C99 standard compliance for static const initialisers.
[qpms.git] / amos / zbiry.f
blobe0b6b77684b9ebac89802f4fba4f143bb9e5bf0c
1 SUBROUTINE ZBIRY(ZR, ZI, ID, KODE, BIR, BII, IERR)
2 C***BEGIN PROLOGUE ZBIRY
3 C***DATE WRITTEN 830501 (YYMMDD)
4 C***REVISION DATE 890801 (YYMMDD)
5 C***CATEGORY NO. B5K
6 C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
7 C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
8 C***PURPOSE TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
9 C***DESCRIPTION
11 C ***A DOUBLE PRECISION ROUTINE***
12 C ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
13 C ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
14 C KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
15 C DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
16 C BOTH THE LEFT AND RIGHT HALF PLANES WHERE
17 C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
18 C DEFINITIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
19 C MATHEMATICAL FUNCTIONS (REF. 1).
21 C INPUT ZR,ZI ARE DOUBLE PRECISION
22 C ZR,ZI - Z=CMPLX(ZR,ZI)
23 C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
24 C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
25 C KODE= 1 RETURNS
26 C BI=BI(Z) ON ID=0 OR
27 C BI=DBI(Z)/DZ ON ID=1
28 C = 2 RETURNS
29 C BI=CEXP(-AXZTA)*BI(Z) ON ID=0 OR
30 C BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
31 C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
32 C AND AXZTA=ABS(XZTA)
34 C OUTPUT BIR,BII ARE DOUBLE PRECISION
35 C BIR,BII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
36 C KODE
37 C IERR - ERROR FLAG
38 C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
39 C IERR=1, INPUT ERROR - NO COMPUTATION
40 C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z)
41 C TOO LARGE ON KODE=1
42 C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
43 C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
44 C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
45 C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
46 C COMPLETE LOSS OF ACCURACY BY ARGUMENT
47 C REDUCTION
48 C IERR=5, ERROR - NO COMPUTATION,
49 C ALGORITHM TERMINATION CONDITION NOT MET
51 C***LONG DESCRIPTION
53 C BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
54 C FUNCTIONS BY
56 C BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
57 C DBI(Z)=C * Z * ( I(-2/3,ZTA) + I(2/3,ZTA) )
58 C C=1.0/SQRT(3.0)
59 C ZTA=(2/3)*Z**(3/2)
61 C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
63 C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
64 C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
65 C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
66 C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
67 C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
68 C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
69 C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
70 C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
71 C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
72 C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
73 C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
74 C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
75 C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
76 C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
77 C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
78 C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
79 C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
80 C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
81 C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
82 C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
83 C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
84 C MACHINES.
86 C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
87 C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
88 C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
89 C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
90 C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
91 C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
92 C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
93 C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
94 C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
95 C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
96 C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
97 C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
98 C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
99 C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
100 C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
101 C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
102 C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
103 C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
104 C OR -PI/2+P.
106 C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
107 C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
108 C COMMERCE, 1955.
110 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
111 C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
113 C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
114 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
115 C 1018, MAY, 1985
117 C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
118 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
119 C MATH. SOFTWARE, 1986
121 C***ROUTINES CALLED ZBINU,AZABS,ZDIV,AZSQRT,D1MACH,I1MACH
122 C***END PROLOGUE ZBIRY
123 C COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
124 DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
125 * BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
126 * DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
127 * SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
128 * TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, AZABS
129 INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
130 DIMENSION CYR(2), CYI(2)
131 DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
132 * 6.14926627446000736D-01,4.48288357353826359D-01,
133 * 5.77350269189625765D-01,3.14159265358979324D+00/
134 DATA CONER, CONEI /1.0D0,0.0D0/
135 C***FIRST EXECUTABLE STATEMENT ZBIRY
136 IERR = 0
137 NZ=0
138 IF (ID.LT.0 .OR. ID.GT.1) IERR=1
139 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
140 IF (IERR.NE.0) RETURN
141 AZ = AZABS(ZR,ZI)
142 TOL = DMAX1(D1MACH(4),1.0D-18)
143 FID = DBLE(FLOAT(ID))
144 IF (AZ.GT.1.0E0) GO TO 70
145 C-----------------------------------------------------------------------
146 C POWER SERIES FOR CABS(Z).LE.1.
147 C-----------------------------------------------------------------------
148 S1R = CONER
149 S1I = CONEI
150 S2R = CONER
151 S2I = CONEI
152 IF (AZ.LT.TOL) GO TO 130
153 AA = AZ*AZ
154 IF (AA.LT.TOL/AZ) GO TO 40
155 TRM1R = CONER
156 TRM1I = CONEI
157 TRM2R = CONER
158 TRM2I = CONEI
159 ATRM = 1.0D0
160 STR = ZR*ZR - ZI*ZI
161 STI = ZR*ZI + ZI*ZR
162 Z3R = STR*ZR - STI*ZI
163 Z3I = STR*ZI + STI*ZR
164 AZ3 = AZ*AA
165 AK = 2.0D0 + FID
166 BK = 3.0D0 - FID - FID
167 CK = 4.0D0 - FID
168 DK = 3.0D0 + FID + FID
169 D1 = AK*DK
170 D2 = BK*CK
171 AD = DMIN1(D1,D2)
172 AK = 24.0D0 + 9.0D0*FID
173 BK = 30.0D0 - 9.0D0*FID
174 DO 30 K=1,25
175 STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
176 TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
177 TRM1R = STR
178 S1R = S1R + TRM1R
179 S1I = S1I + TRM1I
180 STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
181 TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
182 TRM2R = STR
183 S2R = S2R + TRM2R
184 S2I = S2I + TRM2I
185 ATRM = ATRM*AZ3/AD
186 D1 = D1 + AK
187 D2 = D2 + BK
188 AD = DMIN1(D1,D2)
189 IF (ATRM.LT.TOL*AD) GO TO 40
190 AK = AK + 18.0D0
191 BK = BK + 18.0D0
192 30 CONTINUE
193 40 CONTINUE
194 IF (ID.EQ.1) GO TO 50
195 BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
196 BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
197 IF (KODE.EQ.1) RETURN
198 CALL AZSQRT(ZR, ZI, STR, STI)
199 ZTAR = TTH*(ZR*STR-ZI*STI)
200 ZTAI = TTH*(ZR*STI+ZI*STR)
201 AA = ZTAR
202 AA = -DABS(AA)
203 EAA = DEXP(AA)
204 BIR = BIR*EAA
205 BII = BII*EAA
206 RETURN
207 50 CONTINUE
208 BIR = S2R*C2
209 BII = S2I*C2
210 IF (AZ.LE.TOL) GO TO 60
211 CC = C1/(1.0D0+FID)
212 STR = S1R*ZR - S1I*ZI
213 STI = S1R*ZI + S1I*ZR
214 BIR = BIR + CC*(STR*ZR-STI*ZI)
215 BII = BII + CC*(STR*ZI+STI*ZR)
216 60 CONTINUE
217 IF (KODE.EQ.1) RETURN
218 CALL AZSQRT(ZR, ZI, STR, STI)
219 ZTAR = TTH*(ZR*STR-ZI*STI)
220 ZTAI = TTH*(ZR*STI+ZI*STR)
221 AA = ZTAR
222 AA = -DABS(AA)
223 EAA = DEXP(AA)
224 BIR = BIR*EAA
225 BII = BII*EAA
226 RETURN
227 C-----------------------------------------------------------------------
228 C CASE FOR CABS(Z).GT.1.0
229 C-----------------------------------------------------------------------
230 70 CONTINUE
231 FNU = (1.0D0+FID)/3.0D0
232 C-----------------------------------------------------------------------
233 C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
234 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
235 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
236 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
237 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
238 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
239 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
240 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
241 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
242 C-----------------------------------------------------------------------
243 K1 = I1MACH(15)
244 K2 = I1MACH(16)
245 R1M5 = D1MACH(5)
246 K = MIN0(IABS(K1),IABS(K2))
247 ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
248 K1 = I1MACH(14) - 1
249 AA = R1M5*DBLE(FLOAT(K1))
250 DIG = DMIN1(AA,18.0D0)
251 AA = AA*2.303D0
252 ALIM = ELIM + DMAX1(-AA,-41.45D0)
253 RL = 1.2D0*DIG + 3.0D0
254 FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
255 C-----------------------------------------------------------------------
256 C TEST FOR RANGE
257 C-----------------------------------------------------------------------
258 AA=0.5D0/TOL
259 BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
260 AA=DMIN1(AA,BB)
261 AA=AA**TTH
262 IF (AZ.GT.AA) GO TO 260
263 AA=DSQRT(AA)
264 IF (AZ.GT.AA) IERR=3
265 CALL AZSQRT(ZR, ZI, CSQR, CSQI)
266 ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
267 ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
268 C-----------------------------------------------------------------------
269 C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
270 C-----------------------------------------------------------------------
271 SFAC = 1.0D0
272 AK = ZTAI
273 IF (ZR.GE.0.0D0) GO TO 80
274 BK = ZTAR
275 CK = -DABS(BK)
276 ZTAR = CK
277 ZTAI = AK
278 80 CONTINUE
279 IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
280 ZTAR = 0.0D0
281 ZTAI = AK
282 90 CONTINUE
283 AA = ZTAR
284 IF (KODE.EQ.2) GO TO 100
285 C-----------------------------------------------------------------------
286 C OVERFLOW TEST
287 C-----------------------------------------------------------------------
288 BB = DABS(AA)
289 IF (BB.LT.ALIM) GO TO 100
290 BB = BB + 0.25D0*DLOG(AZ)
291 SFAC = TOL
292 IF (BB.GT.ELIM) GO TO 190
293 100 CONTINUE
294 FMR = 0.0D0
295 IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
296 FMR = PI
297 IF (ZI.LT.0.0D0) FMR = -PI
298 ZTAR = -ZTAR
299 ZTAI = -ZTAI
300 110 CONTINUE
301 C-----------------------------------------------------------------------
302 C AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
303 C KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
304 C-----------------------------------------------------------------------
305 CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
306 * ELIM, ALIM)
307 IF (NZ.LT.0) GO TO 200
308 AA = FMR*FNU
309 Z3R = SFAC
310 STR = DCOS(AA)
311 STI = DSIN(AA)
312 S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
313 S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
314 FNU = (2.0D0-FID)/3.0D0
315 CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
316 * ELIM, ALIM)
317 CYR(1) = CYR(1)*Z3R
318 CYI(1) = CYI(1)*Z3R
319 CYR(2) = CYR(2)*Z3R
320 CYI(2) = CYI(2)*Z3R
321 C-----------------------------------------------------------------------
322 C BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
323 C-----------------------------------------------------------------------
324 CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
325 S2R = (FNU+FNU)*STR + CYR(2)
326 S2I = (FNU+FNU)*STI + CYI(2)
327 AA = FMR*(FNU-1.0D0)
328 STR = DCOS(AA)
329 STI = DSIN(AA)
330 S1R = COEF*(S1R+S2R*STR-S2I*STI)
331 S1I = COEF*(S1I+S2R*STI+S2I*STR)
332 IF (ID.EQ.1) GO TO 120
333 STR = CSQR*S1R - CSQI*S1I
334 S1I = CSQR*S1I + CSQI*S1R
335 S1R = STR
336 BIR = S1R/SFAC
337 BII = S1I/SFAC
338 RETURN
339 120 CONTINUE
340 STR = ZR*S1R - ZI*S1I
341 S1I = ZR*S1I + ZI*S1R
342 S1R = STR
343 BIR = S1R/SFAC
344 BII = S1I/SFAC
345 RETURN
346 130 CONTINUE
347 AA = C1*(1.0D0-FID) + FID*C2
348 BIR = AA
349 BII = 0.0D0
350 RETURN
351 190 CONTINUE
352 IERR=2
353 NZ=0
354 RETURN
355 200 CONTINUE
356 IF(NZ.EQ.(-1)) GO TO 190
357 NZ=0
358 IERR=5
359 RETURN
360 260 CONTINUE
361 IERR=4
362 NZ=0
363 RETURN