1 #LyX 2.4 created this file. For more info see https://www.lyx.org/
5 \save_transient_properties true
8 \use_default_options true
9 \maintain_unincluded_children false
11 \language_package default
14 \font_roman "default" "default"
15 \font_sans "default" "default"
16 \font_typewriter "default" "default"
17 \font_math "auto" "auto"
18 \font_default_family default
19 \use_non_tex_fonts false
23 \font_typewriter_osf false
24 \font_sf_scale 100 100
25 \font_tt_scale 100 100
27 \use_dash_ligatures true
29 \default_output_format default
31 \bibtex_command default
32 \index_command default
33 \paperfontsize default
37 \use_package amsmath 1
38 \use_package amssymb 1
41 \use_package mathdots 1
42 \use_package mathtools 1
44 \use_package stackrel 1
45 \use_package stmaryrd 1
46 \use_package undertilde 1
48 \cite_engine_type default
51 \paperorientation portrait
63 \paragraph_separation indent
64 \paragraph_indentation default
66 \math_numbering_side default
71 \paperpagestyle default
73 \tracking_changes false
82 \begin_layout Standard
85 \begin_inset FormulaMacro
86 \newcommand{\uoft}[1]{\mathfrak{F}#1}
90 \begin_inset FormulaMacro
91 \newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
95 \begin_inset FormulaMacro
96 \newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
100 \begin_inset FormulaMacro
101 \newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
105 \begin_inset FormulaMacro
106 \newcommand{\sgn}{\operatorname{sgn}}
111 \begin_inset FormulaMacro
112 \newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
116 \begin_inset FormulaMacro
117 \newcommand{\vect}[1]{\mathbf{#1}}
121 \begin_inset FormulaMacro
122 \newcommand{\ud}{\mathrm{d}}
126 \begin_inset FormulaMacro
127 \newcommand{\basis}[1]{\mathfrak{#1}}
131 \begin_inset FormulaMacro
132 \newcommand{\dc}[1]{ะจ_{#1}}
136 \begin_inset FormulaMacro
137 \newcommand{\rec}[1]{#1^{-1}}
141 \begin_inset FormulaMacro
142 \newcommand{\recb}[1]{#1^{\widehat{-1}}}
146 \begin_inset FormulaMacro
147 \newcommand{\ints}{\mathbb{Z}}
151 \begin_inset FormulaMacro
152 \newcommand{\nats}{\mathbb{N}}
156 \begin_inset FormulaMacro
157 \newcommand{\reals}{\mathbb{R}}
161 \begin_inset FormulaMacro
162 \newcommand{\ush}[2]{Y_{#1,#2}}
166 \begin_inset FormulaMacro
167 \newcommand{\hgfr}{\mathbf{F}}
171 \begin_inset FormulaMacro
176 \begin_inset FormulaMacro
177 \newcommand{\ghgf}[2]{\mbox{}_{#1}F_{#2}}
181 \begin_inset FormulaMacro
182 \newcommand{\ghgfr}[2]{\mbox{}_{#1}\mathbf{F}_{#2}}
186 \begin_inset FormulaMacro
187 \newcommand{\ph}{\mathrm{ph}}
191 \begin_inset FormulaMacro
192 \newcommand{\kor}[1]{\underline{#1}}
196 \begin_inset FormulaMacro
197 \newcommand{\koru}[1]{\utilde{#1}}
201 \begin_inset FormulaMacro
202 \newcommand{\swv}{\mathscr{H}}
206 \begin_inset FormulaMacro
207 \newcommand{\expint}{\mathrm{E}}
213 \begin_layout Standard
218 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
219 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
220 & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
221 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
222 & = & -\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
223 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:2D Ewald in 3D long-range part}
229 \begin_inset Formula $z\ne0$
235 & =-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\\
236 & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{n-\left|m\right|}\frac{\Delta_{npq}}{j!}\left(-1\right)^{j}\left(\gamma_{pq}\right)^{2j-1}\sum_{s\overset{*}{=}j}^{\min(2j,n-\left|m\right|)}\binom{j}{2j-s}\frac{\left(-\kappa z\right)^{2j-s}\left(\beta_{pq}/k\right)^{n-s}}{\left(\frac{1}{2}\left(n-m-s\right)\right)!\left(\frac{1}{2}\left(n+m-s\right)\right)!}\\
237 & =-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\\
238 & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{n-\left|m\right|}\Delta_{npq}\left(\gamma_{pq}\right)^{2j-1}\sum_{s\overset{*}{=}j}^{\min(2j,n-\left|m\right|)}\frac{\left(-1\right)^{j}}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa z\right)^{2j-s}\left(\beta_{pq}/k\right)^{n-s}}{\left(\frac{1}{2}\left(n-m-s\right)\right)!\left(\frac{1}{2}\left(n+m-s\right)\right)!}
246 \begin_layout Section
249 Ewald long range integral
252 \begin_layout Standard
258 G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta
264 \begin_inset Formula $t=\zeta^{2}$
268 \begin_inset Formula $\ud t=2\zeta\,\ud\zeta$
272 \begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$
278 G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t
285 \begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$
291 \begin_layout Standard
296 G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau