Fix saving lists of arrays with recent versions of numpy
[qpms.git] / misc / eval_TMatrices_generator_vs_scuffNotFixed_vs_scuffFixed2-spheres.ipynb
blob4eab7d8602ccc4395b286f605ca59e03afe55331
2  "cells": [
3   {
4    "cell_type": "code",
5    "execution_count": 1,
6    "metadata": {},
7    "outputs": [],
8    "source": [
9     "import numpy as np\n",
10     "import qpms\n",
11     "import warnings\n",
12     "from qpms.cybspec import BaseSpec\n",
13     "from qpms.cytmatrices import CTMatrix, TMatrixGenerator, TMatrixInterpolator\n",
14     "from qpms.qpms_c import Particle, pgsl_ignore_error\n",
15     "from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude\n",
16     "from qpms.cycommon import DebugFlags, dbgmsg_enable\n",
17     "from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar\n",
18     "import scipy.constants as sci\n",
19     "eh = eV/hbar"
20    ]
21   },
22   {
23    "cell_type": "code",
24    "execution_count": 2,
25    "metadata": {},
26    "outputs": [],
27    "source": [
28     "#TODO\n",
29     "period = 520e-9\n",
30     "a1 = np.array([0,period])                                 \n",
31     "a2 = np.array([period,0])"
32    ]
33   },
34   {
35    "cell_type": "code",
36    "execution_count": 3,
37    "metadata": {},
38    "outputs": [],
39    "source": [
40     "#Particle positions\n",
41     "orig_x = [0]\n",
42     "orig_y = [0]\n",
43     "orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1)"
44    ]
45   },
46   {
47    "cell_type": "code",
48    "execution_count": 4,
49    "metadata": {},
50    "outputs": [],
51    "source": [
52     "period = 0.52\n",
53     "refractive_index = 1.52 # for background medium\n",
54     "height = 50e-9 # Particle height\n",
55     "radius = 50e-9 # Particle radius\n",
56     "medium = EpsMu(refractive_index**2) # non-lossy background medium with constant refr. index #OK\n",
57     "# global symmetry group of the system\n",
58     "#sym = FinitePointGroup(point_group_info['D4h'])\n",
59     "omega = 1.58*eh\n",
60     "metal = lorentz_drude['Ag']\n",
61     "kx_lim = np.array([-0.2, 0.2], dtype=float)\n",
62     "N=501"
63    ]
64   },
65   {
66    "cell_type": "code",
67    "execution_count": 5,
68    "metadata": {},
69    "outputs": [
70     {
71      "data": {
72       "text/plain": [
73        "(7.59633723939313, 8.305328715069821, 7.94387469344152, 8.001475225494097)"
74       ]
75      },
76      "execution_count": 5,
77      "metadata": {},
78      "output_type": "execute_result"
79     }
80    ],
81    "source": [
82     "omega_scuff_min=1.5*eh/3e14\n",
83     "omega_scuff_max=1.64*eh/3e14\n",
84     "omega_scuff=omega/3e14\n",
85     "omega_scuff_slr=(2*np.pi*sci.c/(1.52*0.52e-6))/3e14\n",
86     "omega_scuff_min, omega_scuff_max, omega_scuff_slr, omega_scuff"
87    ]
88   },
89   {
90    "cell_type": "code",
91    "execution_count": 6,
92    "metadata": {},
93    "outputs": [],
94    "source": [
95     "bspec = BaseSpec(lMax = 1)\n",
96     "\n",
97     "tmfile_scuffOld = '/home/javier/tmatrices/sphereAg_50nm_oldScuff.TMatrix'\n",
98     "tmfile_scuffNew = '/home/javier/tmatrices/sphere50nm_newScuff.TMatrix'\n",
99     "interp_old = TMatrixInterpolator(tmfile_scuffOld, bspec, atol=1e-8)  \n",
100     "interp_new = TMatrixInterpolator(tmfile_scuffNew, bspec, atol=1e-8)  \n",
101     "tmscuff_not_fixed = interp_old(omega)\n",
102     "tmscuff_bugfixed = interp_new(omega)"
103    ]
104   },
105   {
106    "cell_type": "code",
107    "execution_count": 7,
108    "metadata": {},
109    "outputs": [],
110    "source": [
111     "tmgen = TMatrixGenerator.sphere(medium, metal, radius)"
112    ]
113   },
114   {
115    "cell_type": "code",
116    "execution_count": 8,
117    "metadata": {},
118    "outputs": [],
119    "source": [
120     "tmgen_omega=tmgen(bspec,omega)"
121    ]
122   },
123   {
124    "cell_type": "code",
125    "execution_count": 9,
126    "metadata": {},
127    "outputs": [
128     {
129      "data": {
130       "text/plain": [
131        "array([[-0.07824951+0.25215549j,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ],\n",
132        "       [ 0.        +0.j        , -0.07824951+0.25215549j,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ],\n",
133        "       [ 0.        +0.j        ,  0.        +0.j        , -0.07824951+0.25215549j,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ],\n",
134        "       [ 0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        , -0.00083788-0.01420874j,  0.        +0.j        ,  0.        +0.j        ],\n",
135        "       [ 0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        , -0.00083788-0.01420874j,  0.        +0.j        ],\n",
136        "       [ 0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        ,  0.        +0.j        , -0.00083788-0.01420874j]])"
137       ]
138      },
139      "execution_count": 9,
140      "metadata": {},
141      "output_type": "execute_result"
142     }
143    ],
144    "source": [
145     "tmgen_omega.as_ndarray() # T-Matrix from generator"
146    ]
147   },
148   {
149    "cell_type": "code",
150    "execution_count": 10,
151    "metadata": {},
152    "outputs": [
153     {
154      "data": {
155       "text/plain": [
156        "array([[-4.70886671e-03+1.79440815e-02j,  1.60098226e-13+4.20092462e-13j,  2.26455777e-07+3.98932962e-07j, -2.13258227e-14-6.01930824e-14j,  7.66251504e-08-1.32539814e-08j,\n",
157        "        -7.76488937e-14+1.08532726e-13j],\n",
158        "       [-4.41531068e-13+9.81757019e-14j, -4.70582367e-03+1.79389513e-02j, -1.60702588e-13-4.19762769e-13j,  6.32372612e-08+4.71302619e-08j, -2.36039655e-14+1.00983241e-13j,\n",
159        "         7.76590838e-08-1.38092126e-08j],\n",
160        "       [-4.58579591e-07-7.49053314e-09j,  4.41175187e-13-9.87457125e-14j, -4.70886672e-03+1.79440815e-02j,  2.13790755e-14+1.31812722e-13j,  6.25535562e-08+4.61875295e-08j,\n",
161        "         4.59276044e-14-4.47400043e-14j],\n",
162        "       [ 4.93366461e-14-4.29235249e-14j, -6.94450011e-09-1.60278760e-08j, -7.79609985e-14+1.07845028e-13j, -3.03166095e-05-2.01474828e-03j, -2.39253108e-13-1.34944425e-13j,\n",
163        "         1.16328171e-08+6.36863105e-09j],\n",
164        "       [ 8.21008790e-09-1.53591010e-08j, -2.36580203e-14+1.00878213e-13j, -5.41800099e-09-1.65573897e-08j,  2.26431323e-13-1.55248143e-13j, -3.03231670e-05-2.01493037e-03j,\n",
165        "         2.38800352e-13+1.35401679e-13j],\n",
166        "       [ 2.18731933e-14+1.31428484e-13j,  7.13657440e-09-1.65412452e-08j, -2.48667583e-14-6.12974376e-14j, -1.11447700e-08+7.19733229e-09j, -2.26916383e-13+1.54810715e-13j,\n",
167        "        -3.03166170e-05-2.01474828e-03j]])"
168       ]
169      },
170      "execution_count": 10,
171      "metadata": {},
172      "output_type": "execute_result"
173     }
174    ],
175    "source": [
176     "tmscuff_not_fixed.as_ndarray() # T-Matrix of not fixed version of Scuff-EM"
177    ]
178   },
179   {
180    "cell_type": "code",
181    "execution_count": 11,
182    "metadata": {},
183    "outputs": [
184     {
185      "data": {
186       "text/plain": [
187        "array([[-9.43033280e-02+3.59361755e-01j,  3.20658236e-12+8.41416904e-12j,  5.13892659e-06+8.57797510e-06j, -4.28949536e-13-1.20456867e-12j,  1.41239218e-06-2.46862181e-07j,\n",
188        "        -1.55480479e-12+2.17400571e-12j],\n",
189        "       [-8.84386127e-12+1.96169624e-12j, -9.42395846e-02+3.59248336e-01j, -3.22166474e-12-8.40342496e-12j,  1.16868119e-06+8.68484583e-07j, -4.72874254e-13+2.02296639e-12j,\n",
190        "         1.43308826e-06-2.58864855e-07j],\n",
191        "       [-9.99885677e-06+6.63229466e-08j,  8.83605486e-12-1.97841571e-12j, -9.43033282e-02+3.59361755e-01j,  4.27888728e-13+2.63976219e-12j,  1.15544356e-06+8.48824647e-07j,\n",
192        "         9.21093604e-13-8.94225073e-13j],\n",
193        "       [ 9.85267406e-13-8.59818272e-13j, -1.43866720e-06+2.57952214e-07j, -1.56233879e-12+2.15974773e-12j, -6.07143255e-04-4.03488631e-02j, -4.79139425e-12-2.70322093e-12j,\n",
194        "         1.52945653e-07+8.36194839e-08j],\n",
195        "       [-1.15196465e-06-8.46913318e-07j, -4.73514628e-13+2.02574744e-12j, -1.40806670e-06+2.47097086e-07j,  4.53481568e-12-3.10854698e-12j, -6.07256494e-04-4.03513114e-02j,\n",
196        "         4.78231690e-12+2.71099900e-12j],\n",
197        "       [ 4.39050064e-13+2.63269196e-12j, -1.17350730e-06-8.70822943e-07j, -4.95069921e-13-1.22744130e-12j, -1.44529174e-07+9.78280211e-08j, -4.54412580e-12+3.10101417e-12j,\n",
198        "        -6.07143303e-04-4.03488631e-02j]])"
199       ]
200      },
201      "execution_count": 11,
202      "metadata": {},
203      "output_type": "execute_result"
204     }
205    ],
206    "source": [
207     "tmscuff_bugfixed.as_ndarray() # T-Matrix of FIXED version of Scuff-EM"
208    ]
209   },
210   {
211    "cell_type": "code",
212    "execution_count": 12,
213    "metadata": {},
214    "outputs": [
215     {
216      "data": {
217       "text/plain": [
218        "(matrix([[-9.43033280e-02+3.59361755e-01j,  3.20658236e-12+8.41416904e-12j],\n",
219        "         [-8.84386127e-12+1.96169624e-12j, -9.42395846e-02+3.59248336e-01j]]),\n",
220        " matrix([[-9.43033280e-02-3.59361755e-01j, -8.84386127e-12-1.96169624e-12j],\n",
221        "         [ 3.20658236e-12-8.41416904e-12j, -9.42395846e-02-3.59248336e-01j]]))"
222       ]
223      },
224      "execution_count": 12,
225      "metadata": {},
226      "output_type": "execute_result"
227     }
228    ],
229    "source": [
230     "#I play around with the different operations so everything is correct\n",
231     "tmscuffnew = tmscuff_bugfixed.as_ndarray()\n",
232     "tmscuffnew_mat = np.asmatrix(tmscuffnew)\n",
233     "tmscuffnew_dag = tmscuffnew_mat.getH()\n",
234     "tmscuffnew_mat[0:2,0:2], tmscuffnew_dag[0:2,0:2]"
235    ]
236   },
237   {
238    "cell_type": "code",
239    "execution_count": 13,
240    "metadata": {},
241    "outputs": [
242     {
243      "data": {
244       "text/plain": [
245        "(matrix([[1, 0],\n",
246        "         [9, 4]]), matrix([[4, 9],\n",
247        "         [0, 1]]))"
248       ]
249      },
250      "execution_count": 13,
251      "metadata": {},
252      "output_type": "execute_result"
253     }
254    ],
255    "source": [
256     "A = np.matrix([[0,1],[2,3]])\n",
257     "B = np.matrix([[3,2],[1,0]])\n",
258     "AB = np.dot(A,B)\n",
259     "BA = np.dot(B,A)\n",
260     "AB,BA"
261    ]
262   },
263   {
264    "cell_type": "code",
265    "execution_count": 14,
266    "metadata": {},
267    "outputs": [],
268    "source": [
269     "sum1new = np.dot(tmscuffnew_dag,tmscuffnew) #is this the right order? Regarding the above, yes it is.\n",
270     "sum2new = 0.5*tmscuffnew.__add__(tmscuffnew_dag) "
271    ]
272   },
273   {
274    "cell_type": "code",
275    "execution_count": 15,
276    "metadata": {},
277    "outputs": [],
278    "source": [
279     "powermatrix_scuffnew = sum1new.__add__(sum2new) #powermatrix for bugfixed scuff"
280    ]
281   },
282   {
283    "cell_type": "code",
284    "execution_count": 16,
285    "metadata": {},
286    "outputs": [],
287    "source": [
288     "#Power matrix for NOT bugfixed scuff\n",
289     "tmscuffold = tmscuff_not_fixed.as_ndarray()\n",
290     "tmscuffold_mat = np.asmatrix(tmscuffold)\n",
291     "tmscuffold_dag = tmscuffold_mat.getH()\n",
292     "sum1old = np.dot(tmscuffold_dag,tmscuffold) #is this the right order? Regarding the above, yes it is.\n",
293     "sum2old = 0.5*tmscuffold.__add__(tmscuffold_dag)\n",
294     "\n",
295     "powermatrix_scuffold = sum1old.__add__(sum2old) "
296    ]
297   },
298   {
299    "cell_type": "code",
300    "execution_count": 17,
301    "metadata": {},
302    "outputs": [],
303    "source": [
304     "#Power matrix for T matrix generator\n",
305     "tmscuffgen = tmgen_omega.as_ndarray()\n",
306     "tmscuffgen_mat = np.asmatrix(tmscuffgen)\n",
307     "tmscuffgen_dag = tmscuffgen_mat.getH()\n",
308     "sum1gen = np.dot(tmscuffgen_dag,tmscuffgen) #is this the right order? Regarding the above, yes it is.\n",
309     "sum2gen = 0.5*tmscuffgen.__add__(tmscuffgen_dag)\n",
310     "\n",
311     "powermatrix_scuffgen = sum1gen.__add__(sum2gen) "
312    ]
313   },
314   {
315    "cell_type": "code",
316    "execution_count": 18,
317    "metadata": {},
318    "outputs": [
319     {
320      "data": {
321       "text/plain": [
322        "((-0.008544129580638216+0j),\n",
323        " (-0.008544129580638216+0j),\n",
324        " (-0.008544129580638216+0j),\n",
325        " (-0.0006352854997266949+0j),\n",
326        " (-0.0006352854997266949+0j),\n",
327        " (-0.0006352854997266949+0j))"
328       ]
329      },
330      "execution_count": 18,
331      "metadata": {},
332      "output_type": "execute_result"
333     }
334    ],
335    "source": [
336     "#Power matrix of generator is diagonal and all its eigenvalues are negative:\n",
337     "powermatrix_scuffgen[0,0], powermatrix_scuffgen[1,1], powermatrix_scuffgen[2,2], powermatrix_scuffgen[3,3], powermatrix_scuffgen[4,4], powermatrix_scuffgen[5,5]"
338    ]
339   },
340   {
341    "cell_type": "code",
342    "execution_count": 19,
343    "metadata": {},
344    "outputs": [
345     {
346      "data": {
347       "text/plain": [
348        "((0.04373066071852283+0j),\n",
349        " (0.04370088172427582+0j),\n",
350        " (0.043730660553373296+0j),\n",
351        " (0.001021256123757952+0j),\n",
352        " (0.0010213406041430792+0j),\n",
353        " (0.0010212560750220145+0j))"
354       ]
355      },
356      "execution_count": 19,
357      "metadata": {},
358      "output_type": "execute_result"
359     }
360    ],
361    "source": [
362     "powermatrix_scuffnew[0,0], powermatrix_scuffnew[1,1], powermatrix_scuffnew[2,2], powermatrix_scuffnew[3,3], powermatrix_scuffnew[4,4], powermatrix_scuffnew[5,5]"
363    ]
364   },
365   {
366    "cell_type": "code",
367    "execution_count": 20,
368    "metadata": {},
369    "outputs": [
370     {
371      "data": {
372       "text/plain": [
373        "((-0.004364703222422517+0j),\n",
374        " (-0.004361872918812184+0j),\n",
375        " (-0.004364703232328262+0j),\n",
376        " (-2.6256479824067564e-05+0j),\n",
377        " (-2.6262303053141142e-05+0j),\n",
378        " (-2.6256487319428013e-05+0j))"
379       ]
380      },
381      "execution_count": 20,
382      "metadata": {},
383      "output_type": "execute_result"
384     }
385    ],
386    "source": [
387     "powermatrix_scuffold[0,0], powermatrix_scuffold[1,1], powermatrix_scuffold[2,2], powermatrix_scuffold[3,3], powermatrix_scuffold[4,4], powermatrix_scuffold[5,5]"
388    ]
389   },
390   {
391    "cell_type": "code",
392    "execution_count": 22,
393    "metadata": {},
394    "outputs": [
395     {
396      "data": {
397       "text/plain": [
398        "((-10.019160178833705-0j),\n",
399        " (-10.018834234211564-0j),\n",
400        " (-10.019160118257586-0j),\n",
401        " (-38.895393845668316-0j),\n",
402        " (-38.88998623145963-0j),\n",
403        " (-38.89538088616882-0j))"
404       ]
405      },
406      "execution_count": 22,
407      "metadata": {},
408      "output_type": "execute_result"
409     }
410    ],
411    "source": [
412     "#So! There is a fixed factor between the N/M elements of Scuff new and old:\n",
413     "powermatrix_scuffnew[0,0]/powermatrix_scuffold[0,0], powermatrix_scuffnew[1,1]/powermatrix_scuffold[1,1], powermatrix_scuffnew[2,2]/powermatrix_scuffold[2,2], powermatrix_scuffnew[3,3]/powermatrix_scuffold[3,3], powermatrix_scuffnew[4,4]/powermatrix_scuffold[4,4], powermatrix_scuffnew[5,5]/powermatrix_scuffold[5,5]"
414    ]
415   },
416   {
417    "cell_type": "code",
418    "execution_count": 23,
419    "metadata": {},
420    "outputs": [
421     {
422      "data": {
423       "text/plain": [
424        "((-5.118211317583541-0j),\n",
425        " (-5.11472600126595-0j),\n",
426        " (-5.118211298254535-0j),\n",
427        " (-1.6075545942687262-0j),\n",
428        " (-1.6076875744566317-0j),\n",
429        " (-1.60755451755371-0j))"
430       ]
431      },
432      "execution_count": 23,
433      "metadata": {},
434      "output_type": "execute_result"
435     }
436    ],
437    "source": [
438     "#And there is a fixed factor for new / generated as well! (hence also for old / generated)\n",
439     "powermatrix_scuffnew[0,0]/powermatrix_scuffgen[0,0], powermatrix_scuffnew[1,1]/powermatrix_scuffgen[1,1], powermatrix_scuffnew[2,2]/powermatrix_scuffgen[2,2], powermatrix_scuffnew[3,3]/powermatrix_scuffgen[3,3], powermatrix_scuffnew[4,4]/powermatrix_scuffgen[4,4], powermatrix_scuffnew[5,5]/powermatrix_scuffgen[5,5]"
440    ]
441   },
442   {
443    "cell_type": "code",
444    "execution_count": 21,
445    "metadata": {},
446    "outputs": [
447     {
448      "data": {
449       "text/plain": [
450        "((-1.60755451755371-0j), (-2.557363000632975+0j))"
451       ]
452      },
453      "execution_count": 21,
454      "metadata": {},
455      "output_type": "execute_result"
456     }
457    ],
458    "source": [
459     "powermatrix_scuffnew[5,5]/powermatrix_scuffgen[5,5], powermatrix_scuffnew[1,1]/powermatrix_scuffgen[1,1]/2"
460    ]
461   },
462   {
463    "cell_type": "code",
464    "execution_count": 22,
465    "metadata": {},
466    "outputs": [
467     {
468      "data": {
469       "text/plain": [
470        "((1.599227713011597e-16-0j),\n",
471        " (8.902299490051238e-14+0j),\n",
472        " (1.504486797691096e-21-0j))"
473       ]
474      },
475      "execution_count": 22,
476      "metadata": {},
477      "output_type": "execute_result"
478     }
479    ],
480    "source": [
481     "#Let's also calculate the determinants\n",
482     "detnew = powermatrix_scuffnew[0,0]*powermatrix_scuffnew[1,1]*powermatrix_scuffnew[2,2]*powermatrix_scuffnew[3,3]*powermatrix_scuffnew[4,4]*powermatrix_scuffnew[5,5]\n",
483     "detold = powermatrix_scuffold[0,0]*powermatrix_scuffold[1,1]*powermatrix_scuffold[2,2]*powermatrix_scuffold[3,3]*powermatrix_scuffold[4,4]*powermatrix_scuffold[5,5]\n",
484     "detgen = powermatrix_scuffgen[0,0]*powermatrix_scuffgen[1,1]*powermatrix_scuffgen[2,2]*powermatrix_scuffgen[3,3]*powermatrix_scuffgen[4,4]*powermatrix_scuffgen[5,5]\n",
485     "detgen, detnew, detold"
486    ]
487   },
488   {
489    "cell_type": "code",
490    "execution_count": 23,
491    "metadata": {},
492    "outputs": [
493     {
494      "data": {
495       "text/plain": [
496        "((1.5992277130116025e-16+0j),\n",
497        " (8.902299447416401e-14+2.6128569373609595e-39j),\n",
498        " (1.504486701753944e-21-2.892571608172536e-45j))"
499       ]
500      },
501      "execution_count": 23,
502      "metadata": {},
503      "output_type": "execute_result"
504     }
505    ],
506    "source": [
507     "np.linalg.det(powermatrix_scuffgen), np.linalg.det(powermatrix_scuffnew), np.linalg.det(powermatrix_scuffold)"
508    ]
509   },
510   {
511    "cell_type": "code",
512    "execution_count": 24,
513    "metadata": {},
514    "outputs": [],
515    "source": [
516     "#We try to normalize the power matrix elements for each case with the corresponding determinants."
517    ]
518   },
519   {
520    "cell_type": "code",
521    "execution_count": 25,
522    "metadata": {},
523    "outputs": [
524     {
525      "data": {
526       "text/plain": [
527        "((-53426597795433.88+0j),\n",
528        " (-53426597795433.88+0j),\n",
529        " (-53426597795433.88+0j),\n",
530        " (-3972451793812.1055+0j),\n",
531        " (-3972451793812.1055+0j),\n",
532        " (-3972451793812.1055+0j))"
533       ]
534      },
535      "execution_count": 25,
536      "metadata": {},
537      "output_type": "execute_result"
538     }
539    ],
540    "source": [
541     "#T-matrix generator: \n",
542     "powermatrix_scuffgen[0,0]/detgen, powermatrix_scuffgen[1,1]/detgen, powermatrix_scuffgen[2,2]/detgen, powermatrix_scuffgen[3,3]/detgen, powermatrix_scuffgen[4,4]/detgen, powermatrix_scuffgen[5,5]/detgen  "
543    ]
544   },
545   {
546    "cell_type": "code",
547    "execution_count": 26,
548    "metadata": {},
549    "outputs": [
550     {
551      "data": {
552       "text/plain": [
553        "((-2.901124309712079e+18+0j),\n",
554        " (-2.899243067806416e+18+0j),\n",
555        " (-2.901124316296214e+18+0j),\n",
556        " (-1.7452117136795634e+16+0j),\n",
557        " (-1.7455987711853198e+16+0j),\n",
558        " (-1.7452122118800434e+16+0j))"
559       ]
560      },
561      "execution_count": 26,
562      "metadata": {},
563      "output_type": "execute_result"
564     }
565    ],
566    "source": [
567     "#Not bugfixed Scuff-EM: \n",
568     "powermatrix_scuffold[0,0]/detold, powermatrix_scuffold[1,1]/detold, powermatrix_scuffold[2,2]/detold, powermatrix_scuffold[3,3]/detold, powermatrix_scuffold[4,4]/detold, powermatrix_scuffold[5,5]/detold  "
569    ]
570   },
571   {
572    "cell_type": "code",
573    "execution_count": 27,
574    "metadata": {},
575    "outputs": [
576     {
577      "data": {
578       "text/plain": [
579        "((491228819782.9563+0j),\n",
580        " (490894310768.96173+0j),\n",
581        " (491228817927.8229+0j),\n",
582        " (11471823936.043226+0j),\n",
583        " (11472772908.667904+0j),\n",
584        " (11471823388.58987+0j))"
585       ]
586      },
587      "execution_count": 27,
588      "metadata": {},
589      "output_type": "execute_result"
590     }
591    ],
592    "source": [
593     "#New Scuff-EM: \n",
594     "powermatrix_scuffnew[0,0]/detnew, powermatrix_scuffnew[1,1]/detnew, powermatrix_scuffnew[2,2]/detnew, powermatrix_scuffnew[3,3]/detnew, powermatrix_scuffnew[4,4]/detnew, powermatrix_scuffnew[5,5]/detnew  "
595    ]
596   },
597   {
598    "cell_type": "code",
599    "execution_count": 28,
600    "metadata": {},
601    "outputs": [],
602    "source": [
603     "#It might make more sense to renormalize the electric and magnetic parts of the power matrices separately:"
604    ]
605   },
606   {
607    "cell_type": "code",
608    "execution_count": 29,
609    "metadata": {},
610    "outputs": [
611     {
612      "data": {
613       "text/plain": [
614        "((13698.226641508763-0j),\n",
615        " (13698.226641508763-0j),\n",
616        " (13698.226641508763-0j),\n",
617        " (2477776.413504498-0j),\n",
618        " (2477776.413504498-0j),\n",
619        " (2477776.413504498-0j))"
620       ]
621      },
622      "execution_count": 29,
623      "metadata": {},
624      "output_type": "execute_result"
625     }
626    ],
627    "source": [
628     "#T-matrix generator:\n",
629     "detgen_el = powermatrix_scuffgen[0,0]*powermatrix_scuffgen[1,1]*powermatrix_scuffgen[2,2]\n",
630     "detgen_mag = powermatrix_scuffgen[3,3]*powermatrix_scuffgen[4,4]*powermatrix_scuffgen[5,5]\n",
631     "powermatrix_scuffgen[0,0]/detgen_el, powermatrix_scuffgen[1,1]/detgen_el, powermatrix_scuffgen[2,2]/detgen_el, powermatrix_scuffgen[3,3]/detgen_mag, powermatrix_scuffgen[4,4]/detgen_mag, powermatrix_scuffgen[5,5]/detgen_mag  "
632    ]
633   },
634   {
635    "cell_type": "code",
636    "execution_count": 30,
637    "metadata": {},
638    "outputs": [
639     {
640      "data": {
641       "text/plain": [
642        "((52525.751093170744-0j),\n",
643        " (52491.69062780147-0j),\n",
644        " (52525.75121237855-0j),\n",
645        " (1450208903.6280527-0j),\n",
646        " (1450530534.6580672-0j),\n",
647        " (1450209317.614944-0j))"
648       ]
649      },
650      "execution_count": 30,
651      "metadata": {},
652      "output_type": "execute_result"
653     }
654    ],
655    "source": [
656     "#NOT bugfixed Scuff-EM:\n",
657     "detold_el = powermatrix_scuffold[0,0]*powermatrix_scuffold[1,1]*powermatrix_scuffold[2,2]\n",
658     "detold_mag = powermatrix_scuffold[3,3]*powermatrix_scuffold[4,4]*powermatrix_scuffold[5,5]\n",
659     "powermatrix_scuffold[0,0]/detold_el, powermatrix_scuffold[1,1]/detold_el, powermatrix_scuffold[2,2]/detold_el, powermatrix_scuffold[3,3]/detold_mag, powermatrix_scuffold[4,4]/detold_mag, powermatrix_scuffold[5,5]/detold_mag  "
660    ]
661   },
662   {
663    "cell_type": "code",
664    "execution_count": 31,
665    "metadata": {},
666    "outputs": [
667     {
668      "data": {
669       "text/plain": [
670        "((523.2675016470721+0j),\n",
671        " (522.9111754524715+0j),\n",
672        " (523.2674996709441+0j),\n",
673        " (958726.5381294343+0j),\n",
674        " (958805.8459399715+0j),\n",
675        " (958726.4923775065+0j))"
676       ]
677      },
678      "execution_count": 31,
679      "metadata": {},
680      "output_type": "execute_result"
681     }
682    ],
683    "source": [
684     "#Bugfixed Scuff-EM:\n",
685     "detnew_el = powermatrix_scuffnew[0,0]*powermatrix_scuffnew[1,1]*powermatrix_scuffnew[2,2]\n",
686     "detnew_mag = powermatrix_scuffnew[3,3]*powermatrix_scuffnew[4,4]*powermatrix_scuffnew[5,5]\n",
687     "powermatrix_scuffnew[0,0]/detnew_el, powermatrix_scuffnew[1,1]/detnew_el, powermatrix_scuffnew[2,2]/detnew_el, powermatrix_scuffnew[3,3]/detnew_mag, powermatrix_scuffnew[4,4]/detnew_mag, powermatrix_scuffnew[5,5]/detnew_mag  "
688    ]
689   },
690   {
691    "cell_type": "code",
692    "execution_count": null,
693    "metadata": {},
694    "outputs": [],
695    "source": []
696   }
697  ],
698  "metadata": {
699   "kernelspec": {
700    "display_name": "Python 3",
701    "language": "python",
702    "name": "python3"
703   },
704   "language_info": {
705    "codemirror_mode": {
706     "name": "ipython",
707     "version": 3
708    },
709    "file_extension": ".py",
710    "mimetype": "text/x-python",
711    "name": "python",
712    "nbconvert_exporter": "python",
713    "pygments_lexer": "ipython3",
714    "version": "3.6.6"
715   }
716  },
717  "nbformat": 4,
718  "nbformat_minor": 2