1 ((35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(13440*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(1920*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(640*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(384*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8)/(384*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^8)/(640*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^8)/(1920*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(8*c - I*k0)^2])*(8*c - I*k0)^8)/(13440*k^5))/k0^5
2 SeriesData[k, Infinity, {(105*c^7)/k0^5, (-1728*c^8)/k0^5 + ((384*I)*c^7)/k0^4, (315*(125*c^9 - (54*I)*c^8*k0 - 6*c^7*k0^2))/(4*k0^5), 0, (-693*(4819*c^11 - (3960*I)*c^10*k0 - 1250*c^9*k0^2 + (180*I)*c^8*k0^3 + 10*c^7*k0^4))/(16*k0^5), 0, (3003*(73120*c^13 - (86346*I)*c^12*k0 - 43371*c^11*k0^2 + (11880*I)*c^10*k0^3 + 1875*c^9*k0^4 - (162*I)*c^8*k0^5 - 6*c^7*k0^6))/(32*k0^5)}, 4, 11, 1]