Fix missing import in finiterectlat-scatter.py
[qpms.git] / oldtests / staticgroups.c
blob3040539bee042d6f68378dea457ea5609c11f007
1 #include <qpms/groups.h>
2 const qpms_finite_group_t QPMS_FINITE_GROUP_C2 = {
3 "C2", // name
4 2, // order
5 0, // idi
6 (qpms_gmi_t[]) { // mt
7 0, 1,
8 1, 0,
9 },
10 (qpms_gmi_t[]) { // invi
11 0, 1
13 (qpms_gmi_t[]) {1}, // gens
14 1, // ngens
15 (qpms_permutation_t[]){ // permrep
16 "(1)",
17 "(0 1)",
19 NULL, // elemlabels
20 2, // permrep_nelem
21 (qpms_irot3_t[]) { // rep3d
22 {{1.0+0.0*I, 0.0+0.0*I}, 1},
23 {{6.123233995736766e-17+1.0*I, 0.0+0.0*I}, 1},
25 2, // nirreps
26 (struct qpms_finite_group_irrep_t[]) { // irreps
28 1, // dim
29 "B", //name
30 (complex double []) {1, -1} // m
33 1, // dim
34 "A", //name
35 (complex double []) {1, 1} // m
37 } // end of irreps
40 const qpms_finite_group_t QPMS_FINITE_GROUP_C2v = {
41 "C2v", // name
42 4, // order
43 0, // idi
44 (qpms_gmi_t[]) { // mt
45 0, 1, 2, 3,
46 1, 0, 3, 2,
47 2, 3, 0, 1,
48 3, 2, 1, 0,
50 (qpms_gmi_t[]) { // invi
51 0, 1, 2, 3
53 (qpms_gmi_t[]) {1, 3}, // gens
54 2, // ngens
55 (qpms_permutation_t[]){ // permrep
56 "(3)",
57 "(0 1)(2 3)",
58 "(0 2)(1 3)",
59 "(0 3)(1 2)",
61 NULL, // elemlabels
62 4, // permrep_nelem
63 (qpms_irot3_t[]) { // rep3d
64 {{1.0+0.0*I, 0.0+0.0*I}, 1},
65 {{0.0+0.0*I, 0.0+1.0*I}, -1},
66 {{0.0+1.0*I, 0.0+0.0*I}, 1},
67 {{0.0+0.0*I, 1.0+0.0*I}, -1},
69 4, // nirreps
70 (struct qpms_finite_group_irrep_t[]) { // irreps
72 1, // dim
73 "A1", //name
74 (complex double []) {1, 1, 1, 1} // m
77 1, // dim
78 "A2", //name
79 (complex double []) {1, -1, 1, -1} // m
82 1, // dim
83 "B2", //name
84 (complex double []) {1, -1, -1, 1} // m
87 1, // dim
88 "B1", //name
89 (complex double []) {1, 1, -1, -1} // m
91 } // end of irreps
94 const qpms_finite_group_t QPMS_FINITE_GROUP_C4 = {
95 "C4", // name
96 4, // order
97 0, // idi
98 (qpms_gmi_t[]) { // mt
99 0, 1, 2, 3,
100 1, 2, 3, 0,
101 2, 3, 0, 1,
102 3, 0, 1, 2,
104 (qpms_gmi_t[]) { // invi
105 0, 3, 2, 1
107 (qpms_gmi_t[]) {1}, // gens
108 1, // ngens
109 (qpms_permutation_t[]){ // permrep
110 "(3)",
111 "(0 1 2 3)",
112 "(0 2)(1 3)",
113 "(0 3 2 1)",
115 NULL, // elemlabels
116 4, // permrep_nelem
117 (qpms_irot3_t[]) { // rep3d
118 {{1.0+0.0*I, 0.0+0.0*I}, 1},
119 {{0.7071067811865476+0.7071067811865475*I, 0.0+0.0*I}, 1},
120 {{2.220446049250313e-16+1.0*I, 0.0+0.0*I}, 1},
121 {{-0.7071067811865474+0.7071067811865477*I, 0.0+0.0*I}, 1},
123 4, // nirreps
124 (struct qpms_finite_group_irrep_t[]) { // irreps
126 1, // dim
127 "B", //name
128 (complex double []) {1, -1, 1, -1} // m
131 1, // dim
132 "2E", //name
133 (complex double []) {1, 1j, (-1+0j), (-0-1j)} // m
136 1, // dim
137 "A", //name
138 (complex double []) {1, 1, 1, 1} // m
141 1, // dim
142 "1E", //name
143 (complex double []) {1, -1j, (-1+0j), 1j} // m
145 } // end of irreps
148 const qpms_finite_group_t QPMS_FINITE_GROUP_C4v = {
149 "C4v", // name
150 8, // order
151 0, // idi
152 (qpms_gmi_t[]) { // mt
153 0, 1, 2, 3, 4, 5, 6, 7,
154 1, 2, 3, 0, 7, 4, 5, 6,
155 2, 3, 0, 1, 6, 7, 4, 5,
156 3, 0, 1, 2, 5, 6, 7, 4,
157 4, 5, 6, 7, 0, 1, 2, 3,
158 5, 6, 7, 4, 3, 0, 1, 2,
159 6, 7, 4, 5, 2, 3, 0, 1,
160 7, 4, 5, 6, 1, 2, 3, 0,
162 (qpms_gmi_t[]) { // invi
163 0, 3, 2, 1, 4, 5, 6, 7
165 (qpms_gmi_t[]) {1, 7}, // gens
166 2, // ngens
167 (qpms_permutation_t[]){ // permrep
168 "(3)",
169 "(0 1 2 3)",
170 "(0 2)(1 3)",
171 "(0 3 2 1)",
172 "(3)(0 2)",
173 "(0 3)(1 2)",
174 "(1 3)",
175 "(0 1)(2 3)",
177 NULL, // elemlabels
178 4, // permrep_nelem
179 (qpms_irot3_t[]) { // rep3d
180 {{1.0+0.0*I, 0.0+0.0*I}, 1},
181 {{0.7071067811865476+0.7071067811865475*I, 0.0+0.0*I}, 1},
182 {{2.220446049250313e-16+1.0*I, 0.0+0.0*I}, 1},
183 {{-0.7071067811865474+0.7071067811865477*I, 0.0+0.0*I}, 1},
184 {{0.0+0.0*I, 0.7071067811865477-0.7071067811865474*I}, -1},
185 {{0.0+0.0*I, 1.0+2.220446049250313e-16*I}, -1},
186 {{0.0+0.0*I, 0.7071067811865475+0.7071067811865476*I}, -1},
187 {{0.0+0.0*I, 0.0+1.0*I}, -1},
189 5, // nirreps
190 (struct qpms_finite_group_irrep_t[]) { // irreps
192 1, // dim
193 "A1", //name
194 (complex double []) {1, 1, 1, 1, 1, 1, 1, 1} // m
197 1, // dim
198 "A2", //name
199 (complex double []) {1, 1, 1, 1, -1, -1, -1, -1} // m
202 2, // dim
203 "E", //name
204 (complex double []) {
205 // (3)
206 1.0, 0.0,
207 0.0, 1.0,
208 // (0 1 2 3)
209 0.0, -1.0,
210 1.0, 0.0,
211 // (0 2)(1 3)
212 -1.0, 0.0,
213 0.0, -1.0,
214 // (0 3 2 1)
215 0.0, 1.0,
216 -1.0, 0.0,
217 // (3)(0 2)
218 0.0, 1.0,
219 1.0, 0.0,
220 // (0 3)(1 2)
221 1.0, 0.0,
222 0.0, -1.0,
223 // (1 3)
224 0.0, -1.0,
225 -1.0, 0.0,
226 // (0 1)(2 3)
227 -1.0, 0.0,
228 0.0, 1.0,
232 1, // dim
233 "B2", //name
234 (complex double []) {1, -1, 1, -1, 1, -1, 1, -1} // m
237 1, // dim
238 "B1", //name
239 (complex double []) {1, -1, 1, -1, -1, 1, -1, 1} // m
241 } // end of irreps
244 const qpms_finite_group_t QPMS_FINITE_GROUP_D2h = {
245 "D2h", // name
246 8, // order
247 0, // idi
248 (qpms_gmi_t[]) { // mt
249 0, 1, 2, 3, 4, 5, 6, 7,
250 1, 0, 3, 2, 5, 4, 7, 6,
251 2, 3, 0, 1, 6, 7, 4, 5,
252 3, 2, 1, 0, 7, 6, 5, 4,
253 4, 5, 6, 7, 0, 1, 2, 3,
254 5, 4, 7, 6, 1, 0, 3, 2,
255 6, 7, 4, 5, 2, 3, 0, 1,
256 7, 6, 5, 4, 3, 2, 1, 0,
258 (qpms_gmi_t[]) { // invi
259 0, 1, 2, 3, 4, 5, 6, 7
261 (qpms_gmi_t[]) {1, 3, 7}, // gens
262 3, // ngens
263 (qpms_permutation_t[]){ // permrep
264 "(5)",
265 "(5)(0 1)(2 3)",
266 "(5)(0 2)(1 3)",
267 "(5)(0 3)(1 2)",
268 "(0 3)(1 2)(4 5)",
269 "(0 2)(1 3)(4 5)",
270 "(0 1)(2 3)(4 5)",
271 "(4 5)",
273 NULL, // elemlabels
274 6, // permrep_nelem
275 (qpms_irot3_t[]) { // rep3d
276 {{1.0+0.0*I, 0.0+0.0*I}, 1},
277 {{0.0+0.0*I, 0.0+1.0*I}, -1},
278 {{0.0+1.0*I, 0.0+0.0*I}, 1},
279 {{0.0+0.0*I, 1.0+0.0*I}, -1},
280 {{0.0+0.0*I, 0.0+1.0*I}, 1},
281 {{-1.0+0.0*I, 0.0+0.0*I}, -1},
282 {{0.0+0.0*I, -1.0+0.0*I}, 1},
283 {{0.0+1.0*I, 0.0+0.0*I}, -1},
285 8, // nirreps
286 (struct qpms_finite_group_irrep_t[]) { // irreps
288 1, // dim
289 "A2\'", //name
290 (complex double []) {1, -1, 1, -1, -1, 1, -1, 1} // m
293 1, // dim
294 "B1\'", //name
295 (complex double []) {1, 1, -1, -1, -1, -1, 1, 1} // m
298 1, // dim
299 "A2\'\'", //name
300 (complex double []) {1, 1, 1, 1, -1, -1, -1, -1} // m
303 1, // dim
304 "B2\'", //name
305 (complex double []) {1, -1, -1, 1, 1, -1, -1, 1} // m
308 1, // dim
309 "A1\'", //name
310 (complex double []) {1, 1, 1, 1, 1, 1, 1, 1} // m
313 1, // dim
314 "A1\'\'", //name
315 (complex double []) {1, -1, 1, -1, 1, -1, 1, -1} // m
318 1, // dim
319 "B2\'\'", //name
320 (complex double []) {1, 1, -1, -1, 1, 1, -1, -1} // m
323 1, // dim
324 "B1\'\'", //name
325 (complex double []) {1, -1, -1, 1, -1, 1, 1, -1} // m
327 } // end of irreps
330 const qpms_finite_group_t QPMS_FINITE_GROUP_D3h = {
331 "D3h", // name
332 12, // order
333 0, // idi
334 (qpms_gmi_t[]) { // mt
335 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
336 1, 2, 0, 5, 3, 4, 8, 6, 7, 10, 11, 9,
337 2, 0, 1, 4, 5, 3, 7, 8, 6, 11, 9, 10,
338 3, 4, 5, 0, 1, 2, 10, 11, 9, 8, 6, 7,
339 4, 5, 3, 2, 0, 1, 9, 10, 11, 6, 7, 8,
340 5, 3, 4, 1, 2, 0, 11, 9, 10, 7, 8, 6,
341 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5,
342 7, 8, 6, 11, 9, 10, 2, 0, 1, 4, 5, 3,
343 8, 6, 7, 10, 11, 9, 1, 2, 0, 5, 3, 4,
344 9, 10, 11, 6, 7, 8, 4, 5, 3, 2, 0, 1,
345 10, 11, 9, 8, 6, 7, 3, 4, 5, 0, 1, 2,
346 11, 9, 10, 7, 8, 6, 5, 3, 4, 1, 2, 0,
348 (qpms_gmi_t[]) { // invi
349 0, 2, 1, 3, 4, 5, 6, 7, 8, 10, 9, 11
351 (qpms_gmi_t[]) {1, 5, 11}, // gens
352 3, // ngens
353 (qpms_permutation_t[]){ // permrep
354 "(4)",
355 "(4)(0 1 2)",
356 "(4)(0 2 1)",
357 "(4)(1 2)",
358 "(4)(0 1)",
359 "(4)(0 2)",
360 "(0 2)(3 4)",
361 "(1 2)(3 4)",
362 "(0 1)(3 4)",
363 "(0 1 2)(3 4)",
364 "(0 2 1)(3 4)",
365 "(3 4)",
367 NULL, // elemlabels
368 5, // permrep_nelem
369 (qpms_irot3_t[]) { // rep3d
370 {{1.0+0.0*I, 0.0+0.0*I}, 1},
371 {{0.5000000000000001+0.8660254037844386*I, 0.0+0.0*I}, 1},
372 {{-0.4999999999999998+0.8660254037844388*I, 0.0+0.0*I}, 1},
373 {{0.0+0.0*I, 0.8660254037844388-0.4999999999999998*I}, -1},
374 {{0.0+0.0*I, 0.8660254037844386+0.5000000000000002*I}, -1},
375 {{0.0+0.0*I, -5.551115123125783e-17+1.0*I}, -1},
376 {{0.0+0.0*I, -1.0-5.551115123125783e-17*I}, 1},
377 {{0.0+0.0*I, -0.5000000000000001-0.8660254037844386*I}, 1},
378 {{0.0+0.0*I, 0.4999999999999998-0.8660254037844388*I}, 1},
379 {{0.8660254037844388-0.4999999999999998*I, 0.0+0.0*I}, -1},
380 {{0.8660254037844386+0.5000000000000002*I, 0.0+0.0*I}, -1},
381 {{-5.551115123125783e-17+1.0*I, 0.0+0.0*I}, -1},
383 6, // nirreps
384 (struct qpms_finite_group_irrep_t[]) { // irreps
386 1, // dim
387 "A2\'", //name
388 (complex double []) {1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1} // m
391 2, // dim
392 "E\'", //name
393 (complex double []) {
394 // (4)
395 1.0, 0.0,
396 0.0, 1.0,
397 // (4)(0 1 2)
398 -0.5, -0.8660254037844386,
399 0.8660254037844386, -0.5,
400 // (4)(0 2 1)
401 -0.4999999999999999, 0.8660254037844386,
402 -0.8660254037844386, -0.4999999999999999,
403 // (4)(1 2)
404 -0.4999999999999999, -0.8660254037844386,
405 -0.8660254037844386, 0.4999999999999999,
406 // (4)(0 1)
407 -0.49999999999999994, 0.8660254037844385,
408 0.8660254037844385, 0.49999999999999994,
409 // (4)(0 2)
410 0.9999999999999998, 0.0,
411 0.0, -0.9999999999999998,
412 // (0 2)(3 4)
413 0.9999999999999998, 0.0,
414 0.0, -0.9999999999999998,
415 // (1 2)(3 4)
416 -0.4999999999999999, -0.8660254037844384,
417 -0.8660254037844384, 0.4999999999999999,
418 // (0 1)(3 4)
419 -0.4999999999999997, 0.8660254037844384,
420 0.8660254037844384, 0.4999999999999997,
421 // (0 1 2)(3 4)
422 -0.4999999999999997, -0.8660254037844384,
423 0.8660254037844384, -0.4999999999999997,
424 // (0 2 1)(3 4)
425 -0.4999999999999998, 0.8660254037844383,
426 -0.8660254037844383, -0.4999999999999998,
427 // (3 4)
428 0.9999999999999996, 0.0,
429 0.0, 0.9999999999999996,
433 1, // dim
434 "A2\'\'", //name
435 (complex double []) {1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1} // m
438 1, // dim
439 "A1\'", //name
440 (complex double []) {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // m
443 1, // dim
444 "A1\'\'", //name
445 (complex double []) {1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1} // m
448 2, // dim
449 "E\'\'", //name
450 (complex double []) {
451 // (4)
452 1.0, 0.0,
453 0.0, 1.0,
454 // (4)(0 1 2)
455 -0.5, -0.8660254037844386,
456 0.8660254037844386, -0.5,
457 // (4)(0 2 1)
458 -0.4999999999999999, 0.8660254037844386,
459 -0.8660254037844386, -0.4999999999999999,
460 // (4)(1 2)
461 -0.4999999999999999, -0.8660254037844386,
462 -0.8660254037844386, 0.4999999999999999,
463 // (4)(0 1)
464 -0.49999999999999994, 0.8660254037844385,
465 0.8660254037844385, 0.49999999999999994,
466 // (4)(0 2)
467 0.9999999999999998, 0.0,
468 0.0, -0.9999999999999998,
469 // (0 2)(3 4)
470 -0.9999999999999998, 0.0,
471 0.0, 0.9999999999999998,
472 // (1 2)(3 4)
473 0.4999999999999999, 0.8660254037844384,
474 0.8660254037844384, -0.4999999999999999,
475 // (0 1)(3 4)
476 0.4999999999999997, -0.8660254037844384,
477 -0.8660254037844384, -0.4999999999999997,
478 // (0 1 2)(3 4)
479 0.4999999999999997, 0.8660254037844384,
480 -0.8660254037844384, 0.4999999999999997,
481 // (0 2 1)(3 4)
482 0.4999999999999998, -0.8660254037844383,
483 0.8660254037844383, 0.4999999999999998,
484 // (3 4)
485 -0.9999999999999996, 0.0,
486 0.0, -0.9999999999999996,
489 } // end of irreps
492 const qpms_finite_group_t QPMS_FINITE_GROUP_D4h = {
493 "D4h", // name
494 16, // order
495 0, // idi
496 (qpms_gmi_t[]) { // mt
497 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
498 1, 2, 3, 0, 7, 4, 5, 6, 11, 8, 9, 10, 13, 14, 15, 12,
499 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13,
500 3, 0, 1, 2, 5, 6, 7, 4, 9, 10, 11, 8, 15, 12, 13, 14,
501 4, 5, 6, 7, 0, 1, 2, 3, 14, 15, 12, 13, 10, 11, 8, 9,
502 5, 6, 7, 4, 3, 0, 1, 2, 13, 14, 15, 12, 11, 8, 9, 10,
503 6, 7, 4, 5, 2, 3, 0, 1, 12, 13, 14, 15, 8, 9, 10, 11,
504 7, 4, 5, 6, 1, 2, 3, 0, 15, 12, 13, 14, 9, 10, 11, 8,
505 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
506 9, 10, 11, 8, 15, 12, 13, 14, 3, 0, 1, 2, 5, 6, 7, 4,
507 10, 11, 8, 9, 14, 15, 12, 13, 2, 3, 0, 1, 6, 7, 4, 5,
508 11, 8, 9, 10, 13, 14, 15, 12, 1, 2, 3, 0, 7, 4, 5, 6,
509 12, 13, 14, 15, 8, 9, 10, 11, 6, 7, 4, 5, 2, 3, 0, 1,
510 13, 14, 15, 12, 11, 8, 9, 10, 5, 6, 7, 4, 3, 0, 1, 2,
511 14, 15, 12, 13, 10, 11, 8, 9, 4, 5, 6, 7, 0, 1, 2, 3,
512 15, 12, 13, 14, 9, 10, 11, 8, 7, 4, 5, 6, 1, 2, 3, 0,
514 (qpms_gmi_t[]) { // invi
515 0, 3, 2, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 13, 12, 15
517 (qpms_gmi_t[]) {1, 7, 15}, // gens
518 3, // ngens
519 (qpms_permutation_t[]){ // permrep
520 "(5)",
521 "(5)(0 1 2 3)",
522 "(5)(0 2)(1 3)",
523 "(5)(0 3 2 1)",
524 "(5)(0 2)",
525 "(5)(0 3)(1 2)",
526 "(5)(1 3)",
527 "(5)(0 1)(2 3)",
528 "(0 1)(2 3)(4 5)",
529 "(0 2)(4 5)",
530 "(0 3)(1 2)(4 5)",
531 "(1 3)(4 5)",
532 "(0 1 2 3)(4 5)",
533 "(0 2)(1 3)(4 5)",
534 "(0 3 2 1)(4 5)",
535 "(4 5)",
537 NULL, // elemlabels
538 6, // permrep_nelem
539 (qpms_irot3_t[]) { // rep3d
540 {{1.0+0.0*I, 0.0+0.0*I}, 1},
541 {{0.7071067811865476+0.7071067811865475*I, 0.0+0.0*I}, 1},
542 {{2.220446049250313e-16+1.0*I, 0.0+0.0*I}, 1},
543 {{-0.7071067811865474+0.7071067811865477*I, 0.0+0.0*I}, 1},
544 {{0.0+0.0*I, 0.7071067811865477-0.7071067811865474*I}, -1},
545 {{0.0+0.0*I, 1.0+2.220446049250313e-16*I}, -1},
546 {{0.0+0.0*I, 0.7071067811865475+0.7071067811865476*I}, -1},
547 {{0.0+0.0*I, 0.0+1.0*I}, -1},
548 {{0.0+0.0*I, -1.0+0.0*I}, 1},
549 {{0.0+0.0*I, -0.7071067811865476-0.7071067811865475*I}, 1},
550 {{0.0+0.0*I, -2.220446049250313e-16-1.0*I}, 1},
551 {{0.0+0.0*I, 0.7071067811865474-0.7071067811865477*I}, 1},
552 {{0.7071067811865477-0.7071067811865474*I, 0.0+0.0*I}, -1},
553 {{1.0+2.220446049250313e-16*I, 0.0+0.0*I}, -1},
554 {{0.7071067811865475+0.7071067811865476*I, 0.0+0.0*I}, -1},
555 {{0.0+1.0*I, 0.0+0.0*I}, -1},
557 10, // nirreps
558 (struct qpms_finite_group_irrep_t[]) { // irreps
560 1, // dim
561 "A2\'", //name
562 (complex double []) {1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1} // m
565 1, // dim
566 "B1\'", //name
567 (complex double []) {1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1} // m
570 2, // dim
571 "E\'", //name
572 (complex double []) {
573 // (5)
574 1.0, 0.0,
575 0.0, 1.0,
576 // (5)(0 1 2 3)
577 0.0, -1.0,
578 1.0, 0.0,
579 // (5)(0 2)(1 3)
580 -1.0, 0.0,
581 0.0, -1.0,
582 // (5)(0 3 2 1)
583 0.0, 1.0,
584 -1.0, 0.0,
585 // (5)(0 2)
586 0.0, 1.0,
587 1.0, 0.0,
588 // (5)(0 3)(1 2)
589 1.0, 0.0,
590 0.0, -1.0,
591 // (5)(1 3)
592 0.0, -1.0,
593 -1.0, 0.0,
594 // (5)(0 1)(2 3)
595 -1.0, 0.0,
596 0.0, 1.0,
597 // (0 1)(2 3)(4 5)
598 -1.0, 0.0,
599 0.0, 1.0,
600 // (0 2)(4 5)
601 0.0, 1.0,
602 1.0, 0.0,
603 // (0 3)(1 2)(4 5)
604 1.0, 0.0,
605 0.0, -1.0,
606 // (1 3)(4 5)
607 0.0, -1.0,
608 -1.0, 0.0,
609 // (0 1 2 3)(4 5)
610 0.0, -1.0,
611 1.0, 0.0,
612 // (0 2)(1 3)(4 5)
613 -1.0, 0.0,
614 0.0, -1.0,
615 // (0 3 2 1)(4 5)
616 0.0, 1.0,
617 -1.0, 0.0,
618 // (4 5)
619 1.0, 0.0,
620 0.0, 1.0,
624 1, // dim
625 "A2\'\'", //name
626 (complex double []) {1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1} // m
629 1, // dim
630 "B2\'", //name
631 (complex double []) {1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1} // m
634 1, // dim
635 "A1\'", //name
636 (complex double []) {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // m
639 1, // dim
640 "A1\'\'", //name
641 (complex double []) {1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1} // m
644 1, // dim
645 "B2\'\'", //name
646 (complex double []) {1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1} // m
649 1, // dim
650 "B1\'\'", //name
651 (complex double []) {1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1} // m
654 2, // dim
655 "E\'\'", //name
656 (complex double []) {
657 // (5)
658 1.0, 0.0,
659 0.0, 1.0,
660 // (5)(0 1 2 3)
661 0.0, -1.0,
662 1.0, 0.0,
663 // (5)(0 2)(1 3)
664 -1.0, 0.0,
665 0.0, -1.0,
666 // (5)(0 3 2 1)
667 0.0, 1.0,
668 -1.0, 0.0,
669 // (5)(0 2)
670 0.0, 1.0,
671 1.0, 0.0,
672 // (5)(0 3)(1 2)
673 1.0, 0.0,
674 0.0, -1.0,
675 // (5)(1 3)
676 0.0, -1.0,
677 -1.0, 0.0,
678 // (5)(0 1)(2 3)
679 -1.0, 0.0,
680 0.0, 1.0,
681 // (0 1)(2 3)(4 5)
682 1.0, 0.0,
683 0.0, -1.0,
684 // (0 2)(4 5)
685 0.0, -1.0,
686 -1.0, 0.0,
687 // (0 3)(1 2)(4 5)
688 -1.0, 0.0,
689 0.0, 1.0,
690 // (1 3)(4 5)
691 0.0, 1.0,
692 1.0, 0.0,
693 // (0 1 2 3)(4 5)
694 0.0, 1.0,
695 -1.0, 0.0,
696 // (0 2)(1 3)(4 5)
697 1.0, 0.0,
698 0.0, 1.0,
699 // (0 3 2 1)(4 5)
700 0.0, -1.0,
701 1.0, 0.0,
702 // (4 5)
703 -1.0, 0.0,
704 0.0, -1.0,
707 } // end of irreps
710 const qpms_finite_group_t QPMS_FINITE_GROUP_trivial_g = {
711 "trivial_g", // name
712 1, // order
713 0, // idi
714 (qpms_gmi_t[]) { // mt
717 (qpms_gmi_t[]) { // invi
720 (qpms_gmi_t[]) {0}, // gens
721 1, // ngens
722 (qpms_permutation_t[]){ // permrep
723 "()",
725 NULL, // elemlabels
726 0, // permrep_nelem
727 (qpms_irot3_t[]) { // rep3d
728 {{1.0+0.0*I, 0.0+0.0*I}, 1},
730 1, // nirreps
731 (struct qpms_finite_group_irrep_t[]) { // irreps
733 1, // dim
734 "A", //name
735 (complex double []) {1} // m
737 } // end of irreps
740 const qpms_finite_group_t QPMS_FINITE_GROUP_x_and_z_flip = {
741 "x_and_z_flip", // name
742 4, // order
743 0, // idi
744 (qpms_gmi_t[]) { // mt
745 0, 1, 2, 3,
746 1, 0, 3, 2,
747 2, 3, 0, 1,
748 3, 2, 1, 0,
750 (qpms_gmi_t[]) { // invi
751 0, 1, 2, 3
753 (qpms_gmi_t[]) {1, 3}, // gens
754 2, // ngens
755 (qpms_permutation_t[]){ // permrep
756 "(3)",
757 "(3)(0 1)",
758 "(0 1)(2 3)",
759 "(2 3)",
761 NULL, // elemlabels
762 4, // permrep_nelem
763 (qpms_irot3_t[]) { // rep3d
764 {{1.0+0.0*I, 0.0+0.0*I}, 1},
765 {{0.0+0.0*I, 0.0+1.0*I}, -1},
766 {{0.0+0.0*I, -1.0+0.0*I}, 1},
767 {{0.0+1.0*I, 0.0+0.0*I}, -1},
769 4, // nirreps
770 (struct qpms_finite_group_irrep_t[]) { // irreps
772 1, // dim
773 "P\'\'", //name
774 (complex double []) {1, -1, 1, -1} // m
777 1, // dim
778 "P\'", //name
779 (complex double []) {1, 1, 1, 1} // m
782 1, // dim
783 "R\'\'", //name
784 (complex double []) {1, 1, -1, -1} // m
787 1, // dim
788 "R\'", //name
789 (complex double []) {1, -1, -1, 1} // m
791 } // end of irreps
794 const qpms_finite_group_t QPMS_FINITE_GROUP_y_and_z_flip = {
795 "y_and_z_flip", // name
796 4, // order
797 0, // idi
798 (qpms_gmi_t[]) { // mt
799 0, 1, 2, 3,
800 1, 0, 3, 2,
801 2, 3, 0, 1,
802 3, 2, 1, 0,
804 (qpms_gmi_t[]) { // invi
805 0, 1, 2, 3
807 (qpms_gmi_t[]) {1, 3}, // gens
808 2, // ngens
809 (qpms_permutation_t[]){ // permrep
810 "(3)",
811 "(3)(0 1)",
812 "(0 1)(2 3)",
813 "(2 3)",
815 NULL, // elemlabels
816 4, // permrep_nelem
817 (qpms_irot3_t[]) { // rep3d
818 {{1.0+0.0*I, 0.0+0.0*I}, 1},
819 {{0.0+0.0*I, 1.0+0.0*I}, -1},
820 {{0.0+0.0*I, 0.0+1.0*I}, 1},
821 {{0.0+1.0*I, 0.0+0.0*I}, -1},
823 4, // nirreps
824 (struct qpms_finite_group_irrep_t[]) { // irreps
826 1, // dim
827 "P\'\'", //name
828 (complex double []) {1, -1, 1, -1} // m
831 1, // dim
832 "P\'", //name
833 (complex double []) {1, 1, 1, 1} // m
836 1, // dim
837 "R\'\'", //name
838 (complex double []) {1, 1, -1, -1} // m
841 1, // dim
842 "R\'", //name
843 (complex double []) {1, -1, -1, 1} // m
845 } // end of irreps