Ewald 1D in 3D: jdu spát
[qpms.git] / oldtests / ewalds.c
blob32af265aa0157d80350f7e59f719db8ac6af754b
1 // c99 -ggdb -Wall -I ../ ewalds.c ../qpms/ewald.c ../qpms/ewaldsf.c ../qpms/lattices2d.c -lgsl -lm -lblas
3 // implementation of the [LT(4.16)] test
4 #include <math.h>
5 #define M_SQRTPI 1.7724538509055160272981674833411452
6 #include <qpms/ewald.h>
7 #include <qpms/tiny_inlines.h>
8 #include <qpms/indexing.h>
9 #include <stdlib.h>
10 #include <stdio.h>
11 #include <float.h>
12 #include <gsl/gsl_sf_legendre.h>
13 typedef struct ewaldtest_triang_params {
14 qpms_l_t lMax;
15 point2d beta;
16 double k;
17 double a;
18 double eta;
19 double maxR;
20 double maxK;
21 double csphase;
22 TriangularLatticeOrientation orientation;
23 } ewaldtest_triang_params;
25 typedef struct ewaldtest_triang_results {
26 ewaldtest_triang_params p;
27 complex double *sigmas_short,
28 *sigmas_long,
29 sigma0,
30 *sigmas_total;
31 double *err_sigmas_short,
32 *err_sigmas_long,
33 err_sigma0,
34 *err_sigmas_total;
35 complex double *regsigmas_416;
36 } ewaldtest_triang_results;
39 ewaldtest_triang_params paramslist[] = {
40 // lMax, beta, k, a, eta, maxR, maxK, csphase, orientation
41 #if 0
42 { 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 20, 20, 1., TRIANGULAR_VERTICAL},
43 { 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 30, 30, -1., TRIANGULAR_VERTICAL},
44 { 3, {1.1, 0.23}, 2.3, 0.97, 0.9, 30, 30, 1., TRIANGULAR_VERTICAL},
45 { 3, {1.1, 0.23}, 2.3, 0.97, 1.3, 30, 30, 1., TRIANGULAR_VERTICAL},
46 { 6, {1.1, 0.23}, 2.3, 0.97, 1.9, 30, 30, 1., TRIANGULAR_VERTICAL},
47 { 6, {1.1, 0.23}, 2.3, 0.97, 2.5, 30, 30, 1., TRIANGULAR_VERTICAL},
48 { 6, {1.1, 0.23}, 2.3, 0.97, 3.2, 30, 30, 1., TRIANGULAR_VERTICAL},
49 { 6, {1.1, 0.23}, 2.3, 0.97, 3.8, 30, 30, 1., TRIANGULAR_VERTICAL},
50 { 6, {1.1, 0.23}, 2.3, 0.97, 4.5, 30, 30, 1., TRIANGULAR_VERTICAL},
51 { 6, {1.1, 0.23}, 2.3, 0.97, 4.5, 40, 40, 1., TRIANGULAR_VERTICAL},
52 { 6, {1.1, 0.23}, 2.3, 0.97, 2.3, 100, 100, 1., TRIANGULAR_VERTICAL},
53 { 6, {1.1, 0.23}, 2.3, 0.97, 2.9, 100, 100, 1., TRIANGULAR_VERTICAL},
54 #endif
55 { 2, {1.1, 0.23}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
56 { 2, {-1.1, -0.23}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
57 { 2, {0, 1.1}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
58 { 2, {0, -1.1}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
59 { 2, {-1.1, 0}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
60 { 2, {1.1, 0}, 2.3, 0.97, 5.5, 20, 160, 1., TRIANGULAR_VERTICAL},
61 { 2, {1.1, 0}, 2.3, 0.97, 5.5, 10, 80, 1., TRIANGULAR_VERTICAL},
62 { 2, {1.1, 0}, 2.3, 0.97, 5.5, 5, 40, 1., TRIANGULAR_VERTICAL},
63 { 2, {1.1, 0}, 2.3, 0.97, 5.5, 2, 16, 1., TRIANGULAR_VERTICAL},
64 { 2, {1.1, 0}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
65 { 2, {1.1, 0}, 2.3, 0.97, 2.5, 10, 80, 1., TRIANGULAR_VERTICAL},
66 { 2, {1.1, 0}, 2.3, 0.97, 2.5, 5, 40, 1., TRIANGULAR_VERTICAL},
67 { 2, {1.1, 0}, 2.3, 0.97, 2.5, 2, 16, 1., TRIANGULAR_VERTICAL},
68 { 2, {1.1, 0}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
69 { 2, {1.1, 0}, 2.3, 0.97, 0.5, 10, 80, 1., TRIANGULAR_VERTICAL},
70 { 2, {1.1, 0}, 2.3, 0.97, 0.5, 5, 40, 1., TRIANGULAR_VERTICAL},
71 { 2, {1.1, 0}, 2.3, 0.97, 0.5, 2, 16, 1., TRIANGULAR_VERTICAL},
72 { 2, {0.3, 0}, 2.3, 0.97, 0.5, 2, 16, 1., TRIANGULAR_VERTICAL},
73 { 2, {2.7, 1}, 2.3, 0.97, 0.5, 5, 40, 1., TRIANGULAR_VERTICAL},
74 { 2, {2.7, 1}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
75 { 2, {2.7, 1}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
76 { 2, {2.7, 1}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
77 { 2, {2.7, 1}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
78 { 2, {1.1, 1}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
79 { 2, {1.1, 1}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
80 { 2, {1.1, 1}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
81 { 2, {1.1, 1}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
83 { 2, {0, 3.1}, 2.3, 0.97, 0.5, 20, 160, 1., TRIANGULAR_VERTICAL},
84 { 2, {0, 3.1}, 2.3, 0.97, 1.5, 20, 160, 1., TRIANGULAR_VERTICAL},
85 { 2, {0, 3.1}, 2.3, 0.97, 2.5, 20, 160, 1., TRIANGULAR_VERTICAL},
86 { 2, {0, 3.1}, 2.3, 0.97, 3.5, 20, 160, 1., TRIANGULAR_VERTICAL},
89 // end:
90 // { 0, {0, 0}, 0, 0, 0, 0, 0, 0, 0}
93 void ewaldtest_triang_results_free(ewaldtest_triang_results *r) {
94 free(r->sigmas_short);
95 free(r->sigmas_long);
96 free(r->sigmas_total);
97 free(r->err_sigmas_long);
98 free(r->err_sigmas_total);
99 free(r->err_sigmas_short);
100 free(r->regsigmas_416);
101 free(r);
105 void dump_points2d_rordered(const points2d_rordered_t *ps, char *filename) {
106 FILE *f = fopen(filename, "w");
107 for (size_t i = 0; i < ps->nrs; ++i) {
108 fprintf(f, "# r = %.16g\n", ps->rs[i]);
109 for (ptrdiff_t j = ps->r_offsets[i]; j < ps->r_offsets[i+1]; ++j)
110 fprintf(f, "%.16g %.16g\n", ps->base[j].x, ps->base[j].y);
112 fclose(f);
116 static inline double san(double x) {
117 return fabs(x) < 1e-13 ? 0 : x;
120 ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p);
122 int main() {
123 gsl_set_error_handler(IgnoreUnderflowsGSLErrorHandler);
124 for (size_t i = 0; i < sizeof(paramslist)/sizeof(ewaldtest_triang_params); ++i) {
125 ewaldtest_triang_params p = paramslist[i];
126 ewaldtest_triang_results *r = ewaldtest_triang(p);
127 // TODO print per-test header here
128 printf("===============================\n");
129 printf("a = %g, K = %g, Kmax = %g, Rmax = %g, lMax = %d, eta = %g, k = %g, beta = (%g,%g), csphase = %g\n",
130 p.a, 4*M_PI/sqrt(3)/p.a, p.maxK, p.maxR, p.lMax, p.eta, p.k, p.beta.x, p.beta.y, p.csphase);
131 printf("sigma0: %.16g%+.16gj\n", creal(r->sigma0), cimag(r->sigma0));
132 for (qpms_l_t n = 0; n <= p.lMax; ++n) {
133 for (qpms_m_t m = -n; m <= n; ++m){
134 if ((m+n)%2) continue;
135 qpms_y_t y = qpms_mn2y_sc(m,n);
136 qpms_y_t y_conj = qpms_mn2y_sc(-m,n);
137 // y n m sigma_total (err), regsigmas_416 regsigmas_415_recon
138 printf("%zd %d %d: T:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) \n| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n",
139 y, n, m, creal(san(r->sigmas_total[y])), san(cimag(r->sigmas_total[y])),
140 r->err_sigmas_total[y],
141 san(creal(r->sigmas_long[y])), san(cimag(r->sigmas_long[y])),
142 r->err_sigmas_long[y],
143 san(creal(r->sigmas_short[y])), san(cimag(r->sigmas_short[y])),
144 r->err_sigmas_short[y],
145 san(creal(r->regsigmas_416[y])), san(cimag(r->regsigmas_416[y])),
146 san(creal(r->sigmas_total[y]) + creal(r->sigmas_total[y_conj])),
147 san(cimag(r->sigmas_total[y]) - cimag(r->sigmas_total[y_conj]))
151 ewaldtest_triang_results_free(r);
153 return 0;
157 int ewaldtest_counter = 0;
160 ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p) {
161 const double a = p.a; //const double a = p.h * sqrt(3);
163 const double A = sqrt(3) * a * a / 2.; // unit cell size
164 const double K_len = 4*M_PI/a/sqrt(3); // reciprocal vector length
167 ewaldtest_triang_results *results = malloc(sizeof(ewaldtest_triang_results));
168 results->p = p;
170 triangular_lattice_gen_t *Rlg = triangular_lattice_gen_init(a, p.orientation, false, 0); // N.B. orig is not included (not directly usable for the honeycomb lattice)
171 triangular_lattice_gen_extend_to_r(Rlg, p.maxR + a);
172 triangular_lattice_gen_t *Klg = triangular_lattice_gen_init(K_len, reverseTriangularLatticeOrientation(p.orientation), true, 0);
173 triangular_lattice_gen_extend_to_r(Klg, p.maxK + K_len);
175 point2d *Rpoints = Rlg->ps.base; //point2d *Kpoints = Klg->ps.base;
176 size_t nR = Rlg->ps.r_offsets[Rlg->ps.nrs],
177 nK = Klg->ps.r_offsets[Klg->ps.nrs];
179 qpms_y_t nelem_sc = qpms_lMax2nelem_sc(p.lMax);
181 results->sigmas_short = malloc(sizeof(complex double)*nelem_sc);
182 results->sigmas_long = malloc(sizeof(complex double)*nelem_sc);
183 results->sigmas_total = malloc(sizeof(complex double)*nelem_sc);
184 results->err_sigmas_short = malloc(sizeof(double)*nelem_sc);
185 results->err_sigmas_long = malloc(sizeof(double)*nelem_sc);
186 results->err_sigmas_total = malloc(sizeof(double)*nelem_sc);
188 qpms_ewald3_constants_t *c = qpms_ewald3_constants_init(p.lMax, p.csphase);
190 points2d_rordered_t *Kpoints_plus_beta = points2d_rordered_shift(&(Klg->ps), p.beta,
191 8*DBL_EPSILON, 8*DBL_EPSILON);
193 char filename[BUFSIZ];
194 sprintf(filename, "betalattice_%d.out", ewaldtest_counter);
195 dump_points2d_rordered(Kpoints_plus_beta, filename);
197 point2d particle_shift = {0,0}; // TODO make this a parameter
199 if (0!=ewald32_sigma_long_shiftedpoints(results->sigmas_long,
200 results->err_sigmas_long, c, p.eta, p.k, A,
201 nK, Kpoints_plus_beta->base,
202 p.beta,
203 particle_shift))
204 abort();
205 if (0!=ewald32_sigma_short_shiftedpoints(
206 results->sigmas_short, results->err_sigmas_short, c,
207 p.eta, p.k,
208 nR, Rpoints, p.beta, particle_shift))
209 abort();
210 if (0!=ewald32_sigma0(&(results->sigma0), &(results->err_sigma0), c, p.eta, p.k))
211 abort();
212 for(qpms_y_t y = 0; y < nelem_sc; ++y) {
213 results->sigmas_total[y] = results->sigmas_short[y] + results->sigmas_long[y];
214 results->err_sigmas_total[y] = results->err_sigmas_short[y] + results->err_sigmas_long[y];
216 results->sigmas_total[0] += results->sigma0;
217 results->err_sigmas_total[0] += results->err_sigma0;
219 // Now calculate the reference values [LT(4.16)]
220 results->regsigmas_416 = calloc(nelem_sc, sizeof(complex double));
221 results->regsigmas_416[0] = -2 * c->legendre0[gsl_sf_legendre_array_index(0,0)];
224 double legendres[gsl_sf_legendre_array_n(p.lMax)];
225 points2d_rordered_t sel =
226 points2d_rordered_annulus(Kpoints_plus_beta, 0, true, p.k, false);
227 if (0 != sel.nrs)
229 point2d *beta_pq_lessthan_k = sel.base + sel.r_offsets[0];
230 size_t beta_pq_lessthan_k_count = sel.r_offsets[sel.nrs] - sel.r_offsets[0];
231 for(size_t i = 0; i < beta_pq_lessthan_k_count; ++i) {
232 point2d beta_pq = beta_pq_lessthan_k[i];
233 double rbeta_pq = cart2norm(beta_pq);
234 double arg_pq = atan2(beta_pq.y, beta_pq.x);
235 double denom = sqrt(p.k*p.k - rbeta_pq*rbeta_pq);
236 if( gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,
237 p.lMax, denom/p.k, p.csphase, legendres) != 0)
238 abort();
239 for (qpms_y_t y = 0; y < nelem_sc; ++y) {
240 qpms_l_t n; qpms_m_t m;
241 qpms_y2mn_sc_p(y, &m, &n);
242 if ((m+n)%2 != 0)
243 continue;
244 complex double eimf = cexp(I*m*arg_pq);
245 results->regsigmas_416[y] +=
246 4*M_PI*ipow(n)/p.k/A
247 * eimf * legendres[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m)
248 / denom;
254 points2d_rordered_free(Kpoints_plus_beta);
255 qpms_ewald3_constants_free(c);
256 triangular_lattice_gen_free(Klg);
257 triangular_lattice_gen_free(Rlg);
258 ++ewaldtest_counter;
259 return results;