1 (-2*(k^6*(-35 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + k^6*(-35 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7 + k^6*(-35 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 6*k^4*(-35 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*k^2*(-21 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(210*k^6*k0^3)
2 SeriesData[k, Infinity, {c^2/k0^3, (-6*(2*c^3 - I*c^2*k0))/k0^3, (35*(25*c^4 - (24*I)*c^3*k0 - 6*c^2*k0^2))/(12*k0^3), (-16*(18*c^5 - (25*I)*c^4*k0 - 12*c^3*k0^2 + (2*I)*c^2*k0^3))/k0^3, (21*(301*c^6 - (540*I)*c^5*k0 - 375*c^4*k0^2 + (120*I)*c^3*k0^3 + 15*c^2*k0^4))/(8*k0^3), (-160*(c - I*k0)^7 + 320*(2*c - I*k0)^7 - 160*(3*c - I*k0)^7)/(210*k0^3), ((3465*(c - I*k0)^8)/64 - (3465*(2*c - I*k0)^8)/32 + (3465*(3*c - I*k0)^8)/64)/(210*k0^3), 0, ((-1001*(c - I*k0)^10)/128 + (1001*(2*c - I*k0)^10)/64 - (1001*(3*c - I*k0)^10)/128)/(210*k0^3)}, 1, 11, 1]