1 #LyX 2.4 created this file. For more info see https://www.lyx.org/
5 \save_transient_properties true
8 \use_default_options false
9 \maintain_unincluded_children false
11 \language_package none
14 \font_roman "default" "default"
15 \font_sans "default" "default"
16 \font_typewriter "default" "default"
17 \font_math "auto" "auto"
18 \font_default_family default
19 \use_non_tex_fonts false
23 \font_typewriter_osf false
24 \font_sf_scale 100 100
25 \font_tt_scale 100 100
27 \use_dash_ligatures true
29 \default_output_format default
31 \bibtex_command default
32 \index_command default
33 \float_placement class
34 \float_alignment class
35 \paperfontsize default
40 \use_package amsmath 1
41 \use_package amssymb 0
44 \use_package mathdots 0
45 \use_package mathtools 0
47 \use_package stackrel 0
48 \use_package stmaryrd 0
49 \use_package undertilde 0
51 \cite_engine_type default
55 \paperorientation portrait
67 \paragraph_separation indent
68 \paragraph_indentation default
70 \math_numbering_side default
75 \paperpagestyle default
77 \tracking_changes false
86 \begin_layout Subsection
87 Periodic systems and mode analysis
88 \begin_inset CommandInset label
90 name "subsec:Periodic-systems"
97 \begin_layout Standard
98 In an infinite periodic array of nanoparticles, the excitations of the nanoparti
99 cles take the quasiperiodic Bloch-wave form
102 \coeffs_{i\nu}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\nu}
107 (assuming the incident external field has the same periodicity,
108 \begin_inset Formula $\coeffr_{\mathrm{ext}(i\nu)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\nu\right)}$
112 \begin_inset Formula $\nu$
115 is the index of a particle inside one unit cell and
116 \begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$
119 are the lattice vectors corresponding to the sites (labeled by multiindices
121 \begin_inset Formula $i,i'$
124 ) of a Bravais lattice
125 \begin_inset Formula $\Lambda$
129 The multiple-scattering problem (
130 \begin_inset CommandInset ref
132 reference "eq:multiple scattering per particle a"
136 ) then takes the form
139 \begin_layout Standard
142 \coeffs_{i\nu}-T_{\nu}\sum_{(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(i\nu)}
148 \begin_inset Formula $W_{\nu\nu'}=\sum_{i';(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\nu')\ne\left(0,\nu\right)}S_{0\nu,i'\nu'}e^{i\vect k\cdot\vect R_{i'}}$
151 and using the quasiperiodicity,
154 \sum_{\nu'}\left(\delta_{\nu\nu'}\mathbb{I}-T_{\nu}W_{\nu\nu'}\right)\coeffs_{\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(\nu)},\label{eq:multiple scattering per particle a periodic}
159 which reduces the linear problem (
160 \begin_inset CommandInset ref
162 reference "eq:multiple scattering per particle a"
166 ) to interactions between particles inside single unit cell.
167 A problematic part is the evaluation of the translation operator lattice
169 \begin_inset Formula $W_{\nu\nu'}$
172 ; this is performed using exponentially convergent Ewald-type representations
174 \begin_inset CommandInset citation
176 key "linton_lattice_2010"
184 \begin_layout Standard
185 In an infinite periodic system, a nonlossy mode supports itself without
186 external driving, i.e.
187 such mode is described by excitation coefficients
188 \begin_inset Formula $a_{\nu}$
193 \begin_inset CommandInset ref
195 reference "eq:multiple scattering per particle a periodic"
199 ) with zero right-hand side.
200 That can happen if the block matrix
203 M\left(\omega,\vect k\right)=\left\{ \delta_{\nu\nu'}\mathbb{I}-T_{\nu}\left(\omega\right)W_{\nu\nu'}\left(\omega,\vect k\right)\right\} _{\nu\nu'}\label{eq:M matrix definition}
208 from the left hand side of (
209 \begin_inset CommandInset ref
211 reference "eq:multiple scattering per particle a periodic"
215 ) is singular (here we explicitly note the
216 \begin_inset Formula $\omega,\vect k$
222 \begin_layout Standard
223 For lossy nanoparticles, however, perfect propagating modes will not exist
225 \begin_inset Formula $M\left(\omega,\vect k\right)$
228 will never be perfectly singular.
229 Therefore in practice, we get the bands by scanning over
230 \begin_inset Formula $\omega,\vect k$
234 \begin_inset Formula $M\left(\omega,\vect k\right)$
238 \begin_inset Quotes erd
242 \begin_inset Quotes erd
248 \begin_layout Section
252 \begin_layout Plain Layout
263 \begin_layout Plain Layout
273 \begin_layout Standard
274 \begin_inset CommandInset label
283 \begin_layout Standard
284 A general overview of utilizing group theory to find lattice modes at high-symme
285 try points of the Brillouin zone can be found e.g.
287 \begin_inset CommandInset citation
289 after "chapters 10–11"
290 key "dresselhaus_group_2008"
295 ; here we use the same notation.
298 \begin_layout Standard
299 We analyse the symmetries of the system in the same VSWF representation
301 \begin_inset Formula $T$
304 -matrix formalism introduced above.
305 We are interested in the modes at the
306 \begin_inset Formula $\Kp$
309 -point of the hexagonal lattice, which has the
310 \begin_inset Formula $D_{3h}$
314 The six irreducible representations (irreps) of the
315 \begin_inset Formula $D_{3h}$
318 group are known and are available in the literature in their explicit forms.
319 In order to find and classify the modes, we need to find a decomposition
320 of the lattice mode representation
321 \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
325 \begin_inset Formula $D_{3h}$
329 The equivalence representation
330 \begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
334 \begin_inset Formula $E'$
337 representation as can be deduced from
338 \begin_inset CommandInset citation
341 key "dresselhaus_group_2008"
347 (11.19) and the character table for
348 \begin_inset Formula $D_{3h}$
353 \begin_inset Formula $\Gamma_{\mathrm{vec.}}$
356 operates on a space spanned by the VSWFs around each nanoparticle in the
357 unit cell (the effects of point group operations on VSWFs are described
359 \begin_inset CommandInset citation
361 key "schulz_point-group_1999"
367 This space can be then decomposed into invariant subspaces of the
368 \begin_inset Formula $D_{3h}$
372 \begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
376 \begin_inset CommandInset citation
379 key "dresselhaus_group_2008"
385 This way, we obtain a symmetry adapted basis
386 \begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
389 as linear combinations of VSWFs
390 \begin_inset Formula $\vswfs lm{p,t}$
393 around the constituting nanoparticles (labeled
394 \begin_inset Formula $p$
400 \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
406 \begin_inset Formula $\Gamma$
409 stands for one of the six different irreps of
410 \begin_inset Formula $D_{3h}$
414 \begin_inset Formula $r$
417 labels the different realisations of the same irrep, and the last index
419 \begin_inset Formula $i$
423 \begin_inset Formula $d_{\Gamma}$
426 (the dimensionality of
427 \begin_inset Formula $\Gamma$
430 ) labels the different partners of the same given irrep.
431 The number of how many times is each irrep contained in
432 \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
437 \begin_inset Formula $r$
441 \begin_inset Formula $\Gamma$
444 ) depends on the multipole degree cutoff
445 \begin_inset Formula $l_{\mathrm{max}}$
451 \begin_layout Standard
453 \begin_inset Formula $\Kp$
456 -point shall lie in the irreducible spaces of only one of the six possible
457 irreps and it can be shown via
458 \begin_inset CommandInset citation
461 key "dresselhaus_group_2008"
467 \begin_inset Formula $\Kp$
471 \begin_inset Formula $M\left(\omega,\vect k\right)$
474 defined above takes a block-diagonal form in the symmetry-adapted basis,
478 M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
483 This enables us to decompose the matrix according to the irreps and to solve
484 the singular value problem in each irrep separately, as done in Fig.
486 \begin_inset CommandInset ref
488 reference "smfig:dispersions"