Fix saving lists of arrays with recent versions of numpy
[qpms.git] / besseltransforms / ksmall / 5-5-5
blob979dc9eac4cadc5e15ddc566a19cc88026ce5da3
1 (-(35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(2688*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(1344*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(1344*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(2688*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8)/(13440*k^5) + (35*k^8 + 16*k^4*k0^3*(35*k0 - 24*Sqrt[-k^2 + k0^2]) + 128*k0^7*(k0 - Sqrt[-k^2 + k0^2]) + 64*k^2*k0^5*(-7*k0 + 6*Sqrt[-k^2 + k0^2]) + 8*k^6*k0*(-35*k0 + 16*Sqrt[-k^2 + k0^2]))/(13440*k^5))/k0^5
2 (-(35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,8))/(2688.*Power(k,5)) + (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,8))/(1344.*Power(k,5)) - (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,8))/(1344.*Power(k,5)) + (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,8))/(2688.*Power(k,5)) - (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,8))/(13440.*Power(k,5)) + (35*Power(k,8) + 16*Power(k,4)*Power(k0,3)*(35*k0 - 24*Sqrt(-Power(k,2) + Power(k0,2))) + 128*Power(k0,7)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + 64*Power(k,2)*Power(k0,5)*(-7*k0 + 6*Sqrt(-Power(k,2) + Power(k0,2))) + 8*Power(k,6)*k0*(-35*k0 + 16*Sqrt(-Power(k,2) + Power(k0,2))))/(13440.*Power(k,5)))/Power(k0,5)
3 SeriesData[k, Infinity, {(5*c^5)/k0^5, (-60*c^6)/k0^5 + ((24*I)*c^5)/k0^4, (35*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^5), (-1200*c^8)/k0^5 + ((1280*I)*c^7)/k0^4 + (480*c^6)/k0^3 - ((64*I)*c^5)/k0^2, (105*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^5), 0, (-11*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^5), 0, (143*(52507*c^13 - (125400*I)*c^12*k0 - 134580*c^11*k0^2 + (85050*I)*c^10*k0^3 + 34755*c^9*k0^4 - (9450*I)*c^8*k0^5 - 1680*c^7*k0^6 + (180*I)*c^6*k0^7 + 9*c^5*k0^8))/(128*k0^5)}, 2, 11, 1]
4 (5*k^6*(-35 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*k^4*(-35 + 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 40*k^2*(-7 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 80*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8 + 10*k^6*(35 - 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 20*k^4*(35 - 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 80*k^2*(7 - 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8 + 10*k^6*(-35 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*k^4*(-35 + 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 80*k^2*(-7 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8 + 5*k^6*(35 - 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 10*k^4*(35 - 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 40*k^2*(7 - 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 80*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8 + k^6*(-35 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8 + 2*k^4*k0^3*(35*k0 - 24*Sqrt[-k^2 + k0^2]) + 16*k0^7*(k0 - Sqrt[-k^2 + k0^2]) + 8*k^2*k0^5*(-7*k0 + 6*Sqrt[-k^2 + k0^2]) + k^6*k0*(-35*k0 + 16*Sqrt[-k^2 + k0^2]))/(1680*k^5*k0^5)