1 #LyX 2.4 created this file. For more info see https://www.lyx.org/
5 \save_transient_properties true
8 \use_default_options true
9 \maintain_unincluded_children false
11 \language_package default
14 \font_roman "default" "default"
15 \font_sans "default" "default"
16 \font_typewriter "default" "default"
17 \font_math "auto" "auto"
18 \font_default_family default
19 \use_non_tex_fonts false
23 \font_typewriter_osf false
24 \font_sf_scale 100 100
25 \font_tt_scale 100 100
27 \use_dash_ligatures true
29 \default_output_format default
31 \bibtex_command default
32 \index_command default
33 \float_placement class
34 \float_alignment class
35 \paperfontsize default
40 \use_package amsmath 1
41 \use_package amssymb 1
44 \use_package mathdots 1
45 \use_package mathtools 1
47 \use_package stackrel 1
48 \use_package stmaryrd 1
49 \use_package undertilde 1
51 \cite_engine_type default
55 \paperorientation portrait
67 \paragraph_separation indent
68 \paragraph_indentation default
70 \math_numbering_side default
75 \paperpagestyle default
77 \tracking_changes false
86 \begin_layout Standard
87 \begin_inset CommandInset include
98 T-matrix of an axially symmetric particle
101 \begin_layout Standard
103 \begin_inset CommandInset citation
106 key "kristensson_scattering_2016"
114 R_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,\\
115 Q_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcout_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcout_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,
121 \begin_inset Formula $S_{s}$
124 is the scatterer surface,
125 \begin_inset Formula $\uvec{\nu}$
128 is the outwards pointing unit normal to it, and the subscript
129 \begin_inset Formula $_{1}$
132 refers to the particle inside; then
135 T_{nn'}=-\sum_{n''}R_{nn''}Q_{n''n}^{-1}.\label{eq:T matrix from R and Q}
143 \begin_layout Standard
144 Let us consider the case with full rotational symmetry around the
145 \begin_inset Formula $z$
148 axis and parametrise the integral in terms of polar angle
149 \begin_inset Formula $\theta$
154 \begin_inset Formula $\beta$
157 be the angle between the surface normal
158 \begin_inset Formula $\uvec{\nu}$
161 and the coordinate radial direction
162 \begin_inset Formula $\uvec r$
166 The infinitesimal surface area element is then
169 \ud S\left(\theta\right)=\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta\,\ud\phi
174 and the surface normal in local coordinates
177 \uvec{\nu}\left(\theta\right)=\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right),
182 which also sets a convention for the sign of
183 \begin_inset Formula $\beta$
189 \begin_layout Standard
190 For fully axially symmetric particles the integrals vanish for
191 \begin_inset Formula $m\ne-m'$
195 \begin_inset Formula $e^{i\left(m+m'\right)}$
198 asimuthal factor in the integrand.
202 T_{nn'}=-\sum_{n''}R'_{nn''}Q'_{n''n}^{-1}\label{eq:T-matrix from reduced R and Q}
210 R'_{nn'} & =\int_{0}^{\pi}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\left(\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right)\right)\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta,\\
211 Q'_{nn'} & =\int_{0}^{\pi}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\left(\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right)\right)\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta
217 \begin_inset Formula $\vect r=\vect r\left(\theta\right)=\left(r\left(\theta\right),\theta,0\right)$
222 \begin_inset Formula $Q',R'$
225 differ from the original
226 \begin_inset Formula $R,Q$
230 \begin_inset CommandInset ref
232 reference "eq:T matrix from R and Q"
240 \begin_inset Formula $2\pi ik^{2}$
243 , but this cancels out in the matrix product.
247 \begin_layout Standard
248 \begin_inset Float figure
255 \begin_layout Plain Layout
257 \begin_inset Graphics
258 filename cylinder.png
267 \begin_layout Plain Layout
268 \begin_inset Caption Standard
270 \begin_layout Plain Layout
271 Parametrisation of cylindrical particle surface.
279 \begin_layout Plain Layout
288 \begin_layout Standard
289 For cylindrical particle of radius
290 \begin_inset Formula $R$
294 \begin_inset Formula $h$
297 , we can divide the parametrisation into three intervals
298 \begin_inset Formula $\left(0,\theta_{1}\right),\left(\theta_{1},\theta_{2}\right),\left(\theta_{2},\pi\right)$
302 \begin_inset Formula $\theta_{1}=\tan^{-1}\left(2R/h\right),\theta_{2}=\pi-\tan^{-1}\left(2R/h\right)$
308 \begin_layout Enumerate
309 In the first section,
310 \begin_inset Formula $0<\theta<\theta_{1}$
316 r & =\frac{h}{2\cos\theta},\\
325 \begin_layout Enumerate
326 In the second section,
327 \begin_inset Formula $\theta_{1}<\theta<\theta_{2}$
333 r & =\frac{R}{\cos\left(\theta-\pi/2\right)}=\frac{R}{\sin\theta},\\
334 \beta & =-\theta+\pi/2.
342 \begin_layout Enumerate
343 In the third section,
344 \begin_inset Formula $\theta_{2}<\theta<\pi$
350 r & =\frac{h}{2\cos\left(\theta-\pi\right)}=-\frac{h}{2\cos\theta},\\
351 \beta & =-\theta+\pi.
359 \begin_layout Standard
360 Let's write VSWFs in terms of the power-normalised
361 \begin_inset Formula $p,\pi,\tau$
367 \vsh_{1lm} & =\left(\uvec{\theta}\pi_{lm}-\uvec{\phi}\tau_{lm}\right)e^{im\phi}\\
368 \vsh_{2lm} & =\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)e^{im\phi}\\
369 \vsh_{3lm} & =\sqrt{l\left(l+1\right)}p_{lm}e^{im\theta}
377 \vect y_{\kappa1lm} & =\underbrace{h_{l}^{\kappa}e^{im\phi}}_{c_{\kappa lm}^{1}}\left(\uvec{\theta}\pi_{lm}-\uvec{\phi}\tau_{lm}\right)\\
378 \vect y_{\kappa2lm} & =\frac{1}{kr}e^{im\phi}\left(\frac{\ud\left(krh_{l}^{\kappa}\right)}{\ud\left(kr\right)}\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)+h_{l}^{\kappa}l\left(l+1\right)\uvec rp_{lm}\right)\\
379 & =c_{\kappa lm}^{2}\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)+c_{\kappa lm}^{3}\uvec rp_{lm}
384 The triple products than are (reminder:
385 \begin_inset Formula $\uvec{\nu}\left(\theta\right)=\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right))$
391 \left(\vect y_{\kappa1lm}\times\vect v_{1l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{1}\left(-\pi_{lm}\tau_{l'm'}+\tau_{lm}\pi_{l'm'}\right)\\
392 \left(\vect y_{\kappa1lm}\times\vect v_{2l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{2}\left(\pi_{lm}\pi_{l'm'}+\tau_{lm}\tau_{l'm'}\right)\\
393 & +\sin\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{3}\left(-\tau_{lm}p_{l'm'}\right)\\
394 \left(\vect y_{\kappa2lm}\times\vect v_{1l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{1}\left(-\pi_{lm}\pi_{l'm'}-\tau_{lm}\tau_{l'm'}\right)\\
395 & +\sin\beta c_{\kappa lm}^{3}c_{\mathrm{R}l'm'}^{1}\left(p_{lm}\tau_{l'm'}\right)\\
396 \left(\vect y_{\kappa2lm}\times\vect v_{2l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{2}\left(\tau_{lm}\pi_{l'm'}-\pi_{lm}\tau_{l'm'}\right)\\
397 & -\sin\beta c_{\kappa lm}^{3}c_{\mathrm{R}l'm'}^{2}p_{lm}\pi_{l'm'}\\
398 & +\sin\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{3}\pi_{lm}p_{l'm'}
406 \begin_layout Standard
407 \begin_inset CommandInset bibtex
409 btprint "btPrintCited"
410 bibfiles "Electrodynamics"