1 #LyX 2.4 created this file. For more info see https://www.lyx.org/
5 \save_transient_properties true
8 \use_default_options true
9 \maintain_unincluded_children false
11 \language_package default
14 \font_roman "default" "TeX Gyre Pagella"
15 \font_sans "default" "default"
16 \font_typewriter "default" "default"
17 \font_math "auto" "auto"
18 \font_default_family default
19 \use_non_tex_fonts false
23 \font_typewriter_osf false
24 \font_sf_scale 100 100
25 \font_tt_scale 100 100
27 \use_dash_ligatures false
29 \default_output_format default
31 \bibtex_command default
32 \index_command default
33 \float_placement class
34 \float_alignment class
35 \paperfontsize default
38 \pdf_title "Sähköpajan päiväkirja"
39 \pdf_author "Marek Nečada"
41 \pdf_bookmarksnumbered false
42 \pdf_bookmarksopen false
43 \pdf_bookmarksopenlevel 1
51 \use_package amsmath 1
52 \use_package amssymb 1
55 \use_package mathdots 1
56 \use_package mathtools 1
58 \use_package stackrel 1
59 \use_package stmaryrd 1
60 \use_package undertilde 1
62 \cite_engine_type default
66 \paperorientation portrait
78 \paragraph_separation indent
79 \paragraph_indentation default
81 \math_numbering_side default
86 \paperpagestyle default
88 \tracking_changes false
97 \begin_layout Subsection
98 The multiple-scattering problem
99 \begin_inset CommandInset label
101 name "subsec:The-multiple-scattering-problem"
108 \begin_layout Standard
110 \begin_inset Formula $T$
113 -matrix approach, scattering properties of single nanoparticles in a homogeneous
114 medium are first computed in terms of vector sperical wavefunctions (VSWFs)—the
115 field incident onto the
116 \begin_inset Formula $n$
119 -th nanoparticle from external sources can be expanded as
122 \vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\vswfr lmt\left(\vect r_{n}\right)\label{eq:E_inc}
128 \begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$
132 \begin_inset Formula $\vect R_{n}$
135 being the position of the centre of
136 \begin_inset Formula $n$
140 \begin_inset Formula $\vswfr lmt$
143 are the regular VSWFs which can be expressed in terms of regular spherical
145 \begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$
148 and spherical harmonics
149 \begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$
152 ; the expressions, together with a proof that the VSWFs span all the solutions
153 of vector Helmholtz equation around the particle, justifying the expansion,
156 \begin_inset CommandInset citation
159 key "kristensson_scattering_2016"
164 (care must be taken because of varying normalisation and phase conventions).
165 On the other hand, the field scattered by the particle can be (outside
166 the particle's circumscribing sphere) expanded in terms of singular VSWFs
168 \begin_inset Formula $\vswfs lmt$
171 which differ from the regular ones by regular spherical Bessel functions
172 being replaced with spherical Hankel functions
173 \begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$
179 \vect E_{n}^{\mathrm{scat}}\left(\vect r\right)=\sum_{l,m,t}\coeffsip nlmt\vswfs lmt\left(\vect r_{n}\right).\label{eq:E_scat}
184 The expansion coefficients
185 \begin_inset Formula $\coeffsip nlmt$
189 \begin_inset Formula $t=\mathrm{E},\mathrm{M}$
192 are related to the electric and magnetic multipole polarization amplitudes
196 \begin_layout Standard
197 At a given frequency, assuming the system is linear, the relation between
198 the expansion coefficients in the VSWF bases is given by the so-called
200 \begin_inset Formula $T$
206 \coeffsip nlmt=\sum_{l',m',t'}T_{n}^{lmt;l'm't'}\coeffrip n{l'}{m'}{t'}.\label{eq:Tmatrix definition}
212 \begin_inset Formula $T$
215 -matrix is given by the shape and composition of the particle and fully
216 describes its scattering properties.
217 In theory it is infinite-dimensional, but in practice (at least for subwaveleng
218 th nanoparticles) its elements drop very quickly to negligible values with
219 growing degree indices
220 \begin_inset Formula $l,l'$
223 , enabling to take into account only the elements up to some finite degree,
225 \begin_inset Formula $l,l'\le l_{\mathrm{max}}$
230 \begin_inset Formula $T$
233 -matrix can be calculated numerically using various methods; here we used
234 the scuff-tmatrix tool from the SCUFF-EM suite
235 \begin_inset CommandInset citation
237 key "SCUFF2,reid_efficient_2015"
242 , which implements the boundary element method (BEM).
245 \begin_layout Standard
246 The singular VSWFs originating at
247 \begin_inset Formula $\vect R_{n}$
250 can be then re-expanded around another origin (nanoparticle location)
251 \begin_inset Formula $\vect R_{n'}$
254 in terms of regular VSWFs,
257 \begin{split}\svwfs lmt\left(\vect r_{n}\right)=\sum_{l',m',t'}\transop^{l'm't';lmt}\left(\vect R_{n'}-\vect R_{n}\right)\vswfr{l'}{m'}{t'}\left(\vect r_{n'}\right),\\
258 \left|\vect r_{n'}\right|<\left|\vect R_{n'}-\vect R_{n}\right|.
260 \label{eq:translation op def}
265 Analytical expressions for the translation operator
266 \begin_inset Formula $\transop^{lmt;l'm't'}\left(\vect R_{n'}-\vect R_{n}\right)$
270 \begin_inset CommandInset citation
272 key "xu_efficient_1998"
280 \begin_layout Standard
281 If we write the field incident onto the
282 \begin_inset Formula $n$
285 -th nanoparticle as the sum of fields scattered from all the other nanoparticles
286 and an external field
287 \begin_inset Formula $\vect E_{0}$
290 (which we also expand around each nanoparticle,
291 \begin_inset Formula $\vect E_{0}\left(\vect r\right)=\sum_{l,m,t}\coeffripext nlmt\vswfr lmt\left(\vect r_{n}\right)$
297 \vect E_{n}^{\mathrm{inc}}\left(\vect r\right)=\vect E_{0}\left(\vect r\right)+\sum_{n'\ne n}\vect E_{n'}^{\mathrm{scat}}\left(\vect r\right)
304 \begin_inset CommandInset ref
311 \begin_inset CommandInset ref
313 reference "eq:translation op def"
317 ), we obtain a set of linear equations for the electromagnetic response
318 (multiple scattering) of the whole set of nanoparticles,
321 \begin{split}\coeffrip nlmt=\coeffripext nlmt+\sum_{n'\ne n}\sum_{l',m',t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)\\
322 \times\sum_{l'',m'',t''}T_{n'}^{l'm't';l''m''t''}\coeffrip{n'}{l''}{m''}{t''}.
324 \label{eq:multiplescattering element-wise}
329 It is practical to get rid of the VSWF indices, rewriting (
330 \begin_inset CommandInset ref
332 reference "eq:multiplescattering element-wise"
336 ) in a per-particle matrix form
339 \coeffr_{n}=\coeffr_{\mathrm{ext}(n)}+\sum_{n'\ne n}S_{n,n'}T_{n'}p_{n'}\label{eq:multiple scattering per particle p}
344 and to reformulate the problem using (
345 \begin_inset CommandInset ref
347 reference "eq:Tmatrix definition"
352 \begin_inset Formula $\coeffs$
355 -coefficients which describe the multipole excitations of the particles
359 \coeffs_{n}-T_{n}\sum_{n'\ne n}S_{n,n'}\coeffs_{n'}=T_{n}\coeffr_{\mathrm{ext}(n)}.\label{eq:multiple scattering per particle a}
365 \begin_inset Formula $T_{n},S_{n,n'},\coeffr_{\mathrm{ext}(n)}$
368 , the nanoparticle excitations
369 \begin_inset Formula $a_{n}$
372 can be solved by standard linear algebra methods.
373 The total scattered field anywhere outside the particles' circumscribing
374 spheres is then obtained by summing the contributions (
375 \begin_inset CommandInset ref
377 reference "eq:E_scat"
381 ) from all particles.