1 (14*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - 28*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 42*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 84*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 70*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) - 140*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 70*k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 140*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 42*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) - 84*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 14*k^2*(-3 + 2*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0) + 28*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^3 + 2*k^2*(3 - 2*Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0) - 4*(-1 + Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^3 + 3*k^2*k0*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (4*(k^2 - k0^2)^(3/2))/(3*k^2*k0*Sqrt[Pi])] + I*Piecewise[{{(-2*(2*k0*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3 + (2*Sqrt[-k^2 + k0^2])/k0)))/(3*k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(2*(1 - (2*k0^2)/(3*k^2)))/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(12*k^2*k0^3)
2 SeriesData[k, Infinity, {(-2205*c^8)/(2*k0^3) + ((315*I)*c^7)/k0^2, 0, (4725*(98*c^10 - (77*I)*c^9*k0 - 21*c^8*k0^2 + (2*I)*c^7*k0^3))/(4*k0^3)}, 7, 11, 1]