Ewald 1D in 3D: jdu spát
[qpms.git] / besseltransforms / 3-3-7
blob73e7bdb3f3b85e7c5fa20ad4703c32ba3f5112b9
1 ((7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(336*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(112*k^7) + (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(112*k^7) - (7*k^8 + 24*k^6*(7 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(42 - 23*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(14 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 384*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(336*k^7))/k0^3
2 SeriesData[k, Infinity, {(7*c^3)/k0^3, (-24*(5*c^4 - (2*I)*c^3*k0))/k0^3, (315*(13*c^5 - (10*I)*c^4*k0 - 2*c^3*k0^2))/(4*k0^3), (-160*(35*c^6 - (39*I)*c^5*k0 - 15*c^4*k0^2 + (2*I)*c^3*k0^3))/k0^3, (693*(243*c^7 - (350*I)*c^6*k0 - 195*c^5*k0^2 + (50*I)*c^4*k0^3 + 5*c^3*k0^4))/(8*k0^3), (-96*(555*c^8 - (972*I)*c^7*k0 - 700*c^6*k0^2 + (260*I)*c^5*k0^3 + 50*c^4*k0^4 - (4*I)*c^3*k0^5))/k0^3, ((-143*(c - I*k0)^9)/384 + (143*(2*c - I*k0)^9)/128 - (143*(3*c - I*k0)^9)/128 + (143*(4*c - I*k0)^9)/384)/k0^3, 0, ((13*(c - I*k0)^11)/256 - (39*(2*c - I*k0)^11)/256 + (39*(3*c - I*k0)^11)/256 - (13*(4*c - I*k0)^11)/256)/k0^3}, 2, 11, 1]