1 #LyX 2.4 created this file. For more info see https://www.lyx.org/
5 \save_transient_properties true
8 \use_default_options true
9 \maintain_unincluded_children false
11 \language_package default
14 \font_roman "default" "default"
15 \font_sans "default" "default"
16 \font_typewriter "default" "default"
17 \font_math "auto" "auto"
18 \font_default_family default
19 \use_non_tex_fonts false
23 \font_typewriter_osf false
24 \font_sf_scale 100 100
25 \font_tt_scale 100 100
27 \use_dash_ligatures true
29 \default_output_format default
31 \bibtex_command default
32 \index_command default
33 \paperfontsize default
37 \use_package amsmath 1
38 \use_package amssymb 1
41 \use_package mathdots 1
42 \use_package mathtools 1
44 \use_package stackrel 1
45 \use_package stmaryrd 1
46 \use_package undertilde 1
48 \cite_engine_type default
51 \paperorientation portrait
63 \paragraph_separation indent
64 \paragraph_indentation default
66 \math_numbering_side default
71 \paperpagestyle default
73 \tracking_changes false
83 Periodic Green's functions vs.
87 \begin_layout Standard
88 \begin_inset FormulaMacro
89 \newcommand{\ud}{\mathrm{d}}
93 \begin_inset FormulaMacro
94 \newcommand{\abs}[1]{\left|#1\right|}
98 \begin_inset FormulaMacro
99 \newcommand{\vect}[1]{\mathbf{#1}}
103 \begin_inset FormulaMacro
104 \newcommand{\uvec}[1]{\hat{\mathbf{#1}}}
110 \begin_inset FormulaMacro
111 \newcommand{\ush}[2]{Y_{#1}^{#2}}
115 \begin_inset FormulaMacro
116 \newcommand{\ushD}[2]{Y'_{#1}^{#2}}
122 \begin_layout Standard
123 \begin_inset FormulaMacro
124 \newcommand{\vsh}{\vect A}
128 \begin_inset FormulaMacro
129 \newcommand{\vshD}{\vect{A'}}
133 \begin_inset FormulaMacro
134 \newcommand{\wfkc}{\vect y}
138 \begin_inset FormulaMacro
139 \newcommand{\wfkcout}{\vect u}
143 \begin_inset FormulaMacro
144 \newcommand{\wfkcreg}{\vect v}
148 \begin_inset FormulaMacro
149 \newcommand{\wckcreg}{a}
153 \begin_inset FormulaMacro
154 \newcommand{\wckcout}{f}
160 \begin_layout Section
161 Some definitions and useful relations
164 \begin_layout Standard
167 \mathcal{H}_{l}^{m}\left(\vect d\right)\equiv h_{l}^{+}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right)
175 \mathcal{J}_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right)
183 \begin_layout Standard
184 Dual spherical harmonics and waves
187 \begin_layout Standard
190 \int\ush lm\ushD{l'}{m'}\,\ud\Omega=\delta_{l,l'}\delta_{m,m'}
198 \mathcal{J}'_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ushD lm\left(\uvec d\right)
206 \begin_layout Standard
207 Expansion of plane wave (CHECKME whether this is really convention-independent,
211 \begin_layout Standard
214 e^{i\kappa\vect r\cdot\uvec r'}=4\pi\sum_{l,m}i^{n}\mathcal{J}'_{l}^{m}\left(\kappa\vect r\right)\ush lm\left(\uvec r'\right)=4\pi\sum_{l,m}i^{n}\mathcal{J}{}_{l}^{m}\left(\kappa\vect r\right)\ushD lm\left(\uvec r'\right)
219 This one should also be convention independent (similarly for
220 \begin_inset Formula $\mathcal{H}_{l}^{m}$
226 \mathcal{J}_{l}^{m}\left(-\vect r\right)=\left(-1\right)^{l}\mathcal{J}_{l}^{m}\left(\vect r\right).
234 \begin_layout Section
235 Helmholtz equation and Green's functions (in 3D)
238 \begin_layout Standard
239 Note that the notation does not follow Linton's (where the wavenumbers are
243 \begin_layout Standard
246 \left(\nabla^{2}+\kappa^{2}\right)G^{(\kappa)}\left(\vect x,\vect x_{0}\right)=\delta\left(\vect x-\vect x_{0}\right)
254 G_{0}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{0}^{(\kappa)}\left(\vect x-\vect x_{0}\right)=-\frac{\cos\left(\kappa\left|\vect x-\vect x_{0}\right|\right)}{4\pi\left|\vect x-\vect x_{0}\right|}\\
255 G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{\pm}^{(\kappa)}\left(\vect x-\vect x_{0}\right)=-\frac{e^{\pm i\kappa\left|\vect x-\vect x_{0}\right|}}{4\pi\left|\vect x-\vect x_{0}\right|}=-\frac{i\kappa}{4\pi}h_{0}^{\pm}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)=-\frac{i\kappa}{\sqrt{4\pi}}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)
261 \begin_inset Marginal
264 \begin_layout Plain Layout
265 \begin_inset Formula $G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right)=-\frac{i\kappa}{\ush 00}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)$
268 in case wacky conventions.
273 Lattice GF [Linton (2.3)]:
276 G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}\label{eq:Lattice GF}
284 \begin_layout Section
285 GF expansion and lattice sum definition
288 \begin_layout Standard
292 \sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R},
297 and also its dual version
300 \sigma'_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}'_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}.
308 \begin_layout Standard
309 Inspired by [Linton (4.1)]; assuming that
310 \begin_inset Formula $\vect s\notin\Lambda$
313 , let's expand the lattice Green's function around
314 \begin_inset Formula $\vect s$
320 \begin_layout Standard
323 G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)
328 and multiply with a dual SH + integrate
331 \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}\nonumber \\
332 & =-i\kappa\tau_{l'}^{m'}\left(\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)\label{eq:tau extraction}
337 The expansion coefficients
338 \begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
341 is then typically extracted by taking the limit
342 \begin_inset Formula $\left|\vect r\right|\to0$
348 \begin_layout Standard
350 \begin_inset Formula $\sigma_{l}^{m}\left(\vect s,\vect k\right)$
354 \begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
358 from the addition theorem for scalar spherical wavefunctions [Linton (C.3)],
362 \mathcal{H}_{l}^{m}\left(\vect a+\vect b\right)=\sum_{l'm'}S_{ll'}^{mm'}\left(\vect b\right)\mathcal{J}_{l'}^{m'}\left(\vect a\right),\quad\left|\vect a\right|<\left|\vect b\right|
367 where for the zeroth degree and order one has [Linton (C.3)]
370 S_{0l'}^{0m'}\left(\vect b\right)=\sqrt{4\pi}\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)
376 \begin_inset Marginal
379 \begin_layout Plain Layout
380 In a totally convention-independent version probably looks like
381 \begin_inset Formula $S_{0l'}^{0m'}\left(\vect b\right)=\ush 00\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)$
385 \begin_inset Formula $Y_{0}^{0}$
388 will cancel with the expression for GF anyways, so no harm to the final
394 From the lattice GF definition
395 \begin_inset CommandInset ref
397 reference "eq:Lattice GF"
407 G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right) & \equiv\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
408 & =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
409 & =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\sum_{l'm'}S_{0l'}^{0m'}\left(\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l'}^{m'}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}\\
410 & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}
415 and mutliplying with dual SH and integrating
418 \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\
419 & =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l'}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\
420 & =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)
426 \begin_inset CommandInset ref
428 reference "eq:tau extraction"
438 \tau_{l}^{m}\left(\vect s,\vect k\right)=\sigma'_{l}^{m}\left(-\vect s,\vect k\right).
444 \begin_inset Note Note
447 \begin_layout Plain Layout
448 TODO maybe also define some
449 \begin_inset Formula $\tau'_{l}^{m}$
452 as expansion coefficients of GF into dual regular SSWFs.