1 SUBROUTINE ZBESK
(ZR
, ZI
, FNU
, KODE
, N
, CYR
, CYI
, NZ
, IERR
)
2 C***BEGIN PROLOGUE ZBESK
3 C***DATE WRITTEN 830501 (YYMMDD)
4 C***REVISION DATE 890801 (YYMMDD)
6 C***KEYWORDS K-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
7 C MODIFIED BESSEL FUNCTION OF THE SECOND KIND,
8 C BESSEL FUNCTION OF THE THIRD KIND
9 C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
10 C***PURPOSE TO COMPUTE K-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
13 C ***A DOUBLE PRECISION ROUTINE***
15 C ON KODE=1, CBESK COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
16 C BESSEL FUNCTIONS CY(J)=K(FNU+J-1,Z) FOR REAL, NONNEGATIVE
17 C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z.NE.CMPLX(0.0,0.0)
18 C IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESK
19 C RETURNS THE SCALED K FUNCTIONS,
21 C CY(J)=EXP(Z)*K(FNU+J-1,Z) , J=1,...,N,
23 C WHICH REMOVE THE EXPONENTIAL BEHAVIOR IN BOTH THE LEFT AND
24 C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND
25 C NOTATION ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL
28 C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
29 C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
31 C FNU - ORDER OF INITIAL K FUNCTION, FNU.GE.0.0D0
32 C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
33 C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
35 C CY(I)=K(FNU+I-1,Z), I=1,...,N
37 C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
39 C OUTPUT CYR,CYI ARE DOUBLE PRECISION
40 C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
41 C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
42 C CY(I)=K(FNU+I-1,Z), I=1,...,N OR
43 C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
45 C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW.
46 C NZ= 0 , NORMAL RETURN
47 C NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
48 C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
49 C I=1,...,N WHEN X.GE.0.0. WHEN X.LT.0.0
50 C NZ STATES ONLY THE NUMBER OF UNDERFLOWS
54 C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
55 C IERR=1, INPUT ERROR - NO COMPUTATION
56 C IERR=2, OVERFLOW - NO COMPUTATION, FNU IS
57 C TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
58 C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
59 C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
60 C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
62 C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
63 C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
64 C CANCE BY ARGUMENT REDUCTION
65 C IERR=5, ERROR - NO COMPUTATION,
66 C ALGORITHM TERMINATION CONDITION NOT MET
70 C EQUATIONS OF THE REFERENCE ARE IMPLEMENTED FOR SMALL ORDERS
71 C DNU AND DNU+1.0 IN THE RIGHT HALF PLANE X.GE.0.0. FORWARD
72 C RECURRENCE GENERATES HIGHER ORDERS. K IS CONTINUED TO THE LEFT
73 C HALF PLANE BY THE RELATION
75 C K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
76 C MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
78 C WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
80 C FOR LARGE ORDERS, FNU.GT.FNUL, THE K FUNCTION IS COMPUTED
81 C BY MEANS OF ITS UNIFORM ASYMPTOTIC EXPANSIONS.
83 C FOR NEGATIVE ORDERS, THE FORMULA
85 C K(-FNU,Z) = K(FNU,Z)
89 C CBESK ASSUMES THAT A SIGNIFICANT DIGIT SINH(X) FUNCTION IS
92 C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
93 C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
94 C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
95 C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
96 C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
97 C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
98 C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
99 C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
100 C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
101 C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
102 C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
103 C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
104 C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
105 C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
106 C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
107 C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
108 C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
109 C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
110 C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
112 C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
113 C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
114 C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
115 C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
116 C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
117 C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
118 C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
119 C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
120 C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
121 C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
122 C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
123 C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
124 C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
125 C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
126 C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
127 C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
128 C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
129 C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
132 C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
133 C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
136 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
137 C BY D. E. AMOS, SAND83-0083, MAY, 1983.
139 C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
140 C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983.
142 C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
143 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
146 C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
147 C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
148 C MATH. SOFTWARE, 1986
150 C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,AZABS,I1MACH,D1MACH
151 C***END PROLOGUE ZBESK
154 DOUBLE PRECISION AA
, ALIM
, ALN
, ARG
, AZ
, CYI
, CYR
, DIG
, ELIM
, FN
,
155 * FNU
, FNUL
, RL
, R1M5
, TOL
, UFL
, ZI
, ZR
, D1MACH
, AZABS
, BB
156 INTEGER IERR
, K
, KODE
, K1
, K2
, MR
, N
, NN
, NUF
, NW
, NZ
, I1MACH
157 DIMENSION CYR
(N
), CYI
(N
)
158 C***FIRST EXECUTABLE STATEMENT ZBESK
161 IF (ZI
.EQ
.0.0E0
.AND
. ZR
.EQ
.0.0E0
) IERR
=1
162 IF (FNU
.LT
.0.0D0
) IERR
=1
163 IF (KODE
.LT
.1 .OR
. KODE
.GT
.2) IERR
=1
165 IF (IERR
.NE
.0) RETURN
167 C-----------------------------------------------------------------------
168 C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
169 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
170 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
171 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
172 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
173 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
174 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
175 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
176 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
177 C-----------------------------------------------------------------------
178 TOL
= DMAX1
(D1MACH
(4),1.0D
-18)
182 K
= MIN0
(IABS
(K1
),IABS
(K2
))
183 ELIM
= 2.303D0*
(DBLE
(FLOAT
(K
))*R1M5
-3.0D0
)
185 AA
= R1M5*DBLE
(FLOAT
(K1
))
186 DIG
= DMIN1
(AA
,18.0D0
)
188 ALIM
= ELIM
+ DMAX1
(-AA
,-41.45D0
)
189 FNUL
= 10.0D0
+ 6.0D0*
(DIG
-3.0D0
)
190 RL
= 1.2D0*DIG
+ 3.0D0
191 C-----------------------------------------------------------------------------
192 C TEST FOR PROPER RANGE
193 C-----------------------------------------------------------------------
195 FN
= FNU
+ DBLE
(FLOAT
(NN
-1))
197 BB
=DBLE
(FLOAT
(I1MACH
(9)))*0.5D0
199 IF (AZ
.GT
.AA
) GO TO 260
200 IF (FN
.GT
.AA
) GO TO 260
204 C-----------------------------------------------------------------------
205 C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
206 C-----------------------------------------------------------------------
208 UFL
= D1MACH
(1)*1.0D
+3
209 IF (AZ
.LT
.UFL
) GO TO 180
210 IF (FNU
.GT
.FNUL
) GO TO 80
211 IF (FN
.LE
.1.0D0
) GO TO 60
212 IF (FN
.GT
.2.0D0
) GO TO 50
213 IF (AZ
.GT
.TOL
) GO TO 60
216 IF (ALN
.GT
.ELIM
) GO TO 180
219 CALL ZUOIK
(ZR
, ZI
, FNU
, KODE
, 2, NN
, CYR
, CYI
, NUF
, TOL
, ELIM
,
221 IF (NUF
.LT
.0) GO TO 180
224 C-----------------------------------------------------------------------
225 C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
226 C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
227 C-----------------------------------------------------------------------
228 IF (NN
.EQ
.0) GO TO 100
230 IF (ZR
.LT
.0.0D0
) GO TO 70
231 C-----------------------------------------------------------------------
232 C RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
233 C-----------------------------------------------------------------------
234 CALL ZBKNU
(ZR
, ZI
, FNU
, KODE
, NN
, CYR
, CYI
, NW
, TOL
, ELIM
, ALIM
)
235 IF (NW
.LT
.0) GO TO 200
238 C-----------------------------------------------------------------------
239 C LEFT HALF PLANE COMPUTATION
240 C PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
241 C-----------------------------------------------------------------------
243 IF (NZ
.NE
.0) GO TO 180
245 IF (ZI
.LT
.0.0D0
) MR
= -1
246 CALL ZACON
(ZR
, ZI
, FNU
, KODE
, MR
, NN
, CYR
, CYI
, NW
, RL
, FNUL
,
248 IF (NW
.LT
.0) GO TO 200
251 C-----------------------------------------------------------------------
252 C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
253 C-----------------------------------------------------------------------
256 IF (ZR
.GE
.0.0D0
) GO TO 90
258 IF (ZI
.LT
.0.0D0
) MR
= -1
260 CALL ZBUNK
(ZR
, ZI
, FNU
, KODE
, MR
, NN
, CYR
, CYI
, NW
, TOL
, ELIM
,
262 IF (NW
.LT
.0) GO TO 200
266 IF (ZR
.LT
.0.0D0
) GO TO 180
273 IF(NW
.EQ
.(-1)) GO TO 180