf,NaN)
1980 cmplx w[NTST] = { /* w(z), computed with WolframAlpha
1981 ... note that WolframAlpha is problematic
1982 some of the above inputs, so I had to
1983 use the continued-fraction expansion
1984 in WolframAlpha in some cases, or switch
1985 to Maple */
1986 C(-3.78270245518980507452677445620103199303131110e-7,
1987 0.000903861276433172057331093754199933411710053155),
1988 C(0.1764906227004816847297495349730234591778719532788,
1989 -0.02146550539468457616788719893991501311573031095617),
1990 C(0.2410250715772692146133539023007113781272362309451,
1991 0.06087579663428089745895459735240964093522265589350),
1992 C(0.30474420525691259245713884106959496013413834051768,
1993 -0.20821893820283162728743734725471561394145872072738),
1994 C(7.317131068972378096865595229600561710140617977e34,
1995 8.321873499714402777186848353320412813066170427e34),
1996 C(0.0615698507236323685519612934241429530190806818395,
1997 -0.00676005783716575013073036218018565206070072304635),
1998 C(0.3960793007699874918961319170187598400134746631,
1999 -5.593152259116644920546186222529802777409274656e-9),
2000 C(0.08217199226739447943295069917990417630675021771804,
2001 -0.04701291087643609891018366143118110965272615832184),
2002 C(0.00457246000350281640952328010227885008541748668738,
2003 -0.00804900791411691821818731763401840373998654987934),
2004 C(0.8746342859608052666092782112565360755791467973338452,
2005 0.),
2006 C(0.00468190164965444174367477874864366058339647648741,
2007 0.0510735563901306197993676329845149741675029197050),
2008 C(-0.0023193175200187620902125853834909543869428763219,
2009 -0.025460054739731556004902057663500272721780776336),
2010 C(9.11463368405637174660562096516414499772662584e304,
2011 3.97101807145263333769664875189354358563218932e305),
2012 C(-4.4927207857715598976165541011143706155432296e281,
2013 -2.8019591213423077494444700357168707775769028e281),
2014 C(2.820947917809305132678577516325951485807107151e-6,
2015 2.820947917668257736791638444590253942253354058e-6),
2016 C(2.82094791773878143474039725787438662716372268e-15,
2017 2.82094791773878143474039725773333923127678361e-15),
2018 C(-0.0000563851289696244350147899376081488003110150498,
2019 -0.000169211755126812174631861529808288295454992688),
2020 C(-5.586035480670854326218608431294778077663867e-162,
2021 5.586035480670854326218608431294778077663867e-161),
2022 C(0.00016318325137140451888255634399123461580248456,
2023 -0.095232456573009287370728788146686162555021209999),
2024 C(0.69504753678406939989115375989939096800793577783885,
2025 -1.8916411171103639136680830887017670616339912024317),
2026 C(0.0001242418269653279656612334210746733213167234822,
2027 7.145975826320186888508563111992099992116786763e-7),
2028 C(2.318587329648353318615800865959225429377529825e-8,
2029 6.182899545728857485721417893323317843200933380e-8),
2030 C(-0.0133426877243506022053521927604277115767311800303,
2031 -0.0148087097143220769493341484176979826888871576145),
2032 C(1.00000000000000012412170838050638522857747934,
2033 1.12837916709551279389615890312156495593616433e-16),
2034 C(0.9999999853310704677583504063775310832036830015,
2035 2.595272024519678881897196435157270184030360773e-8),
2036 C(-1.4731421795638279504242963027196663601154624e-15,
2037 0.090727659684127365236479098488823462473074709),
2038 C(5.79246077884410284575834156425396800754409308e-18,
2039 0.0907276596841273652364790985059772809093822374),
2040 C(0.0884658993528521953466533278764830881245144368,
2041 1.37088352495749125283269718778582613192166760e-22),
2042 C(0.0345480845419190424370085249304184266813447878,
2043 2.11161102895179044968099038990446187626075258e-23),
2044 C(6.63967719958073440070225527042829242391918213e-36,
2045 0.0630820900592582863713653132559743161572639353),
2046 C(0.00179435233208702644891092397579091030658500743634,
2047 0.0951983814805270647939647438459699953990788064762),
2048 C(9.09760377102097999924241322094863528771095448e-13,
2049 0.0709979210725138550986782242355007611074966717),
2050 C(7.2049510279742166460047102593255688682910274423e-304,
2051 0.0201552956479526953866611812593266285000876784321),
2052 C(3.04543604652250734193622967873276113872279682e-44,
2053 0.0566481651760675042930042117726713294607499165),
2054 C(3.04543604652250734193622967873276113872279682e-44,
2055 0.0566481651760675042930042117726713294607499165),
2056 C(0.5659928732065273429286988428080855057102069081e-12,
2057 0.056648165176067504292998527162143030538756683302),
2058 C(-0.56599287320652734292869884280802459698927645e-12,
2059 0.0566481651760675042929985271621430305387566833029),
2060 C(0.0796884251721652215687859778119964009569455462,
2061 1.11474461817561675017794941973556302717225126e-22),
2062 C(0.07817195821247357458545539935996687005781943386550,
2063 -0.01093913670103576690766705513142246633056714279654),
2064 C(0.04670032980990449912809326141164730850466208439937,
2065 0.03944038961933534137558064191650437353429669886545),
2066 C(0.36787944117144232159552377016146086744581113103176,
2067 0.60715770584139372911503823580074492116122092866515),
2068 C(0,
2069 0.010259688805536830986089913987516716056946786526145),
2070 C(0.99004983374916805357390597718003655777207908125383,
2071 -0.11208866436449538036721343053869621153527769495574),
2072 C(0.99999999999999999999999999999999999999990000,
2073 1.12837916709551257389615890312154517168802603e-20),
2074 C(0.999999999999943581041645226871305192054749891144158,
2076 C(0.0110604154853277201542582159216317923453996211744250,
2078 C(0,0),
2079 C(0,0),
2080 C(0,0),
2081 C(Inf,0),
2082 C(0,0),
2083 C(NaN,NaN),
2084 C(NaN,NaN),
2085 C(NaN,NaN),
2086 C(NaN,0),
2087 C(NaN,NaN),
2088 C(NaN,NaN)
2090 double errmax = 0;
2091 for (int i = 0; i < NTST; ++i) {
2092 cmplx fw = FADDEEVA(w)(z[i],0.);
2093 double re_err = relerr(creal(w[i]), creal(fw));
2094 double im_err = relerr(cimag(w[i]), cimag(fw));
2095 printf("w(%g%+gi) = %g%+gi (vs. %g%+gi), re/im rel. err. = %0.2g/%0.2g)\n",
2096 creal(z[i]),cimag(z[i]), creal(fw),cimag(fw), creal(w[i]),cimag(w[i]),
2097 re_err, im_err);
2098 if (re_err > errmax) errmax = re_err;
2099 if (im_err > errmax) errmax = im_err;
2101 if (errmax > 1e-13) {
2102 printf("FAILURE -- relative error %g too large!\n", errmax);
2103 return 1;
2105 printf("SUCCESS (max relative error = %g)\n", errmax);
2106 if (errmax > errmax_all) errmax_all = errmax;
2109 #undef NTST
2110 #define NTST 41 // define instead of const for C compatibility
2111 cmplx z[NTST] = {
2112 C(1,2),
2113 C(-1,2),
2114 C(1,-2),
2115 C(-1,-2),
2116 C(9,-28),
2117 C(21,-33),
2118 C(1e3,1e3),
2119 C(-3001,-1000),
2120 C(1e160,-1e159),
2121 C(5.1e-3, 1e-8),
2122 C(-4.9e-3, 4.95e-3),
2123 C(4.9e-3, 0.5),
2124 C(4.9e-4, -0.5e1),
2125 C(-4.9e-5, -0.5e2),
2126 C(5.1e-3, 0.5),
2127 C(5.1e-4, -0.5e1),
2128 C(-5.1e-5, -0.5e2),
2129 C(1e-6,2e-6),
2130 C(0,2e-6),
2131 C(0,2),
2132 C(0,20),
2133 C(0,200),
2134 C(Inf,0),
2135 C(-Inf,0),
2136 C(0,Inf),
2137 C(0,-Inf),
2138 C(Inf,Inf),
2139 C(Inf,-Inf),
2140 C(NaN,NaN),
2141 C(NaN,0),
2142 C(0,NaN),
2143 C(NaN,Inf),
2144 C(Inf,NaN),
2145 C(1e-3,NaN),
2146 C(7e-2,7e-2),
2147 C(7e-2,-7e-4),
2148 C(-9e-2,7e-4),
2149 C(-9e-2,9e-2),
2150 C(-7e-4,9e-2),
2151 C(7e-2,0.9e-2),
2152 C(7e-2,1.1e-2)
2154 cmplx w[NTST] = { // erf(z[i]), evaluated with Maple
2155 C(-0.5366435657785650339917955593141927494421,
2156 -5.049143703447034669543036958614140565553),
2157 C(0.5366435657785650339917955593141927494421,
2158 -5.049143703447034669543036958614140565553),
2159 C(-0.5366435657785650339917955593141927494421,
2160 5.049143703447034669543036958614140565553),
2161 C(0.5366435657785650339917955593141927494421,
2162 5.049143703447034669543036958614140565553),
2163 C(0.3359473673830576996788000505817956637777e304,
2164 -0.1999896139679880888755589794455069208455e304),
2165 C(0.3584459971462946066523939204836760283645e278,
2166 0.3818954885257184373734213077678011282505e280),
2167 C(0.9996020422657148639102150147542224526887,
2168 0.00002801044116908227889681753993542916894856),
2169 C(-1, 0),
2170 C(1, 0),
2171 C(0.005754683859034800134412990541076554934877,
2172 0.1128349818335058741511924929801267822634e-7),
2173 C(-0.005529149142341821193633460286828381876955,
2174 0.005585388387864706679609092447916333443570),
2175 C(0.007099365669981359632319829148438283865814,
2176 0.6149347012854211635026981277569074001219),
2177 C(0.3981176338702323417718189922039863062440e8,
2178 -0.8298176341665249121085423917575122140650e10),
2179 C(-Inf,
2180 -Inf),
2181 C(0.007389128308257135427153919483147229573895,
2182 0.6149332524601658796226417164791221815139),
2183 C(0.4143671923267934479245651547534414976991e8,
2184 -0.8298168216818314211557046346850921446950e10),
2185 C(-Inf,
2186 -Inf),
2187 C(0.1128379167099649964175513742247082845155e-5,
2188 0.2256758334191777400570377193451519478895e-5),
2189 C(0,
2190 0.2256758334194034158904576117253481476197e-5),
2191 C(0,
2192 18.56480241457555259870429191324101719886),
2193 C(0,
2194 0.1474797539628786202447733153131835124599e173),
2195 C(0,
2196 Inf),
2197 C(1,0),
2198 C(-1,0),
2199 C(0,Inf),
2200 C(0,-Inf),
2201 C(NaN,NaN),
2202 C(NaN,NaN),
2203 C(NaN,NaN),
2204 C(NaN,0),
2205 C(0,NaN),
2206 C(NaN,NaN),
2207 C(NaN,NaN),
2208 C(NaN,NaN),
2209 C(0.07924380404615782687930591956705225541145,
2210 0.07872776218046681145537914954027729115247),
2211 C(0.07885775828512276968931773651224684454495,
2212 -0.0007860046704118224342390725280161272277506),
2213 C(-0.1012806432747198859687963080684978759881,
2214 0.0007834934747022035607566216654982820299469),
2215 C(-0.1020998418798097910247132140051062512527,
2216 0.1010030778892310851309082083238896270340),
2217 C(-0.0007962891763147907785684591823889484764272,
2218 0.1018289385936278171741809237435404896152),
2219 C(0.07886408666470478681566329888615410479530,
2220 0.01010604288780868961492224347707949372245),
2221 C(0.07886723099940260286824654364807981336591,
2222 0.01235199327873258197931147306290916629654)
2224 #define TST(f,isc) \
2225 printf("############# " #f "(z) tests #############\n"); \
2226 double errmax = 0; \
2227 for (int i = 0; i < NTST; ++i) { \
2228 cmplx fw = FADDEEVA(f)(z[i],0.); \
2229 double re_err = relerr(creal(w[i]), creal(fw)); \
2230 double im_err = relerr(cimag(w[i]), cimag(fw)); \
2231 printf(#f "(%g%+gi) = %g%+gi (vs. %g%+gi), re/im rel. err. = %0.2g/%0.2g)\n", \
2232 creal(z[i]),cimag(z[i]), creal(fw),cimag(fw), creal(w[i]),cimag(w[i]), \
2233 re_err, im_err); \
2234 if (re_err > errmax) errmax = re_err; \
2235 if (im_err > errmax) errmax = im_err; \
2237 if (errmax > 1e-13) { \
2238 printf("FAILURE -- relative error %g too large!\n", errmax); \
2239 return 1; \
2241 printf("Checking " #f "(x) special case...\n"); \
2242 for (int i = 0; i < 10000; ++i) { \
2243 double x = pow(10., -300. + i * 600. / (10000 - 1)); \
2244 double re_err = relerr(FADDEEVA_RE(f)(x), \
2245 creal(FADDEEVA(f)(C(x,x*isc),0.))); \
2246 if (re_err > errmax) errmax = re_err; \
2247 re_err = relerr(FADDEEVA_RE(f)(-x), \
2248 creal(FADDEEVA(f)(C(-x,x*isc),0.))); \
2249 if (re_err > errmax) errmax = re_err; \
2252 double re_err = relerr(FADDEEVA_RE(f)(Inf), \
2253 creal(FADDEEVA(f)(C(Inf,0.),0.))); \
2254 if (re_err > errmax) errmax = re_err; \
2255 re_err = relerr(FADDEEVA_RE(f)(-Inf), \
2256 creal(FADDEEVA(f)(C(-Inf,0.),0.))); \
2257 if (re_err > errmax) errmax = re_err; \
2258 re_err = relerr(FADDEEVA_RE(f)(NaN), \
2259 creal(FADDEEVA(f)(C(NaN,0.),0.))); \
2260 if (re_err > errmax) errmax = re_err; \
2262 if (errmax > 1e-13) { \
2263 printf("FAILURE -- relative error %g too large!\n", errmax); \
2264 return 1; \
2266 printf("SUCCESS (max relative error = %g)\n", errmax); \
2267 if (errmax > errmax_all) errmax_all = errmax
2269 TST(erf, 1e-20);
2272 // since erfi just calls through to erf, just one test should
2273 // be sufficient to make sure I didn't screw up the signs or something
2274 #undef NTST
2275 #define NTST 1 // define instead of const for C compatibility
2276 cmplx z[NTST] = { C(1.234,0.5678) };
2277 cmplx w[NTST] = { // erfi(z[i]), computed with Maple
2278 C(1.081032284405373149432716643834106923212,
2279 1.926775520840916645838949402886591180834)
2281 TST(erfi, 0);
2284 // since erfcx just calls through to w, just one test should
2285 // be sufficient to make sure I didn't screw up the signs or something
2286 #undef NTST
2287 #define NTST 1 // define instead of const for C compatibility
2288 cmplx z[NTST] = { C(1.234,0.5678) };
2289 cmplx w[NTST] = { // erfcx(z[i]), computed with Maple
2290 C(0.3382187479799972294747793561190487832579,
2291 -0.1116077470811648467464927471872945833154)
2293 TST(erfcx, 0);
2296 #undef NTST
2297 #define NTST 30 // define instead of const for C compatibility
2298 cmplx z[NTST] = {
2299 C(1,2),
2300 C(-1,2),
2301 C(1,-2),
2302 C(-1,-2),
2303 C(9,-28),
2304 C(21,-33),
2305 C(1e3,1e3),
2306 C(-3001,-1000),
2307 C(1e160,-1e159),
2308 C(5.1e-3, 1e-8),
2309 C(0,2e-6),
2310 C(0,2),
2311 C(0,20),
2312 C(0,200),
2313 C(2e-6,0),
2314 C(2,0),
2315 C(20,0),
2316 C(200,0),
2317 C(Inf,0),
2318 C(-Inf,0),
2319 C(0,Inf),
2320 C(0,-Inf),
2321 C(Inf,Inf),
2322 C(Inf,-Inf),
2323 C(NaN,NaN),
2324 C(NaN,0),
2325 C(0,NaN),
2326 C(NaN,Inf),
2327 C(Inf,NaN),
2328 C(88,0)
2330 cmplx w[NTST] = { // erfc(z[i]), evaluated with Maple
2331 C(1.536643565778565033991795559314192749442,
2332 5.049143703447034669543036958614140565553),
2333 C(0.4633564342214349660082044406858072505579,
2334 5.049143703447034669543036958614140565553),
2335 C(1.536643565778565033991795559314192749442,
2336 -5.049143703447034669543036958614140565553),
2337 C(0.4633564342214349660082044406858072505579,
2338 -5.049143703447034669543036958614140565553),
2339 C(-0.3359473673830576996788000505817956637777e304,
2340 0.1999896139679880888755589794455069208455e304),
2341 C(-0.3584459971462946066523939204836760283645e278,
2342 -0.3818954885257184373734213077678011282505e280),
2343 C(0.0003979577342851360897849852457775473112748,
2344 -0.00002801044116908227889681753993542916894856),
2345 C(2, 0),
2346 C(0, 0),
2347 C(0.9942453161409651998655870094589234450651,
2348 -0.1128349818335058741511924929801267822634e-7),
2349 C(1,
2350 -0.2256758334194034158904576117253481476197e-5),
2351 C(1,
2352 -18.56480241457555259870429191324101719886),
2353 C(1,
2354 -0.1474797539628786202447733153131835124599e173),
2355 C(1, -Inf),
2356 C(0.9999977432416658119838633199332831406314,
2358 C(0.004677734981047265837930743632747071389108,
2360 C(0.5395865611607900928934999167905345604088e-175,
2362 C(0, 0),
2363 C(0, 0),
2364 C(2, 0),
2365 C(1, -Inf),
2366 C(1, Inf),
2367 C(NaN, NaN),
2368 C(NaN, NaN),
2369 C(NaN, NaN),
2370 C(NaN, 0),
2371 C(1, NaN),
2372 C(NaN, NaN),
2373 C(NaN, NaN),
2374 C(0,0)
2376 TST(erfc, 1e-20);
2379 #undef NTST
2380 #define NTST 48 // define instead of const for C compatibility
2381 cmplx z[NTST] = {
2382 C(2,1),
2383 C(-2,1),
2384 C(2,-1),
2385 C(-2,-1),
2386 C(-28,9),
2387 C(33,-21),
2388 C(1e3,1e3),
2389 C(-1000,-3001),
2390 C(1e-8, 5.1e-3),
2391 C(4.95e-3, -4.9e-3),
2392 C(5.1e-3, 5.1e-3),
2393 C(0.5, 4.9e-3),
2394 C(-0.5e1, 4.9e-4),
2395 C(-0.5e2, -4.9e-5),
2396 C(0.5e3, 4.9e-6),
2397 C(0.5, 5.1e-3),
2398 C(-0.5e1, 5.1e-4),
2399 C(-0.5e2, -5.1e-5),
2400 C(1e-6,2e-6),
2401 C(2e-6,0),
2402 C(2,0),
2403 C(20,0),
2404 C(200,0),
2405 C(0,4.9e-3),
2406 C(0,-5.1e-3),
2407 C(0,2e-6),
2408 C(0,-2),
2409 C(0,20),
2410 C(0,-200),
2411 C(Inf,0),
2412 C(-Inf,0),
2413 C(0,Inf),
2414 C(0,-Inf),
2415 C(Inf,Inf),
2416 C(Inf,-Inf),
2417 C(NaN,NaN),
2418 C(NaN,0),
2419 C(0,NaN),
2420 C(NaN,Inf),
2421 C(Inf,NaN),
2422 C(39, 6.4e-5),
2423 C(41, 6.09e-5),
2424 C(4.9e7, 5e-11),
2425 C(5.1e7, 4.8e-11),
2426 C(1e9, 2.4e-12),
2427 C(1e11, 2.4e-14),
2428 C(1e13, 2.4e-16),
2429 C(1e300, 2.4e-303)
2431 cmplx w[NTST] = { // dawson(z[i]), evaluated with Maple
2432 C(0.1635394094345355614904345232875688576839,
2433 -0.1531245755371229803585918112683241066853),
2434 C(-0.1635394094345355614904345232875688576839,
2435 -0.1531245755371229803585918112683241066853),
2436 C(0.1635394094345355614904345232875688576839,
2437 0.1531245755371229803585918112683241066853),
2438 C(-0.1635394094345355614904345232875688576839,
2439 0.1531245755371229803585918112683241066853),
2440 C(-0.01619082256681596362895875232699626384420,
2441 -0.005210224203359059109181555401330902819419),
2442 C(0.01078377080978103125464543240346760257008,
2443 0.006866888783433775382193630944275682670599),
2444 C(-0.5808616819196736225612296471081337245459,
2445 0.6688593905505562263387760667171706325749),
2446 C(Inf,
2447 -Inf),
2448 C(0.1000052020902036118082966385855563526705e-7,
2449 0.005100088434920073153418834680320146441685),
2450 C(0.004950156837581592745389973960217444687524,
2451 -0.004899838305155226382584756154100963570500),
2452 C(0.005100176864319675957314822982399286703798,
2453 0.005099823128319785355949825238269336481254),
2454 C(0.4244534840871830045021143490355372016428,
2455 0.002820278933186814021399602648373095266538),
2456 C(-0.1021340733271046543881236523269967674156,
2457 -0.00001045696456072005761498961861088944159916),
2458 C(-0.01000200120119206748855061636187197886859,
2459 0.9805885888237419500266621041508714123763e-8),
2460 C(0.001000002000012000023960527532953151819595,
2461 -0.9800058800588007290937355024646722133204e-11),
2462 C(0.4244549085628511778373438768121222815752,
2463 0.002935393851311701428647152230552122898291),
2464 C(-0.1021340732357117208743299813648493928105,
2465 -0.00001088377943049851799938998805451564893540),
2466 C(-0.01000200120119126652710792390331206563616,
2467 0.1020612612857282306892368985525393707486e-7),
2468 C(0.1000000000007333333333344266666666664457e-5,
2469 0.2000000000001333333333323199999999978819e-5),
2470 C(0.1999999999994666666666675199999999990248e-5,
2472 C(0.3013403889237919660346644392864226952119,
2474 C(0.02503136792640367194699495234782353186858,
2476 C(0.002500031251171948248596912483183760683918,
2478 C(0,0.004900078433419939164774792850907128053308),
2479 C(0,-0.005100088434920074173454208832365950009419),
2480 C(0,0.2000000000005333333333341866666666676419e-5),
2481 C(0,-48.16001211429122974789822893525016528191),
2482 C(0,0.4627407029504443513654142715903005954668e174),
2483 C(0,-Inf),
2484 C(0,0),
2485 C(-0,0),
2486 C(0, Inf),
2487 C(0, -Inf),
2488 C(NaN, NaN),
2489 C(NaN, NaN),
2490 C(NaN, NaN),
2491 C(NaN, 0),
2492 C(0, NaN),
2493 C(NaN, NaN),
2494 C(NaN, NaN),
2495 C(0.01282473148489433743567240624939698290584,
2496 -0.2105957276516618621447832572909153498104e-7),
2497 C(0.01219875253423634378984109995893708152885,
2498 -0.1813040560401824664088425926165834355953e-7),
2499 C(0.1020408163265306334945473399689037886997e-7,
2500 -0.1041232819658476285651490827866174985330e-25),
2501 C(0.9803921568627452865036825956835185367356e-8,
2502 -0.9227220299884665067601095648451913375754e-26),
2503 C(0.5000000000000000002500000000000000003750e-9,
2504 -0.1200000000000000001800000188712838420241e-29),
2505 C(5.00000000000000000000025000000000000000000003e-12,
2506 -1.20000000000000000000018000000000000000000004e-36),
2507 C(5.00000000000000000000000002500000000000000000e-14,
2508 -1.20000000000000000000000001800000000000000000e-42),
2509 C(5e-301, 0)
2511 TST(Dawson, 1e-20);
2513 printf("#####################################\n");
2514 printf("SUCCESS (max relative error = %g)\n", errmax_all);
2517 #endif