Fix saving lists of arrays with recent versions of numpy
[qpms.git] / misc / finiterectlat-constant-driving.py
blobbf742bc8c066bfdcfb3e07b6fdfbce2f0a7f1511
1 #!/usr/bin/env python3
3 import math
4 from qpms.argproc import ArgParser, make_dict_action, sslice, annotate_pdf_metadata
5 figscale=3
7 ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega'])
8 ap.add_argument("-k", '--wavevector', nargs=2, type=float, required=True, help='"Bloch" vector, modulating phase of the driving', metavar=('KX', 'KY'), default=(0., 0.))
9 # ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
10 ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
11 ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
12 ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
13 ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
14 ap.add_argument("-S", "--symmetry-adapted", default=None, help="Use a symmetry-adapted basis of a given point group instead of individual spherical harmonics")
15 ap.add_argument("-d", "--ccd-distance", type=float, default=math.nan, help='Far-field "CCD" distance from the sample')
16 ap.add_argument("-D", "--ccd-size", type=float, default=math.nan, help='Far-field "CCD" width and heighth')
17 ap.add_argument("-R", "--ccd-resolution", type=int, default=101, help='Far-field "CCD" resolution')
18 ap.add_argument("--xslice", default={None:None}, nargs=2,
19 action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True),
21 ap.add_argument("--yslice", default={None:None}, nargs=2,
22 action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True),
26 #ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition")
29 a=ap.parse_args()
31 import logging
32 logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
34 Nx, Ny = a.size
35 px, py = a.period
37 particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
38 if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
39 defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%s_k_%g_%g_f%geV_L%d_micro-%s" % (
40 particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.wavevector[0], a.wavevector[1], a.eV, a.lMax, "SO3" if a.symmetry_adapted is None else a.symmetry_adapted)
41 logging.info("Default file prefix: %s" % defaultprefix)
43 import numpy as np
44 import qpms
45 from qpms.cybspec import BaseSpec
46 from qpms.cytmatrices import CTMatrix, TMatrixGenerator
47 from qpms.qpms_c import Particle, qpms_library_version
48 from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
49 from qpms.cycommon import DebugFlags, dbgmsg_enable
50 from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
51 from qpms.symmetries import point_group_info
52 eh = eV/hbar
54 # Check slice ranges and generate all corresponding combinations
55 slicepairs = []
56 slicelabels = set(a.xslice.keys()) | set(a.yslice.keys())
57 for label in slicelabels:
58 rowslices = a.xslice.get(label, None)
59 colslices = a.yslice.get(label, None)
60 # TODO check validity of the slices.
61 if rowslices is None:
62 rowslices = [slice(None, None, None)]
63 if colslices is None:
64 colslices = [slice(None, None, None)]
65 for rs in rowslices:
66 for cs in colslices:
67 slicepairs.append((rs, cs))
69 def realdipfieldlabels(yp):
70 if yp == 0: return 'x'
71 if yp == 1: return 'y'
72 if yp == 2: return 'z'
73 raise ValueError
74 def realdipfields(vecgrid, yp):
75 if yp == 1:
76 return vecgrid[...,0] + vecgrid[...,2]
77 if yp == 0:
78 return -1j*(vecgrid[...,0] - vecgrid[...,2])
79 if yp == 2:
80 return vecgrid[...,1]
81 raise ValueError
83 def float_nicestr(x, tol=1e-5):
84 x = float(x)
85 if .5**2 - abs(x) < tol:
86 return(("-" if x < 0 else '+') + "2^{-2}")
87 else:
88 return "%+.3g" % x
90 def cplx_nicestr(x, tol=1e-5):
91 x = complex(x)
92 if x == 0:
93 return '0'
94 ret = ""
95 if x.real:
96 ret = ret + float_nicestr(x.real, tol)
97 if x.imag:
98 ret = ret + float_nicestr(x.imag, tol) + 'i'
99 if x.real and x.imag:
100 return '(' + ret + ')'
101 else:
102 return ret
104 def cleanarray(a, atol=1e-10, copy=True):
105 a = np.array(a, copy=copy)
106 sieve = abs(a.real) < atol
107 a[sieve] = 1j * a[sieve].imag
108 sieve = abs(a.imag) < atol
109 a[sieve] = a[sieve].real
110 return a
112 def nicerot(a, atol=1e-10, copy=True): #gives array a "nice" phase
113 a = np.array(a, copy=copy)
114 i = np.argmax(abs(a))
115 a = a / a[i] * abs(a[i])
116 return a
118 dbgmsg_enable(DebugFlags.INTEGRATION)
120 #Particle positions
121 orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
122 orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
124 orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
127 omega = ap.omega
129 bspec = BaseSpec(lMax = a.lMax)
130 medium = EpsMuGenerator(ap.background_epsmu)
131 particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])]
133 sym = FinitePointGroup(point_group_info['D2h'])
134 ss, ssw = ScatteringSystem.create(particles=particles, medium=medium, omega=omega, sym=sym)
136 wavenumber = ap.background_epsmu.k(omega) # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
138 # Mapping between ss particles and grid positions
139 positions = ss.positions
140 xpositions = np.unique(positions[:,0])
141 assert(len(xpositions) == Nx)
142 ypositions = np.unique(positions[:,1])
143 assert(len(ypositions == Ny))
144 # particle positions as integer indices
145 posmap = np.empty((positions.shape[0],2), dtype=int)
146 invposmap = np.empty((Nx, Ny), dtype=int)
147 for i, pos in enumerate(positions):
148 posmap[i,0] = np.searchsorted(xpositions, positions[i,0])
149 posmap[i,1] = np.searchsorted(ypositions, positions[i,1])
150 invposmap[posmap[i,0], posmap[i, 1]] = i
152 def fullvec2grid(fullvec, swapxy=False):
153 arr = np.empty((Nx,Ny,nelem), dtype=complex)
154 for pi, offset in enumerate(ss.fullvec_poffsets):
155 ix, iy = posmap[pi]
156 arr[ix, iy] = fullvec[offset:offset+nelem]
157 return np.swapaxes(arr, 0, 1) if swapxy else arr
160 outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
162 nelem = len(bspec)
163 phases = np.exp(1j*np.dot(ss.positions[:,:2], np.array(a.wavevector)))
164 driving_full = np.zeros((nelem, ss.fecv_size),dtype=complex)
165 if a.symmetry_adapted is not None:
166 ss1, ssw1 = ScatteringSystem.create(particles=[Particle((0,0,0), ap.tmgen, bspec)], medium=medium, omega=omega,
167 sym=FinitePointGroup(point_group_info[a.symmetry_adapted]))
168 fvcs1 = np.empty((nelem, nelem), dtype=complex)
169 y = 0
170 iris1 = []
171 for iri1 in range(ss1.nirreps):
172 for j in range(ss1.saecv_sizes[iri1]):
173 pvc1 = np.zeros((ss1.saecv_sizes[iri1],), dtype=complex)
174 pvc1[j] = 1
175 fvcs1[y] = ss1.unpack_vector(pvc1, iri1)
176 fvcs1[y] = cleanarray(nicerot(fvcs1[y], copy=False), copy=False)
177 driving_full[y] = (phases[:, None] * fvcs1[y][None,:]).flatten()
178 y += 1
179 iris1.append(iri1)
180 iris1 = np.array(iris1)
181 else:
182 for y in range(nelem):
183 driving_full[y,y::nelem] = phases
186 # Apply the driving on the specified slices only
187 nsp = len(slicepairs)
188 driving_full_sliced = np.zeros((nsp,) + driving_full.shape, dtype=complex)
189 p1range = np.arange(nelem)
190 for spi in range(nsp):
191 xs, ys = slicepairs[spi]
192 driven_pi = invposmap[xs, ys].flatten()
193 driven_y = ((driven_pi * nelem)[:,None] + p1range[None,:]).flatten()
194 driving_full_sliced[spi][:, driven_y] = driving_full[:, driven_y]
196 scattered_full = np.zeros((nsp, nelem, ss.fecv_size),dtype=complex)
197 scattered_ir = [None for iri in range(ss.nirreps)]
199 ir_contained = np.ones((nsp, nelem, ss.nirreps), dtype=bool)
201 for iri in range(ss.nirreps):
202 logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
203 LU = None # to trigger garbage collection before the next call
204 translation_matrix = None
205 LU = ssw.scatter_solver(iri)
206 logging.info("LU solver created")
207 #translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
208 #logging.info("auxillary translation matrix created")
210 scattered_ir[iri] = np.zeros((nsp, nelem, ss.saecv_sizes[iri]), dtype=complex)
211 scattered_ir_unpacked = np.zeros((nsp, nelem, ss.fecv_size), dtype=complex)
213 for spi in range(nsp):
214 for y in range(nelem):
215 ã = driving_full_sliced[spi,y]
216 ãi = cleanarray(ss.pack_vector(ã, iri), copy=False)
217 if np.all(ãi == 0):
218 ir_contained[spi, y, iri] = False
219 continue
220 Tã = ssw.apply_Tmatrices_full(ã)
221 Tãi = ss.pack_vector(Tã, iri)
222 fi = LU(Tãi)
223 scattered_ir[iri][spi, y] = fi
224 scattered_ir_unpacked[spi, y] = ss.unpack_vector(fi, iri)
225 scattered_full[spi, y] += scattered_ir_unpacked[spi, y]
226 if a.save_gradually:
227 iriout = outfile_tmp + ".%d" % iri
228 np.savez(iriout, iri=iri, meta={**vars(a), 'qpms_version' : qpms.__version__()},
229 omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases,
230 positions = ss.positions[:,:2],
231 scattered_ir_packed = scattered_ir[iri],
232 scattered_ir_full = scattered_ir_unpacked,
234 logging.info("partial results saved to %s"%iriout)
236 t, l, m = bspec.tlm()
238 if not math.isnan(a.ccd_distance):
239 logging.info("Computing the far fields")
240 if math.isnan(a.ccd_size):
241 a.ccd_size = (50 * a.ccd_distance / (max(Nx*px, Ny*py) *ssw.wavenumber.real))
242 ccd_size = a.ccd_size
243 ccd_x = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution)
244 ccd_y = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution)
245 ccd_grid = np.meshgrid(ccd_x, ccd_y, (a.ccd_distance,), indexing='ij')
246 ccd_points = np.swapaxes(np.stack(ccd_grid, axis=-1).squeeze(axis=-2), 0,1) # First axis is y, second is x, because of imshow...
247 ccd_fields = np.empty((nsp, nelem,) + ccd_points.shape, dtype=complex)
248 for spi in range(nsp):
249 for y in range(nelem):
250 ccd_fields[spi, y] = ssw.scattered_E(scattered_full[spi, y], ccd_points, btyp=BesselType.HANKEL_PLUS)
251 logging.info("Far fields done")
253 outfile = defaultprefix + ".npz" if a.output is None else a.output
254 np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()},
255 omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases,
256 positions = ss.positions[:,:2],
257 scattered_ir_packed = np.array(scattered_ir, dtype=np.object),
258 scattered_full = scattered_full,
259 ir_contained = ir_contained,
260 t=t, l=l, m=m,
261 iris1 = iris1 if (a.symmetry_adapted is not None) else None,
262 irnames1 = ss1.irrep_names if (a.symmetry_adapted is not None) else None,
263 fvcs1 = fvcs1 if (a.symmetry_adapted is not None) else None,
264 #ccd_size = ccd_size if not math.isnan(a.ccd_distance) else None,
265 ccd_points = ccd_points if not math.isnan(a.ccd_distance) else None,
266 ccd_fields = ccd_fields if not math.isnan(a.ccd_distance) else None,
268 logging.info("Saved to %s" % outfile)
271 if a.plot or (a.plot_out is not None):
274 import matplotlib
275 matplotlib.use('pdf')
276 from matplotlib import pyplot as plt, cm
277 from matplotlib.backends.backend_pdf import PdfPages
278 t, l, m = bspec.tlm()
279 phasecm = cm.twilight
280 pmcm = cm.bwr
281 abscm = cm.plasma
283 plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
284 pp = PdfPages(plotfile)
286 for spi in range(nsp):
287 fig, axes = plt.subplots(nelem, 12 if math.isnan(a.ccd_distance) else 16, figsize=(figscale*(12 if math.isnan(a.ccd_distance) else 16), figscale*nelem))
288 for yp in range(0,3): # TODO xy-dipoles instead?
289 axes[0,4*yp+0].set_title("abs / (E,1,%s)" % realdipfieldlabels(yp))
290 axes[0,4*yp+1].set_title("arg / (E,1,%s)" % realdipfieldlabels(yp))
291 axes[0,4*yp+2].set_title("Fabs / (E,1,%s)" % realdipfieldlabels(yp))
292 axes[0,4*yp+3].set_title("Farg / (E,1,%s)" % realdipfieldlabels(yp))
293 if not math.isnan(a.ccd_distance):
294 #axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance)
295 #axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance)
296 axes[0,12].set_title("$|E_{x}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
297 axes[0,13].set_title("$|E_{y}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
298 axes[0,14].set_title("$|E_x + E_y|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
299 axes[0,15].set_title("$|E_{z}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
300 for gg in range(12,16):
301 axes[-1,gg].set_xlabel("$x/\mathrm{m}$")
304 for y in range(nelem):
305 fulvec = scattered_full[spi,y]
306 if a.symmetry_adapted is not None:
307 driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5]
308 driving_descr = ss1.irrep_names[iris1[y]]+'\n'+', '.join(('$'+cplx_nicestr(fvcs1[y,j])+'$' +
309 "(%s,%d,%+d)" % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in
310 driving_nonzero_y)) # TODO shorten the complex number precision
311 else:
312 driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],)
313 axes[y,0].set_ylabel(driving_descr)
314 axes[y,-1].yaxis.set_label_position("right")
315 axes[y,-1].set_ylabel("$y/\mathrm{m}$\n"+driving_descr)
316 vecgrid = fullvec2grid(fulvec, swapxy=True)
317 vecgrid_ff = np.fft.fftshift(np.fft.fft2(vecgrid, axes=(0,1)),axes=(0,1))
318 lemax = np.amax(abs(vecgrid))
319 for yp in range(0,3):
320 if(np.amax(abs(realdipfields(vecgrid,yp))) > lemax*1e-5):
321 axes[y,yp*4].imshow(abs(realdipfields(vecgrid,yp)), vmin=0, interpolation='none')
322 axes[y,yp*4].text(0.5, 0.5, '%g' % np.amax(abs(realdipfields(vecgrid,yp))), horizontalalignment='center', verticalalignment='center', transform=axes[y,yp*4].transAxes)
323 axes[y,yp*4+1].imshow(np.angle(realdipfields(vecgrid,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none')
324 axes[y,yp*4+2].imshow(abs(realdipfields(vecgrid_ff,yp)), vmin=0, interpolation='none')
325 axes[y,yp*4+3].imshow(np.angle(realdipfields(vecgrid_ff,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none')
326 else:
327 for c in range(0,4):
328 axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False)
329 if not math.isnan(a.ccd_distance):
330 fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2)
331 e2vmax = np.amax(np.linalg.norm(ccd_fields[spi,y], axis=-1)**2)
332 xint = abs(ccd_fields[spi,y,...,0])**2
333 yint = abs(ccd_fields[spi,y,...,1])**2
334 xyint = abs(ccd_fields[spi,y,...,0] + ccd_fields[spi,y,...,1])**2
335 zint = abs(ccd_fields[spi,y,...,2])**2
336 xintmax = np.amax(xint)
337 yintmax = np.amax(yint)
338 zintmax = np.amax(zint)
339 xyintmax = np.amax(xyint)
340 axes[y, 12].imshow(xint, origin="lower", extent=fxye, cmap=abscm, interpolation='none')
341 axes[y, 13].imshow(yint, origin="lower", extent=fxye, cmap=abscm, interpolation='none')
342 axes[y, 14].imshow(xyint, origin="lower", extent=fxye, cmap=abscm, interpolation='none')
343 axes[y, 15].imshow(zint, origin='lower', extent=fxye, cmap=abscm, interpolation='none')
344 axes[y, 12].text(0.5, 0.5, '%g\n%g' % (xintmax,xintmax/e2vmax),
345 horizontalalignment='center', verticalalignment='center', transform=axes[y,12].transAxes)
346 axes[y, 13].text(0.5, 0.5, '%g\n%g' % (yintmax,yintmax/e2vmax),
347 horizontalalignment='center', verticalalignment='center', transform=axes[y,13].transAxes)
348 axes[y, 14].text(0.5, 0.5, '%g\n%g' % (xyintmax,xyintmax/e2vmax),
349 horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes)
350 axes[y, 15].text(0.5, 0.5, '%g\n%g' % (zintmax,zintmax/e2vmax),
351 horizontalalignment='center', verticalalignment='center', transform=axes[y,15].transAxes)
352 for gg in range(12,16):
353 axes[y,gg].yaxis.tick_right()
354 for gg in range(12,15):
355 axes[y,gg].yaxis.set_major_formatter(plt.NullFormatter())
356 fig.text(0, 0, str(slicepairs[spi]), horizontalalignment='left', verticalalignment='bottom')
357 pp.savefig()
358 annotate_pdf_metadata(pp, scriptname="finiterectlat-constant-driving.py")
359 pp.close()
361 exit(0)