Fix missing import in finiterectlat-scatter.py
[qpms.git] / qpms / bessel.c
blob93080d796f26191b527d13ab3dbcbfce0c8f160e
1 #include <assert.h>
2 #include "qpms_specfunc.h"
3 #include <stdlib.h>
4 #include <stddef.h>
5 #include <string.h>
6 #include "kahansum.h"
7 #include <gsl/gsl_sf_bessel.h>
8 #include <complex.h>
9 #include "qpms_error.h"
10 #include <camos.h>
11 #include <math.h>
13 #ifndef M_LN2
14 #define M_LN2 0.69314718055994530942 /* log_e 2 */
15 #endif
17 static inline complex double ipow(int x) {
18 return cpow(I,x);
21 #if 0
22 // Inspired by scipy/special/_spherical_bessel.pxd
23 static inline complex double spherical_jn(qpms_l_t l, complex double z) {
24 if (isnan(creal(z)) || isnan(cimag(z))) return NAN+I*NAN;
25 if (l < 0) QPMS_WTF;
26 if (fpclassify(creal(z)) == FP_INFINITE)
27 if(0 == cimag(z))
28 return 0;
29 else
30 return INFINITY + I * INFINITY;
31 if (z == 0)
32 if (l == 0) return 1;
33 else return 0;
34 return csqrt(M_PI_2/z) * zbesj(l + .5, z);
37 static inline complex double spherical_yn(qpms_l_t l, complex double z) {
38 if (isnan(creal(z)) || isnan(cimag(z))) return NAN+I*NAN;
39 if (l < 0) QPMS_WTF;
40 if (fpclassify(creal(z)) == FP_INFINITE)
41 if(0 == cimag(z))
42 return 0;
43 else
44 return INFINITY + I * INFINITY;
45 if (z == 0)
46 return NAN;
47 return csqrt(M_PI_2/z) * zbesy(l + .5, z);
49 #endif
51 // There is a big issue with gsl's precision of spherical bessel function; these have to be implemented differently
52 qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
53 int retval;
54 double tmparr[lmax+1];
55 if (typ != QPMS_BESSEL_REGULAR && x == 0) {
56 for (int l = 0; l <= lmax; ++l) result_array[l] = NAN + I*NAN;
57 QPMS_WARN("Evaluating singular Bessel functions at zero!");
58 return QPMS_SUCCESS; // Really?
60 switch(typ) {
61 case QPMS_BESSEL_REGULAR:
62 retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
63 for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
64 return retval;
65 break;
66 case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
67 retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
68 for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
69 return retval;
70 break;
71 case QPMS_HANKEL_PLUS:
72 case QPMS_HANKEL_MINUS:
73 retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
74 for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
75 if(retval) return retval;
76 retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
77 if (typ==QPMS_HANKEL_PLUS)
78 for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
79 else
80 for (int l = 0; l <= lmax; ++l) result_array[l] +=-I * tmparr[l];
81 return retval;
82 break;
83 default:
84 abort();
85 //return GSL_EDOM;
87 assert(0);
90 // TODO DOC
91 qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex double x, complex double *res) {
92 if(!cimag(x) &&
93 creal(x) < 10000) // For large arguments (around 30000 or more), gsl_sf_bessel_jl_steed_array fails
94 return qpms_sph_bessel_realx_fill(typ, lmax, creal(x), res);
95 else if (isnan(creal(x)) || isnan(cimag(x)))
96 for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = NAN + I*NAN;
97 else if (lmax < 0) QPMS_WTF;
98 else if (fpclassify(creal(x)) == FP_INFINITE)
99 for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = INFINITY + I * INFINITY;
100 else {
101 try_again: ;
102 int retry_counter = 0;
103 const double zr = creal(x), zi = cimag(x), fnu = 0.5;
104 const int n = lmax + 1, kode = 1 /* No exponential scaling */;
105 double cyr[n], cyi[n];
106 int ierr, nz;
107 unsigned int kindchar; // Only for error output
108 const complex double prefac = csqrt(M_PI_2/x);
109 switch(typ) {
110 case QPMS_BESSEL_REGULAR:
111 kindchar = 'j';
112 ierr = camos_zbesj(zr, zi, fnu, kode, n, cyr, cyi, &nz);
113 break;
114 case QPMS_BESSEL_SINGULAR:
115 kindchar = 'y';
117 double cwrkr[lmax + 1], cwrki[lmax + 1];
118 ierr = camos_zbesy(zr, zi, fnu, kode, n, cyr, cyi, &nz, cwrkr, cwrki);
120 break;
121 case QPMS_HANKEL_PLUS:
122 case QPMS_HANKEL_MINUS:
123 kindchar = 'h';
125 const int m = (typ == QPMS_HANKEL_PLUS) ? 1 : 2;
126 ierr = camos_zbesh(zr, zi, fnu, kode, m, n, cyr, cyi, &nz);
128 break;
129 default:
130 QPMS_WTF;
132 // TODO check for underflows? (nz != 0)
133 if (ierr == 0 || ierr == 3) {
134 for (qpms_l_t l = 0; l <= lmax; ++l)
135 res[l] = prefac * (cyr[l] + I * cyi[l]);
136 if (ierr == 3)
137 if (creal(x) >= 10000) {
138 QPMS_WARN_ONCE("Due to large argument, "
139 "Amos's zbes%c computation done but losses of significance "
140 "by argument reduction produce less than half of machine accuracy. "
141 "This warning is shown only once.",
142 kindchar);
143 } else {
144 QPMS_WARN("Amos's zbes%c computation done but losses of significance "
145 "by argument reduction produce less than half of machine accuracy.",
146 kindchar);
148 return QPMS_SUCCESS; //TODO maybe something else if ierr == 3
150 else {
151 if (retry_counter < 5) {
152 QPMS_WARN("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi). Retrying.\n",
153 kindchar, (int) ierr, lmax, creal(x), cimag(x));
154 ++retry_counter;
155 goto try_again;
156 } else QPMS_PR_ERROR("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi).",
157 kindchar, (int) ierr, lmax, creal(x), cimag(x));
160 return QPMS_SUCCESS;
163 static inline ptrdiff_t akn_index(qpms_l_t n, qpms_l_t k) {
164 assert(k <= n);
165 return ((ptrdiff_t) n + 1) * n / 2 + k;
167 static inline ptrdiff_t bkn_index(qpms_l_t n, qpms_l_t k) {
168 assert(k <= n+1);
169 return ((ptrdiff_t) n + 2) * (n + 1) / 2 - 1 + k;
172 static inline qpms_errno_t qpms_sbessel_calculator_ensure_lMax(qpms_sbessel_calculator_t *c, qpms_l_t lMax) {
173 if (lMax <= c->lMax)
174 return QPMS_SUCCESS;
175 else {
176 if ( NULL == (c->akn = realloc(c->akn, sizeof(double) * akn_index(lMax + 2, 0))))
177 abort();
178 //if ( NULL == (c->bkn = realloc(c->bkn, sizeof(complex double) * bkn_index(lMax + 1, 0))))
179 // abort();
180 for(qpms_l_t n = c->lMax+1; n <= lMax + 1; ++n)
181 for(qpms_l_t k = 0; k <= n; ++k)
182 c->akn[akn_index(n,k)] = exp(lgamma(n + k + 1) - k*M_LN2 - lgamma(k + 1) - lgamma(n - k + 1));
183 // ... TODO derivace
184 c->lMax = lMax;
185 return QPMS_SUCCESS;
189 complex double qpms_sbessel_calc_h1(qpms_sbessel_calculator_t *c, qpms_l_t n, complex double x) {
190 if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, n))
191 abort();
192 complex double z = I/x;
193 complex double result = 0;
194 for (qpms_l_t k = n; k >= 0; --k)
195 // can we use fma for complex?
196 //result = fma(result, z, c->akn(n, k));
197 result = result * z + c->akn[akn_index(n,k)];
198 result *= z * ipow(-n-2) * cexp(I * x);
199 return result;
202 qpms_errno_t qpms_sbessel_calc_h1_fill(qpms_sbessel_calculator_t * const c,
203 const qpms_l_t lMax, const complex double x, complex double * const target) {
204 if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, lMax))
205 abort();
206 memset(target, 0, sizeof(complex double) * lMax);
207 complex double kahancomp[lMax];
208 memset(kahancomp, 0, sizeof(complex double) * lMax);
209 for(qpms_l_t k = 0; k <= lMax; ++k){
210 double xp = cpow(x, -k-1);
211 for(qpms_l_t l = k; l <= lMax; ++l)
212 ckahanadd(target + l, kahancomp + l, c->akn[akn_index(l,k)] * xp * ipow(k-l-1));
214 complex double eix = cexp(I * x);
215 for (qpms_l_t l = 0; l <= lMax; ++l)
216 target[l] *= eix;
217 return QPMS_SUCCESS;
220 qpms_sbessel_calculator_t *qpms_sbessel_calculator_init() {
221 qpms_sbessel_calculator_t *c = malloc(sizeof(qpms_sbessel_calculator_t));
222 c->akn = NULL;
223 //c->bkn = NULL;
224 c->lMax = -1;
225 return c;
228 void qpms_sbessel_calculator_pfree(qpms_sbessel_calculator_t *c) {
229 if(c->akn) free(c->akn);
230 //if(c->bkn) free(c->bkn);
231 free(c);