Fix saving lists of arrays with recent versions of numpy
[qpms.git] / besseltransforms / ksmall / 5-3-5
blobf388a570f7ec2391ebd621466312b105eda1b43f
1 (-(5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(24*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(12*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(12*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(24*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(120*k^5) + (5*k^6 + 8*k^2*k0^3*(15*k0 - 11*Sqrt[-k^2 + k0^2]) + 64*k0^5*(-k0 + Sqrt[-k^2 + k0^2]) + 12*k^4*k0*(-5*k0 + 2*Sqrt[-k^2 + k0^2]))/(120*k^5))/k0^3
2 (-(5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6))/(24.*Power(k,5)) + (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6))/(12.*Power(k,5)) - (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6))/(12.*Power(k,5)) + (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6))/(24.*Power(k,5)) - (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6))/(120.*Power(k,5)) + (5*Power(k,6) + 8*Power(k,2)*Power(k0,3)*(15*k0 - 11*Sqrt(-Power(k,2) + Power(k0,2))) + 64*Power(k0,5)*(-k0 + Sqrt(-Power(k,2) + Power(k0,2))) + 12*Power(k,4)*k0*(-5*k0 + 2*Sqrt(-Power(k,2) + Power(k0,2))))/(120.*Power(k,5)))/Power(k0,3)
3 SeriesData[k, Infinity, {(105*c^5)/k0^3, (-960*c^6)/k0^3 + ((384*I)*c^5)/k0^2, (315*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^3), 0, (-1155*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^3), 0, (429*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^3)}, 4, 11, 1]
4 (15*k^4*(-5 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*k^2*(-15 + 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 80*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 30*k^4*(5 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 20*k^2*(15 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 + 30*k^4*(-5 + 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*k^2*(-15 + 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 15*k^4*(5 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 10*k^2*(15 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 80*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 + 3*k^4*(-5 + 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*k^2*(-15 + 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 + 2*k^2*k0^3*(15*k0 - 11*Sqrt[-k^2 + k0^2]) + 16*k0^5*(-k0 + Sqrt[-k^2 + k0^2]) + 3*k^4*k0*(-5*k0 + 2*Sqrt[-k^2 + k0^2]))/(30*k^5*k0^3)