Fix missing import in finiterectlat-scatter.py
[qpms.git] / notes / ewald-calculations-apr1.lyx
blobce4a8e7bedd5be2057e3a10d957919e6bee26220
1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
2 \lyxformat 474
3 \begin_document
4 \begin_header
5 \textclass article
6 \use_default_options true
7 \maintain_unincluded_children false
8 \language finnish
9 \language_package default
10 \inputencoding auto
11 \fontencoding global
12 \font_roman TeX Gyre Pagella
13 \font_sans default
14 \font_typewriter default
15 \font_math auto
16 \font_default_family default
17 \use_non_tex_fonts true
18 \font_sc false
19 \font_osf true
20 \font_sf_scale 100
21 \font_tt_scale 100
22 \graphics default
23 \default_output_format pdf4
24 \output_sync 0
25 \bibtex_command default
26 \index_command default
27 \paperfontsize 10
28 \spacing single
29 \use_hyperref true
30 \pdf_title "Sähköpajan päiväkirja"
31 \pdf_author "Marek Nečada"
32 \pdf_bookmarks true
33 \pdf_bookmarksnumbered false
34 \pdf_bookmarksopen false
35 \pdf_bookmarksopenlevel 1
36 \pdf_breaklinks false
37 \pdf_pdfborder false
38 \pdf_colorlinks false
39 \pdf_backref false
40 \pdf_pdfusetitle true
41 \papersize a3paper
42 \use_geometry true
43 \use_package amsmath 1
44 \use_package amssymb 1
45 \use_package cancel 1
46 \use_package esint 1
47 \use_package mathdots 1
48 \use_package mathtools 1
49 \use_package mhchem 1
50 \use_package stackrel 1
51 \use_package stmaryrd 1
52 \use_package undertilde 1
53 \cite_engine basic
54 \cite_engine_type default
55 \biblio_style plain
56 \use_bibtopic false
57 \use_indices false
58 \paperorientation portrait
59 \suppress_date false
60 \justification true
61 \use_refstyle 1
62 \index Index
63 \shortcut idx
64 \color #008000
65 \end_index
66 \leftmargin 1cm
67 \topmargin 5mm
68 \rightmargin 1cm
69 \bottommargin 1cm
70 \secnumdepth 3
71 \tocdepth 3
72 \paragraph_separation indent
73 \paragraph_indentation default
74 \quotes_language swedish
75 \papercolumns 1
76 \papersides 1
77 \paperpagestyle default
78 \tracking_changes false
79 \output_changes false
80 \html_math_output 0
81 \html_css_as_file 0
82 \html_be_strict false
83 \end_header
85 \begin_body
87 \begin_layout Standard
89 \lang english
90 \begin_inset FormulaMacro
91 \newcommand{\uoft}[1]{\mathfrak{F}#1}
92 \end_inset
95 \begin_inset FormulaMacro
96 \newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
97 \end_inset
100 \begin_inset FormulaMacro
101 \newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
102 \end_inset
105 \begin_inset FormulaMacro
106 \newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
107 \end_inset
110 \begin_inset FormulaMacro
111 \newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
112 \end_inset
115 \begin_inset FormulaMacro
116 \newcommand{\vect}[1]{\mathbf{#1}}
117 \end_inset
120 \begin_inset FormulaMacro
121 \newcommand{\ud}{\mathrm{d}}
122 \end_inset
125 \begin_inset FormulaMacro
126 \newcommand{\basis}[1]{\mathfrak{#1}}
127 \end_inset
130 \begin_inset FormulaMacro
131 \newcommand{\dc}[1]{Ш_{#1}}
132 \end_inset
135 \begin_inset FormulaMacro
136 \newcommand{\rec}[1]{#1^{-1}}
137 \end_inset
140 \begin_inset FormulaMacro
141 \newcommand{\recb}[1]{#1^{\widehat{-1}}}
142 \end_inset
145 \begin_inset FormulaMacro
146 \newcommand{\ints}{\mathbb{Z}}
147 \end_inset
150 \begin_inset FormulaMacro
151 \newcommand{\nats}{\mathbb{N}}
152 \end_inset
155 \begin_inset FormulaMacro
156 \newcommand{\reals}{\mathbb{R}}
157 \end_inset
160 \begin_inset FormulaMacro
161 \newcommand{\ush}[2]{Y_{#1,#2}}
162 \end_inset
165 \begin_inset FormulaMacro
166 \newcommand{\hgfr}{\mathbf{F}}
167 \end_inset
170 \begin_inset FormulaMacro
171 \newcommand{\ph}{\mathrm{ph}}
172 \end_inset
175 \begin_inset FormulaMacro
176 \newcommand{\kor}[1]{\underline{#1}}
177 \end_inset
180 \begin_inset FormulaMacro
181 \newcommand{\koru}[1]{\overline{#1}}
182 \end_inset
185 \begin_inset FormulaMacro
186 \newcommand{\hgf}{F}
187 \end_inset
190 \end_layout
192 \begin_layout Paragraph
194 \lang english
195 Large k
196 \end_layout
198 \begin_layout Standard
200 \lang english
201 \begin_inset Formula 
202 \begin{eqnarray*}
203 \mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
204 \mbox{OK(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\
205  &  & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
206 \frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\
208 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
209  & - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
210 \frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\
212 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
213 \mbox{OK20} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\
214  &  & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c}
215 \frac{2-q+n}{2},\frac{2-q-n}{2}\\
217 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
218  & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c}
219 \frac{3-q+n}{2},\frac{3-q-n}{2}\\
221 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
222 \mbox{(D15.2.2)OK3a,b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\
223  &  & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\
224  & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\
225 \mbox{OK4a} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
226  &  & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\
227  & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\
228 \mbox{OK4b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
229  &  & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\
230  & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\
231 \mbox{OK4c} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\kor 0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\
232  &  & \times\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
233 \mbox{OK4d} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
234 \end{eqnarray*}
236 \end_inset
238 the fact that the partial sum 
239 \begin_inset Formula $\sum_{s=0}^{\left\lceil \kappa/2\right\rceil -1}\ldots$
240 \end_inset
242  is zero is shown in the old messy notes (or TODO later here) 
243 \end_layout
245 \begin_layout Standard
247 \lang english
248 Using DLMF 5.5.5, which says 
249 \begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$
250 \end_inset
252  we have 
253 \begin_inset Formula 
255 \text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
258 \end_inset
261 \begin_inset Formula 
262 \begin{eqnarray*}
263 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
264  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{2^{1-q}}}{k_{0}^{q}}\koru{\sqrt{\pi}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\kor{\koru{\text{Γ}\left(\frac{2-q+n}{2}\right)}\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\kor{\koru{\text{Γ}\left(\frac{3-q+n}{2}\right)}\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
265  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
266 \end{eqnarray*}
268 \end_inset
270 Assuming that 
271 \begin_inset Formula $\left\lceil \frac{\kappa}{2}\right\rceil $
272 \end_inset
274  is large enough so that all the divergent terms are cancelled, either the
275  left or the right part will become finite sums due to the 
276 \begin_inset Quotes sld
277 \end_inset
279 extra
280 \begin_inset Quotes srd
281 \end_inset
283  Pochhammer 
284 \begin_inset Formula $\left(\frac{3-q-n}{2}\right)_{s}$
285 \end_inset
287  or 
288 \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}$
289 \end_inset
292 \end_layout
294 \begin_layout Standard
296 \lang english
297 According to Mathematica, the right sum with 
298 \begin_inset Formula $s$
299 \end_inset
301  going from 0 
302 \begin_inset Formula 
303 \begin{equation}
304 \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\label{eq:right sum}
305 \end{equation}
307 \end_inset
309 can be written as (mathematica output) 
310 \begin_inset Note Note
311 status collapsed
313 \begin_layout Plain Layout
315 \lang english
316 (2^(2 - q)*k^(-3 + q)*((-I)*k0 + c*sig)*Gamma[(3 + n - q)/2]*Hypergeometric2F1[3
317 /2 - n/2 - q/2, 3/2 + n/2 - q/2, 3/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(-1
318  + n + q)/2]) 
319 \end_layout
321 \end_inset
324 \begin_inset Formula 
326 \frac{2^{2-q}k^{-3+q}\left(-ik_{0}+c\sigma\right)\text{Γ}\left(\frac{3+n-q}{2}\right)\hgf\left(\begin{array}{c}
327 \frac{3-n-q}{2},\frac{3+n-q}{2}\\
329 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{-1+n+q}{2}\right)}
332 \end_inset
335 \end_layout
337 \begin_layout Standard
339 \lang english
340 Similarly, the left sum
341 \begin_inset Formula 
342 \begin{equation}
343 \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\right)\label{eq:left sum}
344 \end{equation}
346 \end_inset
348 gives (mathematica output) 
349 \begin_inset Note Note
350 status collapsed
352 \begin_layout Plain Layout
354 \lang english
355 (2^(1 - q)*k^(-2 + q)*Gamma[(2 + n - q)/2]*Hypergeometric2F1[1 - n/2 - q/2,
356  1 + n/2 - q/2, 1/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(n + q)/2]) 
357 \end_layout
359 \end_inset
361  and is equal to
362 \begin_inset Formula 
364 \frac{2^{1-q}k^{-2+q}\Gamma\left(\frac{2+n-q}{2}\right)\hgf\left(\begin{array}{c}
365 \frac{2-n-q}{2},\frac{2+n-q}{2}\\
367 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{n+q}{2}\right)}
370 \end_inset
373 \end_layout
375 \begin_layout Subparagraph
377 \lang english
378 Special case 
379 \begin_inset Formula $q=2,n=0$
380 \end_inset
383 \end_layout
385 \begin_layout Standard
387 \lang english
388 If 
389 \begin_inset Formula $\kappa\ge2$
390 \end_inset
392 , the left part will drop and
393 \begin_inset Formula 
394 \begin{eqnarray*}
395 \mbox{OKSq2n0b}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\kor{\text{Γ}\left(\frac{3}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
396  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\koru{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\left(\frac{1}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
397  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\kor{\left\lceil \frac{\kappa}{2}\right\rceil }}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
398 \mbox{(explain!)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\koru 0}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\kor{\text{Γ}\left(\frac{1}{2}\right)}\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
399  & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\kor{\sum_{s=0}^{\infty}\left(-1\right)^{s}\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}}\\
400  & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\frac{2\sqrt{\pi}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\frac{\sigma c-ik_{0}}{k}}\\
401 \mbox{OKSq2n0f} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{1}{k_{0}^{2}}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)
402 \end{eqnarray*}
404 \end_inset
406 where we used (TODO ref)
407 \begin_inset Formula 
409 \sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}\left(-x\right)^{s}=\frac{2\sqrt{\pi}\sinh^{-1}\sqrt{x}}{\sqrt{x}}
412 \end_inset
414 The final result has asymptotic behaviour of ...
415  for 
416 \begin_inset Formula $k\to\infty$
417 \end_inset
420 \end_layout
422 \begin_layout Subparagraph
423 Special case 
424 \begin_inset Formula $q=3,n=1$
425 \end_inset
428 \end_layout
430 \begin_layout Standard
431 \begin_inset Formula 
432 \begin{eqnarray*}
433 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
434  & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{1-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
435 \end{eqnarray*}
437 \end_inset
439 Let's hope that the left term (sum) in the big round brackets is zero for
441 \begin_inset Formula $\kappa\ge3$
442 \end_inset
444  (verified numerically, see file xxx; and BTW numerics show that it is zero
445  also when 
446 \begin_inset Formula $k<k_{0}$
447 \end_inset
449  and 
450 \begin_inset Formula $\kappa\ge3$
451 \end_inset
453 ), and therefore
454 \begin_inset Formula 
455 \begin{eqnarray*}
456 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
457  & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\koru{\text{Γ}\left(\frac{3-q+n}{2}+s\right)}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
458 \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\kor{k^{1-2s}}\left(\sigma c-ik_{0}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
459  & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}\koru k}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\koru{\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}
460 \end{eqnarray*}
462 \end_inset
464 and Mathematica tells us that 
465 \begin_inset Formula 
466 \begin{eqnarray*}
467 \sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}x^{s} & = & 2\frac{\sqrt{x\left(1-x\right)}\sin^{-1}\sqrt{x}}{\sqrt{\pi}\sqrt{x}}\\
468 \sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}(-1)^{s}y^{2s} & = & 2\frac{y\sqrt{1+y^{2}}+\sinh^{-1}y}{\sqrt{\pi}y}
469 \end{eqnarray*}
471 \end_inset
474 \begin_inset Formula 
475 \begin{eqnarray*}
476 \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{2^{-2}}k}{k_{0}^{3}}\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}\kor 2\frac{\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}}\\
477 (Hq3n1) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k}{2k_{0}^{3}}\left(\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)\right)
478 \end{eqnarray*}
480 \end_inset
483 \series bold
484 což je prej blbě (zjisti proč – blbě opsáno nebo nesprávná větev logaritmu?);
485 \series default
486  správný výsledek je (mathematica kód: 
487 \begin_inset Note Note
488 status collapsed
490 \begin_layout Plain Layout
491 - Sum[(-1)^sig Binomial[kap, sig] (((-I)*k0 + c*sig)*(k0*Sqrt[1 - (k0 +
492  I*c*sig)^2/k^2] + I*c*sig*Sqrt[1 - (k0 + I*c*sig)^2/k^2] + k*ArcSin[(k0
493  + I*c*sig)/k]))/(2*k0^3*(k0 + I*c*sig)) , {sig, 0, kap}]
494 \end_layout
496 \end_inset
498  nebo FullSimplify 
499 \begin_inset Note Note
500 status collapsed
502 \begin_layout Plain Layout
503 (((-I)*k0 + c*sig)*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] - I*k*ArcSin[(k0 +
504  I*c*sig)/k])/(2*k0^3) 
505 \end_layout
507 \end_inset
509 ; snad jsem to tentokrát neopsal blbě)
510 \begin_inset Formula 
511 \begin{eqnarray*}
512 \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\left(k_{0}\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+ic\sigma\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+k\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)\right)}{2k_{0}^{3}\left(k_{0}+ic\sigma\right)}\\
513 \mbox{(f.simpl.)} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}-ik\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{2k_{0}^{3}}
514 \end{eqnarray*}
516 \end_inset
519 \end_layout
521 \begin_layout Subparagraph
522 Special case 
523 \begin_inset Formula $q=3,n=0$
524 \end_inset
527 \end_layout
529 \begin_layout Standard
530 Mathematica řiká po fullsimplify zhruba toto 
531 \begin_inset Note Note
532 status open
534 \begin_layout Plain Layout
535 Sum[((-1)^(1 + sig)*(k*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] + (k0 + I*c*sig)*ArcSi
536 n[(k0 + I*c*sig)/k])*Binomial[kap, sig])/k0^3, {sig, 0, kap}]
537 \end_layout
539 \end_inset
542 \begin_inset Formula 
543 \begin{eqnarray*}
544 \pht 0{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}+\left(k_{0}+ic\sigma\right)\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{k_{0}^{3}}
545 \end{eqnarray*}
547 \end_inset
550 \begin_inset Formula $\kappa\ge2$
551 \end_inset
554 \end_layout
556 \begin_layout Paragraph
557 Small k 
558 \end_layout
560 \begin_layout Standard
562 \lang english
563 \begin_inset Formula 
564 \begin{eqnarray*}
565 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
566 \mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\kor{Γ\left(2-q+n\right)}}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1
567 \end{eqnarray*}
569 \end_inset
571 Again we use 
572 \begin_inset Formula 
574 \text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
577 \end_inset
579  so
580 \begin_inset Formula 
581 \begin{eqnarray*}
582 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}\\
583 \mbox{OKShort} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}}\\
584 \mbox{(D15.2.1)} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\koru{\frac{\text{Γ}\left(1+n\right)}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right)}\kor{\hgf\left(\begin{array}{c}
585 \frac{2-q+n}{2},\frac{3-q+n}{2}\\
587 \end{array};\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)}}
588 \end{eqnarray*}
590 \end_inset
593 \end_layout
595 \end_body
596 \end_document