Fix missing import in finiterectlat-scatter.py
[qpms.git] / qpms / cyquaternions.pyx
blob0797146523ce8829369343adc72b971f0214ef06
1 from .cybspec cimport BaseSpec
2 from .qpms_cdefs cimport *
3 import cmath
4 import math
5 import numpy as np
8 def complex_crep(complex c, parentheses = False, shortI = True, has_Imaginary = False):
9 '''
10 Return a C-code compatible string representation of a (python) complex number.
11 '''
12 return ( ('(' if parentheses else '')
13 + repr(c.real)
14 + ('+' if math.copysign(1, c.imag) >= 0 else '')
15 + repr(c.imag)
16 + ('*I' if shortI else '*_Imaginary_I' if has_Imaginary else '*_Complex_I')
17 + (')' if parentheses else '')
21 cdef class CQuat:
22 '''
23 Wrapper of the qpms_quat_t object, with the functionality
24 to evaluate Wigner D-matrix elements.
25 '''
26 # cdef readonly qpms_quat_t q # pxd
28 def __cinit__(self, double w, double x, double y, double z):
29 cdef qpms_quat4d_t p
30 p.c1 = w
31 p.ci = x
32 p.cj = y
33 p.ck = z
34 self.q = qpms_quat_2c_from_4d(p)
36 def copy(self):
37 res = CQuat(0,0,0,0)
38 res.q = self.q
39 return res
41 def __repr__(self): # TODO make this look like a quaternion with i,j,k
42 return repr(self.r)
44 def __add__(CQuat self, CQuat other):
45 # TODO add real numbers
46 res = CQuat(0,0,0,0)
47 res.q = qpms_quat_add(self.q, other.q)
48 return res
50 def __mul__(self, other):
51 res = CQuat(0,0,0,0)
52 if isinstance(self, CQuat):
53 if isinstance(other, CQuat):
54 res.q = qpms_quat_mult(self.q, other.q)
55 elif isinstance(other, (int, float)):
56 res.q = qpms_quat_rscale(other, self.q)
57 else: return NotImplemented
58 elif isinstance(self, (int, float)):
59 if isinstance(other, CQuat):
60 res.q = qpms_quat_rscale(self, other.q)
61 else: return NotImplemented
62 return res
64 def __neg__(CQuat self):
65 res = CQuat(0,0,0,0)
66 res.q = qpms_quat_rscale(-1, self.q)
67 return res
69 def __sub__(CQuat self, CQuat other):
70 res = CQuat(0,0,0,0)
71 res.q = qpms_quat_add(self.q, qpms_quat_rscale(-1,other.q))
72 return res
74 def __abs__(self):
75 return qpms_quat_norm(self.q)
77 def norm(self):
78 return qpms_quat_norm(self.q)
80 def imnorm(self):
81 return qpms_quat_imnorm(self.q)
83 def exp(self):
84 res = CQuat(0,0,0,0)
85 res.q = qpms_quat_exp(self.q)
86 return res
88 def log(self):
89 res = CQuat(0,0,0,0)
90 res.q = qpms_quat_exp(self.q)
91 return res
93 def __pow__(CQuat self, double other, _):
94 res = CQuat(0,0,0,0)
95 res.q = qpms_quat_pow(self.q, other)
96 return res
98 def normalise(self):
99 res = CQuat(0,0,0,0)
100 res.q = qpms_quat_normalise(self.q)
101 return res
103 def isclose(CQuat self, CQuat other, rtol=1e-5, atol=1e-8):
105 Checks whether two quaternions are "almost equal".
107 return abs(self - other) <= (atol + rtol * abs(other))
109 property c:
111 Quaternion representation as two complex numbers
113 def __get__(self):
114 return (self.q.a, self.q.b)
115 def __set__(self, RaRb):
116 self.q.a = RaRb[0]
117 self.q.b = RaRb[1]
119 property r:
121 Quaternion representation as four real numbers
123 def __get__(self):
124 cdef qpms_quat4d_t p
125 p = qpms_quat_4d_from_2c(self.q)
126 return (p.c1, p.ci, p.cj, p.ck)
127 def __set__(self, wxyz):
128 cdef qpms_quat4d_t p
129 p.c1 = wxyz[0]
130 p.ci = wxyz[1]
131 p.cj = wxyz[2]
132 p.ck = wxyz[3]
133 self.q = qpms_quat_2c_from_4d(p)
135 def crepr(self):
137 Returns a string that can be used in C code to initialise a qpms_irot3_t
139 return '{' + complex_crep(self.q.a) + ', ' + complex_crep(self.q.b) + '}'
141 def wignerDelem(self, qpms_l_t l, qpms_m_t mp, qpms_m_t m):
143 Returns an element of a bosonic Wigner matrix.
145 # don't crash on bad l, m here
146 if (abs(m) > l or abs(mp) > l):
147 return 0
148 return qpms_wignerD_elem(self.q, l, mp, m)
150 @staticmethod
151 def from_rotvector(vec):
153 Constructs a quaternion representing rotation around a given rotation vector.
155 Parameters
156 ----------
157 vec: array_like of shape (3,)
158 Cartesian components of the rotation vector.
160 Returns
161 -------
162 CQuat
164 vec = np.array(vec, copy=False)
165 if vec.shape != (3,):
166 raise ValueError("Single 3d vector expected")
167 res = CQuat(0,0,0,0)
168 cdef cart3_t v
169 v.x = vec[0]
170 v.y = vec[1]
171 v.z = vec[2]
172 res.q = qpms_quat_from_rotvector(v)
173 return res
175 cdef class IRot3:
177 Wrapper over the C type qpms_irot3_t.
179 #cdef readonly qpms_irot3_t qd
181 def __cinit__(self, *args):
183 TODO doc
185 # TODO implement a constructor with
186 # - tuple as argument ...?
187 if (len(args) == 0): # no args, return identity
188 self.qd.rot.a = 1
189 self.qd.rot.b = 0
190 self.qd.det = 1
191 elif (len(args) == 2 and isinstance(args[0], CQuat) and isinstance(args[1], (int, float))):
192 # The original __cinit__(self, CQuat q, short det) constructor
193 q = args[0]
194 det = args[1]
195 if (det != 1 and det != -1):
196 raise ValueError("Improper rotation determinant has to be 1 or -1")
197 self.qd.rot = q.normalise().q
198 self.qd.det = det
199 elif (len(args) == 1 and isinstance(args[0], IRot3)):
200 # Copy
201 self.qd = args[0].qd
202 elif (len(args) == 1 and isinstance(args[0], CQuat)):
203 # proper rotation from a quaternion
204 q = args[0]
205 det = 1
206 self.qd.rot = q.normalise().q
207 self.qd.det = det
208 else:
209 raise ValueError('Unsupported constructor arguments')
211 cdef void cset(self, qpms_irot3_t qd):
212 self.qd = qd
214 def copy(self):
215 res = IRot3(CQuat(1,0,0,0),1)
216 res.qd = self.qd
217 return res
219 property rot:
221 The proper rotation part of the IRot3 type.
223 def __get__(self):
224 res = CQuat(0,0,0,0)
225 res.q = self.qd.rot
226 return res
227 def __set__(self, CQuat r):
228 # TODO check for non-zeroness and throw an exception if norm is zero
229 self.qd.rot = r.normalise().q
231 property det:
233 The determinant of the improper rotation.
235 def __get__(self):
236 return self.qd.det
237 def __set__(self, d):
238 d = int(d)
239 if (d != 1 and d != -1):
240 raise ValueError("Improper rotation determinant has to be 1 or -1")
241 self.qd.det = d
243 def __repr__(self): # TODO make this look like a quaternion with i,j,k
244 return '(' + repr(self.rot) + ', ' + repr(self.det) + ')'
246 def crepr(self):
248 Returns a string that can be used in C code to initialise a qpms_irot3_t
250 return '{' + self.rot.crepr() + ', ' + repr(self.det) + '}'
252 def __mul__(IRot3 self, IRot3 other):
253 res = IRot3(CQuat(1,0,0,0), 1)
254 res.qd = qpms_irot3_mult(self.qd, other.qd)
255 return res
257 def __pow__(IRot3 self, n, _):
258 cdef int nint
259 if (n % 1 == 0):
260 nint = n
261 else:
262 raise ValueError("The exponent of an IRot3 has to have an integer value.")
263 res = IRot3(CQuat(1,0,0,0), 1)
264 res.qd = qpms_irot3_pow(self.qd, n)
265 return res
267 def isclose(IRot3 self, IRot3 other, rtol=1e-5, atol=1e-8):
269 Checks whether two (improper) rotations are "almost equal".
270 Returns always False if the determinants are different.
272 if self.det != other.det:
273 return False
274 return (self.rot.isclose(other.rot, rtol=rtol, atol=atol)
275 # unit quaternions are a double cover of SO(3), i.e.
276 # minus the same quaternion represents the same rotation
277 or self.rot.isclose(-(other.rot), rtol=rtol, atol=atol)
280 # Several 'named constructors' for convenience
281 @staticmethod
282 def inversion():
284 Returns an IRot3 object representing the 3D spatial inversion.
286 r = IRot3()
287 r.det = -1
288 return r
290 @staticmethod
291 def zflip():
293 Returns an IRot3 object representing the 3D xy-plane mirror symmetry (z axis sign flip).
295 r = IRot3()
296 r.rot = CQuat(0,0,0,1) # π-rotation around z-axis
297 r.det = -1 # inversion
298 return r
300 @staticmethod
301 def yflip():
303 Returns an IRot3 object representing the 3D xz-plane mirror symmetry (y axis sign flip).
305 r = IRot3()
306 r.rot = CQuat(0,0,1,0) # π-rotation around y-axis
307 r.det = -1 # inversion
308 return r
310 @staticmethod
311 def xflip():
313 Returns an IRot3 object representing the 3D yz-plane mirror symmetry (x axis sign flip).
315 r = IRot3()
316 r.rot = CQuat(0,1,0,0) # π-rotation around x-axis
317 r.det = -1 # inversion
318 return r
320 @staticmethod
321 def zrotN(int n):
323 Returns an IRot3 object representing a \f$ C_n $\f rotation (around the z-axis).
325 r = IRot3()
326 r.rot = CQuat(math.cos(math.pi/n),0,0,math.sin(math.pi/n))
327 return r
329 @staticmethod
330 def identity():
332 An alias for the constructor without arguments; returns identity.
334 return IRot3()
336 def as_uvswf_matrix(IRot3 self, BaseSpec bspec):
338 Returns the uvswf representation of the current transform as a numpy array
340 cdef ssize_t sz = len(bspec)
341 cdef np.ndarray m = np.empty((sz, sz), dtype=complex, order='C') # FIXME explicit dtype
342 cdef cdouble[:, ::1] view = m
343 qpms_irot3_uvswfi_dense(&view[0,0], bspec.rawpointer(), self.qd)
344 return m