1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
7 \usepackage{unicode-math}
9 % Toto je trik, jimž se z fontspec získá familyname pro následující
11 \DeclareExpandableDocumentCommand{\getfamilyname}{m}
13 \use:c { g__fontspec_ \cs_to_str:N #1 _family }
17 % definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše
18 \newfontfamily\MyCyr{CMU Serif}
20 \DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it}
21 \newcommand{\makecyrmathletter}[1]{%
22 \begingroup\lccode`a=#1\lowercase{\endgroup
23 \Umathcode`a}="0 \csname symcyritletters\endcsname\space #1
26 \loop\ifnum\count255<"44F
27 \advance\count255 by 1
28 \makecyrmathletter{\count255}
31 \renewcommand{\lyxmathsym}[1]{#1}
33 \usepackage{polyglossia}
34 \setmainlanguage{english}
35 \setotherlanguage{russian}
36 \newfontfamily\russianfont[Script=Cyrillic]{URW Palladio L}
37 %\newfontfamily\russianfont[Script=Cyrillic]{DejaVu Sans}
39 \use_default_options true
43 \maintain_unincluded_children false
45 \language_package default
48 \font_roman TeX Gyre Pagella
50 \font_typewriter default
52 \font_default_family default
53 \use_non_tex_fonts true
59 \default_output_format pdf4
61 \bibtex_command default
62 \index_command default
66 \pdf_title "Accelerating lattice mode calculations with T-matrix method"
67 \pdf_author "Marek Nečada"
69 \pdf_bookmarksnumbered false
70 \pdf_bookmarksopen false
71 \pdf_bookmarksopenlevel 1
79 \use_package amsmath 2
80 \use_package amssymb 1
83 \use_package mathdots 1
84 \use_package mathtools 1
86 \use_package stackrel 1
87 \use_package stmaryrd 1
88 \use_package undertilde 1
90 \cite_engine_type default
94 \paperorientation portrait
108 \paragraph_separation indent
109 \paragraph_indentation default
110 \quotes_language english
113 \paperpagestyle default
114 \tracking_changes false
115 \output_changes false
118 \html_be_strict false
123 \begin_layout Standard
124 \begin_inset FormulaMacro
125 \newcommand{\uoft}[1]{\mathfrak{F}#1}
129 \begin_inset FormulaMacro
130 \newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
134 \begin_inset FormulaMacro
135 \newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
139 \begin_inset FormulaMacro
140 \newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
144 \begin_inset FormulaMacro
145 \newcommand{\sgn}{\operatorname{sgn}}
150 \begin_inset FormulaMacro
151 \newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
155 \begin_inset FormulaMacro
156 \newcommand{\vect}[1]{\mathbf{#1}}
160 \begin_inset FormulaMacro
161 \newcommand{\ud}{\mathrm{d}}
165 \begin_inset FormulaMacro
166 \newcommand{\basis}[1]{\mathfrak{#1}}
170 \begin_inset FormulaMacro
171 \newcommand{\dc}[1]{Ш_{#1}}
175 \begin_inset FormulaMacro
176 \newcommand{\rec}[1]{#1^{-1}}
180 \begin_inset FormulaMacro
181 \newcommand{\recb}[1]{#1^{\widehat{-1}}}
185 \begin_inset FormulaMacro
186 \newcommand{\ints}{\mathbb{Z}}
190 \begin_inset FormulaMacro
191 \newcommand{\nats}{\mathbb{N}}
195 \begin_inset FormulaMacro
196 \newcommand{\reals}{\mathbb{R}}
200 \begin_inset FormulaMacro
201 \newcommand{\ush}[2]{Y_{#1,#2}}
205 \begin_inset FormulaMacro
206 \newcommand{\hgfr}{\mathbf{F}}
210 \begin_inset FormulaMacro
215 \begin_inset FormulaMacro
216 \newcommand{\ghgf}[2]{\mbox{}_{#1}F_{#2}}
220 \begin_inset FormulaMacro
221 \newcommand{\ghgfr}[2]{\mbox{}_{#1}\mathbf{F}_{#2}}
225 \begin_inset FormulaMacro
226 \newcommand{\ph}{\mathrm{ph}}
230 \begin_inset FormulaMacro
231 \newcommand{\kor}[1]{\underline{#1}}
235 \begin_inset FormulaMacro
236 \newcommand{\koru}[1]{\utilde{#1}}
240 \begin_inset FormulaMacro
241 \newcommand{\swv}{\mathscr{H}}
245 \begin_inset FormulaMacro
246 \newcommand{\expint}{\mathrm{E}}
253 Accelerating lattice mode calculations with
254 \begin_inset Formula $T$
264 \begin_layout Abstract
266 \begin_inset Formula $T$
269 -matrix approach is the method of choice for simulating optical response
270 of a reasonably small system of compact linear scatterers on isotropic
272 However, its direct utilisation for problems with infinite lattices is
273 problematic due to slowly converging sums over the lattice.
274 Here I develop a way to compute the problematic sums in the reciprocal
276 \begin_inset Formula $T$
279 -matrix method very suitable for infinite periodic systems as well.
282 \begin_layout Section
283 Formulation of the problem
286 \begin_layout Standard
287 Assume a system of compact EM scatterers in otherwise homogeneous and isotropic
288 medium, and assume that the system, i.e.
289 both the medium and the scatterers, have linear response.
290 A scattering problem in such system can be written as
293 A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α})
299 \begin_inset Formula $T_{α}$
303 \begin_inset Formula $T$
306 -matrix for scatterer α,
307 \begin_inset Formula $A_{α}$
310 is its vector of the scattered wave expansion coefficient (the multipole
311 indices are not explicitely indicated here) and
312 \begin_inset Formula $P_{α}$
315 is the local expansion of the incoming sources.
317 \begin_inset Formula $S_{α\leftarrowβ}$
325 \begin_layout Standard
329 \begin_layout Standard
332 \sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}.
340 \begin_layout Standard
341 Now suppose that the scatterers constitute an infinite lattice
344 \begin_layout Standard
347 \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}.
352 Due to the periodicity, we can write
353 \begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
357 \begin_inset Formula $T_{\vect aα}=T_{\alpha}$
361 In order to find lattice modes, we search for solutions with zero RHS
364 \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
369 and we assume periodic solution
370 \begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
376 \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
377 \sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
378 \sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
379 A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
384 Therefore, in order to solve the modes, we need to compute the
385 \begin_inset Quotes eld
388 lattice Fourier transform
389 \begin_inset Quotes erd
392 of the translation operator,
395 W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
403 \begin_layout Section
404 Computing the Fourier sum of the translation operator
407 \begin_layout Standard
408 The problem evaluating
409 \begin_inset CommandInset ref
411 reference "eq:W definition"
415 is the asymptotic behaviour of the translation operator,
416 \begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
419 that makes the convergence of the sum quite problematic for any
420 \begin_inset Formula $d>1$
423 -dimensional lattice.
427 \begin_layout Plain Layout
429 \begin_inset Formula $d$
432 here is dimensionality of the lattice, not the space it lies in, which
433 I for certain reasons assume to be three.
434 (TODO few notes on integration and reciprocal lattices in some appendix)
439 In electrostatics, one can solve this problem with Ewald summation.
440 Its basic idea is that if what asymptoticaly decays poorly in the direct
441 space, will perhaps decay fast in the Fourier space.
442 I use the same idea here, but everything will be somehow harder than in
446 \begin_layout Standard
447 Let us re-express the sum in
448 \begin_inset CommandInset ref
450 reference "eq:W definition"
454 in terms of integral with a delta comb
457 \begin_layout Standard
460 W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
465 The translation operator
466 \begin_inset Formula $S$
469 is now a function defined in the whole 3d space;
470 \begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
473 are the displacements of scatterers
474 \begin_inset Formula $\alpha$
478 \begin_inset Formula $\beta$
483 \begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$
487 \begin_inset Quotes eld
490 translation operator for spherical waves originating in
491 \begin_inset Formula $\vect r+\vect r_{\beta}$
495 \begin_inset Formula $\vect r_{\alpha}$
499 \begin_inset Quotes erd
503 \begin_inset Formula $S$
506 is in fact a function of a single 3d argument,
507 \begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
512 \begin_inset CommandInset ref
514 reference "eq:W integral"
521 W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
526 where changed the sign of
527 \begin_inset Formula $\vect r/\vect{\bullet}$
530 has been swapped under integration, utilising evenness of
531 \begin_inset Formula $\dc{\basis u}$
535 Fourier transform of product is convolution of Fourier transforms, so (using
537 \begin_inset CommandInset ref
539 reference "eq:Dirac comb uaFt"
543 for the Fourier transform of Dirac comb)
546 W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
547 & = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
548 & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
549 & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber
555 \begin_inset Note Note
558 \begin_layout Plain Layout
560 \begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$
564 \begin_inset Formula $\left(2\pi\right)^{-\frac{d}{2}}$
567 factor appearing in the convolution/product formula in the unitary angular
574 As such, this is not extremely helpful because the the
579 \begin_inset Formula $S$
582 has singularities in origin, hence its Fourier transform
583 \begin_inset Formula $\uaft S$
590 \begin_layout Standard
591 However, Fourier transform is linear, so we can in principle separate
592 \begin_inset Formula $S$
596 \begin_inset Formula $S=S^{\textup{L}}+S^{\textup{S}}$
601 \begin_inset Formula $S^{\textup{S}}$
604 is a short-range part that decays sufficiently fast with distance so that
605 its direct-space lattice sum converges well;
606 \begin_inset Formula $S^{\textup{S}}$
609 must as well contain all the singularities of
610 \begin_inset Formula $S$
615 \begin_inset Formula $S^{\textup{L}}$
618 , will retain all the slowly decaying terms of
619 \begin_inset Formula $S$
622 but it also has to be smooth enough in the origin, so that its Fourier
624 \begin_inset Formula $\uaft{S^{\textup{L}}}$
628 (The same idea lies behind the Ewald summation in electrostatics.) Using
629 the linearity of Fourier transform and formulae
630 \begin_inset CommandInset ref
632 reference "eq:W definition"
637 \begin_inset CommandInset ref
639 reference "eq:W sum in reciprocal space"
644 \begin_inset Formula $W_{\alpha\beta}$
647 can then be re-expressed as
650 W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
651 W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
652 W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
657 where both sums should converge nicely.
660 \begin_layout Standard
661 \begin_inset Note Note
664 \begin_layout Section
665 Finding a good decomposition – deprecated
668 \begin_layout Plain Layout
669 The remaining challenge is therefore finding a suitable decomposition
670 \begin_inset Formula $S^{\textup{L}}+S^{\textup{S}}$
674 \begin_inset Formula $S^{\textup{S}}$
678 \begin_inset Formula $\uaft{S^{\textup{L}}}$
681 decay fast enough with distance and are expressable analytically.
682 With these requirements, I do not expect to find gaussian asymptotics as
683 in the electrostatic Ewald formula—having
684 \begin_inset Formula $\sim x^{-t}$
688 \begin_inset Formula $t>d$
691 asymptotics would be nice, making the sums in
692 \begin_inset CommandInset ref
694 reference "eq:W Short definition"
699 \begin_inset CommandInset ref
701 reference "eq:W Long definition"
705 absolutely convergent.
708 \begin_layout Plain Layout
709 The translation operator
710 \begin_inset Formula $S$
713 for compact scatterers in 3d can be expressed as
716 S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(k_{0}\left|\vect r\right|\right)
722 \begin_inset Formula $Y_{l,m}\left(\theta,\phi\right)$
725 are the spherical harmonics,
726 \begin_inset Formula $z_{p}^{(J)}\left(r\right)$
729 some of the Bessel or Hankel functions (probably
730 \begin_inset Formula $h_{p}^{(1)}$
733 in all meaningful cases; TODO) and
734 \begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
737 are some ugly but known coefficients (REF Xu 1996, eqs.
742 \begin_layout Plain Layout
743 The spherical Hankel functions can be expressed analytically as
744 \begin_inset CommandInset citation
746 after "10.49.6, 10.49.1"
752 \begin_inset Note Note
755 \begin_layout Plain Layout
756 (REF DLMF 10.49.6, 10.49.1)
764 h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},\label{eq:spherical Hankel function series}
769 so if we find a way to deal with the radial functions
770 \begin_inset Formula $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
774 \begin_inset Formula $q=1,2$
778 \begin_inset Formula $q=1,2,3$
781 in 3d case, we get absolutely convergent summations in the direct space.
784 \begin_layout Subsection
788 \begin_layout Plain Layout
789 Assume that all scatterers are placed in the plane
790 \begin_inset Formula $\vect z=0$
793 , so that the 2d Fourier transform of the long-range part of the translation
794 operator in terms of Hankel transforms, according to
795 \begin_inset CommandInset ref
797 reference "eq:Fourier v. Hankel tf 2d"
804 \begin_layout Plain Layout
807 \uaft{S_{l',m',t'\leftarrow l,m,t}^{\textup{L}}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
808 \sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\frac{\pi}{2},0\right)e^{i(m'-m)\phi}i^{m'-m}\pht{m'-m}{h_{p}^{(1)\textup{L}}\left(k_{0}\vect{\bullet}\right)}\left(\left|\vect k\right|\right)
814 \begin_inset Formula $h_{p}^{(1)\textup{L}}=h_{p}^{(1)}-h_{p}^{(1)\textup{S}}$
817 is a long range part of a given spherical Hankel function which has to
818 be found and which contains all the terms with far-field (
819 \begin_inset Formula $r\to\infty$
822 ) asymptotics proportional to
823 \begin_inset Formula $\sim e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
827 \begin_inset Formula $q\le Q$
831 \begin_inset Formula $Q$
834 is at least two in order to achieve absolute convergence of the direct-space
835 sum, but might be higher in order to speed the convergence up.
838 \begin_layout Plain Layout
839 Obviously, all the terms
840 \begin_inset Formula $\propto s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
844 \begin_inset Formula $q>Q$
847 of the spherical Hankel function
848 \begin_inset CommandInset ref
850 reference "eq:spherical Hankel function series"
854 can be kept untouched as part of
855 \begin_inset Formula $h_{p}^{(1)\textup{S}}$
858 , as they decay fast enough.
861 \begin_layout Plain Layout
862 The remaining task is therefore to find a suitable decomposition of
863 \begin_inset Formula $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
867 \begin_inset Formula $q\le Q$
870 into short-range and long-range parts,
871 \begin_inset Formula $s_{k_{0},q}(r)=s_{k_{0},q}^{\textup{S}}(r)+s_{k_{0},q}^{\textup{L}}(r)$
875 \begin_inset Formula $s_{k_{0},q}^{\textup{L}}(r)$
878 contains all the slowly decaying asymptotics and its Hankel transforms
879 decay desirably fast as well,
880 \begin_inset Formula $\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=o(z^{-Q})$
884 \begin_inset Formula $z\to\infty$
888 The latter requirement calls for suitable regularisation functions—
889 \begin_inset Formula $s_{q}^{\textup{L}}$
892 must be sufficiently smooth in the origin, so that
895 \pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=\int_{0}^{\infty}s_{k_{0},q}^{\textup{L}}\left(r\right)rJ_{n}\left(kr\right)\ud r=\int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho\left(r\right)rJ_{n}\left(kr\right)\ud r\label{eq:2d long range regularisation problem statement}
900 exists and decays fast enough.
902 \begin_inset Formula $J_{\nu}(r)\sim\left(r/2\right)^{\nu}/\Gamma\left(\nu+1\right)$
905 (REF DLMF 10.7.3) near the origin, so the regularisation function should
907 \begin_inset Formula $\rho(r)=o(r^{q-n-1})$
911 \begin_inset Formula $\pht n{s_{q}^{\textup{L}}}$
915 The additional decay speed requirement calls for at least
916 \begin_inset Formula $\rho(r)=o(r^{q-n+Q-1})$
921 \begin_inset Formula $\rho(r)$
924 must converge fast enough to one for
925 \begin_inset Formula $r\to\infty$
931 \begin_layout Plain Layout
932 The electrostatic Ewald summation uses regularisation with
933 \begin_inset Formula $1-e^{-cr^{2}}$
937 However, such choice does not seem to lead to an analytical solution (really?
938 could not something be dug out of DLMF 10.22.54?) for the current problem
940 \begin_inset CommandInset ref
942 reference "eq:2d long range regularisation problem statement"
947 But it turns out that the family of functions
950 \rho_{\kappa,c}(r)\equiv\left(1-e^{-cr}\right)^{\text{\kappa}},\quad c>0,\kappa\in\nats\label{eq:binom regularisation function}
955 might lead to satisfactory results; see below.
958 \begin_layout Plain Layout
959 \begin_inset Note Note
962 \begin_layout Plain Layout
963 In natural/dimensionless units;
964 \begin_inset Formula $x=k_{0}r$
968 \begin_inset Formula $\tilde{k}=k/k_{0}$
972 \begin_inset Formula $č=c/k_{0}$
978 s_{q}(x)\equiv e^{ix}x^{-q}
986 \tilde{\rho}_{\kappa,č}(x)\equiv\left(1-e^{-čx}\right)^{\text{\kappa}}=\left(1-e^{-\frac{c}{k_{0}}k_{0}r}\right)^{\kappa}=\left(1-e^{-cr}\right)^{\kappa}=\rho_{\kappa,c}(r)
994 s_{q}^{\textup{L}}\left(x\right)\equiv s_{q}(x)\tilde{\rho}_{\kappa,č}(x)=e^{ix}x^{-q}\left(1-e^{-čx}\right)^{\text{\kappa}}
1000 \begin_inset Formula
1002 \pht n{s_{q}^{\textup{L}}}\left(\tilde{k}\right) & = & \int_{0}^{\infty}s_{q}^{\textup{L}}\left(x\right)xJ_{n}\left(\tilde{k}x\right)\ud x=\int_{0}^{\infty}s_{q}\left(x\right)\tilde{\rho}_{\kappa,č}(x)xJ_{n}\left(\tilde{k}x\right)\ud x\\
1003 & = & \int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho_{\kappa,c}(r)\left(k_{0}r\right)J_{n}\left(kr\right)\ud\left(k_{0}r\right)\\
1004 & = & k_{0}^{2}\int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho_{\kappa,c}(r)rJ_{n}\left(kr\right)\ud r\\
1005 & = & k_{0}^{2}\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)
1018 \begin_layout Plain Layout
1019 \begin_inset Note Note
1022 \begin_layout Plain Layout
1023 Another analytically feasible possibility could be
1024 \begin_inset Formula
1026 \rho_{p}^{\textup{ig.}}\equiv e^{-p/x^{2}}.\label{eq:inverse gaussian regularisation function}
1034 \begin_layout Plain Layout
1035 Nope, propably did not work.
1043 \begin_layout Subsubsection
1044 Hankel transforms of the long-range parts, „binomial“ regularisation
1045 \begin_inset CommandInset label
1047 name "sub:Hankel-transforms-binom-reg"
1054 \begin_layout Plain Layout
1056 \begin_inset Note Note
1059 \begin_layout Plain Layout
1060 \begin_inset Formula $\rho_{\kappa,c}$
1064 \begin_inset CommandInset ref
1066 reference "eq:binom regularisation function"
1070 serve as the regularisation fuction and
1078 \begin_layout Plain Layout
1079 \begin_inset Formula
1081 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & \equiv & \int_{0}^{\infty}\frac{e^{ik_{0}r}}{\left(k_{0}r\right)^{q}}J_{n}\left(kr\right)\left(1-e^{-cr}\right)^{\kappa}r\,\ud r\nonumber \\
1082 & = & k_{0}^{-q}\int_{0}^{\infty}r^{1-q}J_{n}\left(kr\right)\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}e^{-(\sigma c-ik_{0})r}\ud r\nonumber \\
1083 & \underset{\equiv}{\textup{form.}} & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\pht n{s_{q,k_{0}}^{\textup{L}1,\sigma c}}\left(k\right).\label{eq:2D Hankel transform of regularized outgoing wave, decomposition}
1089 \begin_inset Note Note
1092 \begin_layout Plain Layout
1099 \begin_inset CommandInset citation
1107 \begin_inset Note Note
1110 \begin_layout Plain Layout
1111 \begin_inset Formula
1113 \mu & \leftarrow & 2-q\\
1114 \nu & \leftarrow & n\\
1115 b & \leftarrow & k\\
1116 a & \leftarrow & c-ik_{0}
1127 \begin_inset Formula
1129 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right),\\
1130 \Re\left(2-q+n\right)>0,\Re(c-ik_{0}\pm k)\ge0,\label{eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1}
1135 and using [REF DLMF 15.9.17] and
1136 \begin_inset Note Note
1139 \begin_layout Plain Layout
1140 \begin_inset Formula $P_{\nu}^{\mu}=P_{-\nu-1}^{\mu}$
1149 \begin_inset CommandInset citation
1157 \begin_inset Note Note
1160 \begin_layout Plain Layout
1169 \begin_layout Plain Layout
1170 \begin_inset Note Note
1173 \begin_layout Plain Layout
1174 \begin_inset Formula
1176 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
1177 \mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1\\
1185 \begin_layout Plain Layout
1186 \begin_inset Formula
1188 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
1189 \mbox{(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\
1190 & & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
1191 \frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\
1193 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
1194 & - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
1195 \frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\
1197 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
1198 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\
1199 & & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c}
1200 \frac{2-q+n}{2},\frac{2-q-n}{2}\\
1202 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
1203 & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c}
1204 \frac{3-q+n}{2},\frac{3-q-n}{2}\\
1206 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
1207 \mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\
1208 & & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\
1209 & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\
1210 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
1211 & & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\
1212 & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\
1213 \mbox{} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
1214 & & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\
1215 & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\
1216 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\
1217 & & \times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
1218 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\kor{\left(\sigma c-ik_{0}\right)^{2s}}c_{q,n,s}-\frac{\left(\sigma c-ik_{0}\right)^{2s+1}}{k}č_{q,n,s}\right)\\
1219 \mbox{(binom.)} & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1220 \mbox{(conds?)} & = & \frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1222 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
1224 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
1229 now the Stirling number of the 2nd kind
1230 \begin_inset Formula $\begin{Bmatrix}t\\
1236 \begin_inset Formula $\kappa>t$
1242 \begin_layout Plain Layout
1243 What about the gamma fn on the left? Using DLMF 5.5.5, which says
1244 \begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$
1248 \begin_inset Formula
1250 \text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
1256 \begin_inset Formula
1258 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1260 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
1262 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1263 & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1265 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
1267 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1268 \mbox{(D5.2.5)} & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1270 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}+s\right)\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
1272 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
1277 The two terms have to be treated fifferently depending on whether q
1278 \begin_inset Formula $q+n$
1285 \begin_layout Plain Layout
1287 \begin_inset Formula $q+n$
1290 is even, so the left term has gamma functions and pochhammer symbols with
1291 integer arguments, while the right one has half-integer arguments.
1293 \begin_inset Formula $n$
1297 \begin_inset Formula $q$
1301 \begin_inset Formula $\frac{q+n}{2}$
1304 is positive, and the Pochhammer symbol
1305 \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
1309 \begin_inset Formula $s\ge\frac{q+n}{2}$
1312 , which transforms the sum over
1313 \begin_inset Formula $s$
1316 to a finite sum for the left term.
1317 However, there still remain divergent terms if
1318 \begin_inset Formula $\frac{2-q+n}{2}+s\le0$
1321 (let's handle this later; maybe D15.8.6–7 may be then be useful)! Now we
1322 need to perform some transformations of variables to make the other sum
1326 \begin_layout Plain Layout
1328 \begin_inset Formula
1330 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
1331 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
1339 \begin_layout Plain Layout
1341 \begin_inset Formula $q+n$
1345 \begin_inset Formula $2-q+n\le0$
1349 \begin_inset Formula
1351 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\hgfr}\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
1352 \mbox{(D15.1.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)\koru{\text{Γ}(1+n)}}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\koru{\hgf}\left(\frac{2-q+n}{2},\kor{\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}\right)\\
1353 \mbox{(D15.8.6)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\koru{\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}}\hgf\left(\begin{array}{c}
1354 \frac{2-q+n}{2},\koru{\kor{1-\left(1+n\right)+\frac{2-q+n}{2}}}\\
1355 \koru{\kor{1-\frac{3-q+n}{2}+\frac{2-q+n}{2}}}
1356 \end{array};\koru{\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}}\right)\\
1357 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{k^{q-2}}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\koru{\frac{3}{2}\left(2-q+n\right)}}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
1358 \frac{2-q+n}{2},\koru{\frac{2-q-n}{2}}\\
1360 \end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\\
1361 \mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}}\\
1362 \mbox{(D5.5.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{3-q+n}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1363 \mbox{(D5.2.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\koru{2^{1-q}}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1364 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1365 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
1371 \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
1375 \begin_inset Formula $s\ge\frac{q+n}{2}$
1379 \begin_inset Formula $\text{Γ}\left(\frac{2-q+n}{2}+s\right)$
1382 is singular whenever
1383 \begin_inset Formula $s\le-\frac{2-q+n}{2}$
1386 , so we are no less fucked than before.
1387 Maybe let's try the other variable transformation.
1388 Or what about (D15.8.27)?
1389 \begin_inset Formula
1391 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
1392 \frac{2-q+n}{2},\frac{2-q-n}{2}\\
1394 \end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\\
1395 \mbox{(D15.8.27)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\frac{\kor{Γ\left(\frac{3-q+n}{2}\right)}Γ\left(\frac{3-q-n}{2}\right)}{2Γ\left(\frac{1}{2}\right)Γ\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
1398 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
1401 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\\
1402 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\text{Γ}\koru{\left(\frac{3-q+n}{2}-\frac{2-q+n}{2}\right)}}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\kor{\text{Γ}\left(\frac{1}{2}\right)}\text{Γ}\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
1405 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
1408 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)\\
1409 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\kor{\left(\hgf\left(\begin{array}{c}
1412 \end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
1415 \end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\\
1416 \mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\koru{\sum_{s=0}^{\infty}\left(\frac{\left(2-q+n\right)_{s}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\kor{\left(\left(\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)^{s}+\left(\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)^{s}\right)}\right)}\\
1417 \mbox{(binom)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\kor{\left(2-q+n\right)_{s}}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\koru{\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)}\\
1418 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\kor{\left(1+n\right)_{-\frac{2-q+n}{2}}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(2-q+n+s\right)}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1419 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}}\frac{\koru{\text{Γ}\left(1+n\right)}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\koru{\text{Γ}\left(\frac{q+n}{2}\right)}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1420 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{Γ\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}}\koru{\kor{\left(\sigma c-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)}}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1421 (bionm) & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\koru{\sum_{w=0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1422 & = & \koru{\kappa!\left(-1\right)^{\kappa}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kor 0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kor 0}^{s}\binom{\kor s}{\kor r}\left(ik\right)^{-r}\sum_{w=\kor 0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{\kor w}\koru{\kor{\begin{Bmatrix}w\\
1424 \end{Bmatrix}}}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1425 & = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\koru{\kappa}}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\koru{\kappa}}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\koru{\kappa}}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
1427 \end{Bmatrix}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1428 & = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kappa}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kappa}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\kappa}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
1430 \end{Bmatrix}c^{w}\left(-ik_{0}^{r-\frac{3}{2}\left(2-q+n\right)-w}\right)2^{r-s}\left(\left(-1\right)^{r}+1\right)
1438 \begin_layout Plain Layout
1439 The previous things are valid only if
1440 \begin_inset Formula $q$
1443 has a small non-integer part,
1444 \begin_inset Formula $q=q'+\varepsilon$
1448 They might still play a role in the series (especially in the infinite
1449 ones) when taking the limit
1450 \begin_inset Formula $\varepsilon\to0$
1454 However, we got rid of the singularities in
1455 \begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
1459 \begin_inset Formula $\kappa$
1465 \begin_layout Plain Layout
1466 and we get same shit as before due to the singular
1467 \begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
1472 \begin_inset Formula
1474 (...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\kor{\left(\left(-1\right)^{r}+1\right)}\\
1475 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{\koru{floor(s/2)}}\binom{s}{\koru{2r}}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{\koru{2r}}2^{\koru{2r}-s}\left(\left(-1\right)^{\koru{2r}}+1\right)
1481 \begin_inset Formula
1483 (...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1484 binom & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}\sum_{b=0}^{r}\binom{r}{b}\sigma^{b}c^{b}\left(-ik_{0}\right)^{r-b}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
1493 \begin_layout Plain Layout
1496 \begin_inset Formula $q$
1500 \begin_inset Formula
1502 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
1503 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}k^{-2s}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
1511 \begin_layout Plain Layout
1512 \begin_inset Formula
1514 & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1516 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
1518 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
1519 & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
1521 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
1523 \end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
1534 \begin_inset Note Note
1537 \begin_layout Plain Layout
1538 \begin_inset Formula
1540 a & \leftarrow & \frac{2-q+n}{2}\\
1541 c & \leftarrow & 1+n\\
1542 z & \leftarrow & \frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}
1548 \begin_inset Formula
1550 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right) & = & \frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}2^{n}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1-\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right)^{-\frac{2-q+n}{2}+\frac{n}{2}}P_{2-q+n-(1+n)}^{1-(1+n)}\left(\frac{1}{\sqrt{1-\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)}}\right)\\
1551 & = & \frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{1-q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right)
1557 \begin_inset Formula
1559 \left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|<\pi,\quad\left|\ph\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right|<\pi
1564 in other words, neither
1565 \begin_inset Formula $-k^{2}/\left(c-ik_{0}\right)^{2}$
1569 \begin_inset Formula $1+k^{2}/\left(c-ik_{0}\right)^{2}$
1572 can be non-positive real number.
1573 For assumed positive
1574 \begin_inset Formula $k_{0}$
1578 \begin_inset Formula $c$
1582 \begin_inset Formula $k$
1585 , the former case can happen only if
1586 \begin_inset Formula $k=0$
1589 and the latter only if
1590 \begin_inset Formula $c=0\wedge k_{0}=k$
1595 \begin_inset Formula
1597 \left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|<\pi & \Leftrightarrow & \left|\ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right|\neq\pi\\
1598 \varphi & \equiv & \ph\left(c-ik_{0}\right)<0,\\
1599 \ph k & \equiv & 0\\
1600 \ph\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}} & = & 2\varphi\\
1601 \rightsquigarrow\left|\varphi\right| & \neq & \pi/2\\
1602 \rightsquigarrow c & \neq & k_{0}\\
1603 \left|\ph\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)\right| & = & \left|-2\varphi+\ph\left(\left(c-ik_{0}\right)^{2}+k^{2}\right)\right|
1608 Finally, swapping the first two arguments of
1609 \begin_inset Formula $\hgfr$
1612 in the hypergeometric represenation [REF DLMF 14.3.6] (note [REF DLMF §14.21(iii)]
1613 that this also holds for complex arguments) of Legendre functions gives
1615 \begin_inset Formula $P_{\nu}^{\mu}=P_{-\nu-1}^{\mu}$
1618 , so the above result can be written
1619 \begin_inset Formula
1621 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}\text{Γ}\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right).
1626 Let's polish it a bit more
1627 \begin_inset Formula
1629 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right) & = & \frac{Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q}}\left(-1\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right)\\
1630 & = & \frac{\text{Γ}\left(2-q+n\right)}{k_{0}^{q}}\left(-1\right)^{-\frac{n}{2}}\left(\left(c-ik_{0}\right)^{2}+k^{2}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right).
1643 \begin_inset Formula
1645 \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\
1646 k>0\wedge k_{0}>0\wedge c\ge0\wedge\lnot\left(c=0\wedge k_{0}=k\right)\label{eq:2D Hankel transform of exponentially suppressed outgoing wave expanded}
1653 with principal branches of the hypergeometric functions, associated Legendre
1654 functions, and fractional powers.
1656 \begin_inset CommandInset ref
1658 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1"
1662 should hold, but we will use
1663 \begin_inset CommandInset ref
1665 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
1669 formally even if they are violated, with the hope that the divergences
1670 eventually cancel in
1671 \begin_inset CommandInset ref
1673 reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
1680 \begin_layout Plain Layout
1681 \begin_inset Note Note
1684 \begin_layout Plain Layout
1686 \begin_inset Formula
1688 \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}}\right)\\
1689 & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}}\right)
1699 One problematic element here is the gamma function
1700 \begin_inset Formula $\text{Γ}\left(2-q+n\right)$
1703 which is singular if the argument is zero or negative integer, i.e.
1705 \begin_inset Formula $q-n\ge2$
1708 ; which is painful especially because of the case
1709 \begin_inset Formula $q=2,n=0$
1713 The associated Legendre function can be expressed as a finite
1714 \begin_inset Quotes eld
1718 \begin_inset Quotes erd
1722 \begin_inset Formula $q\ge n$
1726 In other cases, different expressions can be obtained from
1727 \begin_inset CommandInset ref
1729 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1"
1733 using various transformation formulae from either DLMF or
1737 \begin_layout Plain Layout
1750 \begin_layout Plain Layout
1763 \begin_layout Plain Layout
1764 In fact, Mathematica is usually able to calculate the transforms for specific
1766 \begin_inset Formula $\kappa,q,n$
1769 , but it did not find any general formula for me.
1770 The resulting expressions are finite sums of algebraic functions, Table
1772 \begin_inset CommandInset ref
1774 reference "tab:Asymptotical-behaviour-Mathematica"
1778 shows how fast they decay with growing
1779 \begin_inset Formula $k$
1782 for some parameters.
1783 One particular case where Mathematica did not help at all is
1784 \begin_inset Formula $q=2,n=0$
1787 , which is unfortunately important.
1791 \begin_layout Plain Layout
1792 \begin_inset Float table
1797 \begin_layout Plain Layout
1801 \begin_inset Tabular
1802 <lyxtabular version="3" rows="4" columns="5">
1803 <features rotate="0" tabularvalignment="middle">
1804 <column alignment="center" valignment="top">
1805 <column alignment="center" valignment="top">
1806 <column alignment="center" valignment="top">
1807 <column alignment="center" valignment="top">
1808 <column alignment="center" valignment="top">
1810 <cell multicolumn="1" alignment="center" valignment="top" rightline="true" usebox="none">
1813 \begin_layout Plain Layout
1816 \begin_inset Formula $\kappa=0$
1824 <cell multicolumn="2" alignment="center" valignment="top" rightline="true" usebox="none">
1827 \begin_layout Plain Layout
1833 <cell alignment="center" valignment="top" usebox="none">
1836 \begin_layout Plain Layout
1842 <cell alignment="center" valignment="top" usebox="none">
1845 \begin_layout Plain Layout
1848 \begin_inset Formula $n$
1856 <cell alignment="center" valignment="top" usebox="none">
1859 \begin_layout Plain Layout
1867 <cell multicolumn="1" alignment="center" valignment="top" bottomline="true" usebox="none">
1870 \begin_layout Plain Layout
1876 <cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none">
1879 \begin_layout Plain Layout
1885 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
1888 \begin_layout Plain Layout
1896 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
1899 \begin_layout Plain Layout
1907 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
1910 \begin_layout Plain Layout
1920 <cell multirow="3" alignment="center" valignment="middle" usebox="none">
1923 \begin_layout Plain Layout
1926 \begin_inset Formula $q$
1934 <cell alignment="center" valignment="top" rightline="true" usebox="none">
1937 \begin_layout Plain Layout
1945 <cell alignment="center" valignment="top" usebox="none">
1948 \begin_layout Plain Layout
1956 <cell alignment="center" valignment="top" usebox="none">
1959 \begin_layout Plain Layout
1967 <cell alignment="center" valignment="top" usebox="none">
1970 \begin_layout Plain Layout
1980 <cell multirow="4" alignment="center" valignment="top" usebox="none">
1983 \begin_layout Plain Layout
1989 <cell alignment="center" valignment="top" rightline="true" usebox="none">
1992 \begin_layout Plain Layout
2000 <cell alignment="center" valignment="top" usebox="none">
2003 \begin_layout Plain Layout
2011 <cell alignment="center" valignment="top" usebox="none">
2014 \begin_layout Plain Layout
2022 <cell alignment="center" valignment="top" usebox="none">
2025 \begin_layout Plain Layout
2039 \begin_inset space \hspace*{\fill}
2043 \begin_inset Tabular
2044 <lyxtabular version="3" rows="4" columns="7">
2045 <features rotate="0" tabularvalignment="middle">
2046 <column alignment="center" valignment="top">
2047 <column alignment="center" valignment="top">
2048 <column alignment="center" valignment="top">
2049 <column alignment="center" valignment="top">
2050 <column alignment="center" valignment="top">
2051 <column alignment="center" valignment="top">
2052 <column alignment="center" valignment="top">
2054 <cell multicolumn="1" alignment="center" valignment="top" rightline="true" usebox="none">
2057 \begin_layout Plain Layout
2060 \begin_inset Formula $\kappa=1$
2068 <cell multicolumn="2" alignment="center" valignment="top" rightline="true" usebox="none">
2071 \begin_layout Plain Layout
2077 <cell multicolumn="1" alignment="center" valignment="top" usebox="none">
2080 \begin_layout Plain Layout
2083 \begin_inset Formula $n$
2091 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2094 \begin_layout Plain Layout
2100 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2103 \begin_layout Plain Layout
2109 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2112 \begin_layout Plain Layout
2118 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2121 \begin_layout Plain Layout
2129 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2132 \begin_layout Plain Layout
2138 <cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none">
2141 \begin_layout Plain Layout
2147 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2150 \begin_layout Plain Layout
2158 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2161 \begin_layout Plain Layout
2169 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2172 \begin_layout Plain Layout
2180 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2183 \begin_layout Plain Layout
2191 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2194 \begin_layout Plain Layout
2204 <cell multirow="3" alignment="center" valignment="middle" usebox="none">
2207 \begin_layout Plain Layout
2210 \begin_inset Formula $q$
2218 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2221 \begin_layout Plain Layout
2229 <cell alignment="center" valignment="top" usebox="none">
2232 \begin_layout Plain Layout
2240 <cell alignment="center" valignment="top" usebox="none">
2243 \begin_layout Plain Layout
2251 <cell alignment="center" valignment="top" usebox="none">
2254 \begin_layout Plain Layout
2262 <cell alignment="center" valignment="top" usebox="none">
2265 \begin_layout Plain Layout
2273 <cell alignment="center" valignment="top" usebox="none">
2276 \begin_layout Plain Layout
2286 <cell multirow="4" alignment="center" valignment="top" usebox="none">
2289 \begin_layout Plain Layout
2295 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2298 \begin_layout Plain Layout
2306 <cell alignment="center" valignment="top" usebox="none">
2309 \begin_layout Plain Layout
2317 <cell alignment="center" valignment="top" usebox="none">
2320 \begin_layout Plain Layout
2328 <cell alignment="center" valignment="top" usebox="none">
2331 \begin_layout Plain Layout
2339 <cell alignment="center" valignment="top" usebox="none">
2342 \begin_layout Plain Layout
2350 <cell alignment="center" valignment="top" usebox="none">
2353 \begin_layout Plain Layout
2367 \begin_inset space \hspace*{\fill}
2371 \begin_inset Tabular
2372 <lyxtabular version="3" rows="4" columns="7">
2373 <features rotate="0" tabularvalignment="middle">
2374 <column alignment="center" valignment="top">
2375 <column alignment="center" valignment="top">
2376 <column alignment="center" valignment="top">
2377 <column alignment="center" valignment="top">
2378 <column alignment="center" valignment="top">
2379 <column alignment="center" valignment="top">
2380 <column alignment="center" valignment="top">
2382 <cell multicolumn="1" alignment="center" valignment="top" rightline="true" usebox="none">
2385 \begin_layout Plain Layout
2388 \begin_inset Formula $\kappa=2$
2396 <cell multicolumn="2" alignment="center" valignment="top" rightline="true" usebox="none">
2399 \begin_layout Plain Layout
2405 <cell multicolumn="1" alignment="center" valignment="top" usebox="none">
2408 \begin_layout Plain Layout
2411 \begin_inset Formula $n$
2419 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2422 \begin_layout Plain Layout
2428 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2431 \begin_layout Plain Layout
2437 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2440 \begin_layout Plain Layout
2446 <cell multicolumn="2" alignment="center" valignment="top" usebox="none">
2449 \begin_layout Plain Layout
2457 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2460 \begin_layout Plain Layout
2466 <cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none">
2469 \begin_layout Plain Layout
2475 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2478 \begin_layout Plain Layout
2486 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2489 \begin_layout Plain Layout
2497 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2500 \begin_layout Plain Layout
2508 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2511 \begin_layout Plain Layout
2519 <cell alignment="center" valignment="top" bottomline="true" usebox="none">
2522 \begin_layout Plain Layout
2532 <cell multirow="3" alignment="center" valignment="middle" usebox="none">
2535 \begin_layout Plain Layout
2538 \begin_inset Formula $q$
2546 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2549 \begin_layout Plain Layout
2557 <cell alignment="center" valignment="top" usebox="none">
2560 \begin_layout Plain Layout
2568 <cell alignment="center" valignment="top" usebox="none">
2571 \begin_layout Plain Layout
2579 <cell alignment="center" valignment="top" usebox="none">
2582 \begin_layout Plain Layout
2590 <cell alignment="center" valignment="top" usebox="none">
2593 \begin_layout Plain Layout
2601 <cell alignment="center" valignment="top" usebox="none">
2604 \begin_layout Plain Layout
2614 <cell multirow="4" alignment="center" valignment="top" usebox="none">
2617 \begin_layout Plain Layout
2623 <cell alignment="center" valignment="top" rightline="true" usebox="none">
2626 \begin_layout Plain Layout
2634 <cell alignment="center" valignment="top" usebox="none">
2637 \begin_layout Plain Layout
2645 <cell alignment="center" valignment="top" usebox="none">
2648 \begin_layout Plain Layout
2656 <cell alignment="center" valignment="top" usebox="none">
2659 \begin_layout Plain Layout
2667 <cell alignment="center" valignment="top" usebox="none">
2670 \begin_layout Plain Layout
2678 <cell alignment="center" valignment="top" usebox="none">
2681 \begin_layout Plain Layout
2697 \begin_layout Plain Layout
2698 \begin_inset Caption Standard
2700 \begin_layout Plain Layout
2701 Asymptotical behaviour of some
2702 \begin_inset CommandInset ref
2704 reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
2708 obtained by Mathematica for
2709 \begin_inset Formula $k\to\infty$
2713 The table entries are the
2714 \begin_inset Formula $N$
2718 \begin_inset Formula $\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=o\left(1/k^{N}\right)$
2723 \begin_inset Quotes eld
2727 \begin_inset Quotes erd
2730 means that Mathematica was not able to calculate the integral, and
2731 \begin_inset Quotes eld
2735 \begin_inset Quotes erd
2738 denotes that the first returned term was not simply of the kind
2739 \begin_inset Formula $(\ldots)k^{-N-1}$
2743 \begin_inset CommandInset label
2745 name "tab:Asymptotical-behaviour-Mathematica"
2760 \begin_inset Note Note
2763 \begin_layout Plain Layout
2767 \begin_layout Plain Layout
2780 \begin_layout Plain Layout
2789 6.512.1 has expression for
2790 \begin_inset Formula $\int_{0}^{\infty}J_{\mu}\left(ax\right)J_{\nu}\left(bx\right)\ud x$
2794 \begin_inset Formula $\Re\left(\mu+\nu\right)>-1$
2797 in terms of hypergeometric function.
2798 Unfortunately, no corresponding and general enough expression for
2799 \begin_inset Formula $\int_{0}^{\infty}J_{\mu}\left(ax\right)Y_{\nu}\left(bx\right)\ud x$
2810 \begin_layout Paragraph
2812 \begin_inset Formula $n=0,q=2$
2818 \begin_layout Plain Layout
2819 As shown in a separate note,
2822 \begin_layout Plain Layout
2823 \begin_inset Formula
2825 \pht 0{s_{2,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=-\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{1}{k_{0}^{2}}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)
2831 \begin_inset Formula $\kappa\ge?$
2835 \begin_inset Formula $k>k_{0}?$
2841 \begin_layout Paragraph
2843 \begin_inset Formula $n=1,q=3$
2849 \begin_layout Plain Layout
2850 As shown in separate note (check whether copied correctly)
2851 \begin_inset Formula
2853 \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right)=-\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}-ik\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{2k_{0}^{3}}
2859 \begin_inset Formula $\kappa\ge3$
2863 \begin_inset Formula $k>k_{0}?$
2869 \begin_layout Paragraph
2871 \begin_inset Formula $n=0,q=3$
2877 \begin_layout Plain Layout
2878 As shown in separate note (check whether copied correctly)
2881 \begin_inset Note Note
2884 \begin_layout Plain Layout
2887 Sum[((-1)^(1 + sig)*(k*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] + (k0 + I*c*sig)*ArcSi
2888 n[(k0 + I*c*sig)/k])*Binomial[kap, sig])/k0^3, {sig, 0, kap}]
2894 \begin_inset Formula
2896 \pht 0{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}+\left(k_{0}+ic\sigma\right)\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{k_{0}^{3}}
2904 \begin_inset Formula $\kappa\ge2$
2908 \begin_inset Formula $k>k_{0}?$
2914 \begin_layout Plain Layout
2915 \begin_inset Note Note
2918 \begin_layout Plain Layout
2919 From Wikipedia page on binomial coefficient, eq.
2923 \begin_layout Plain Layout
2925 \begin_inset Formula $P(x)$
2928 is of degree less than or equal to
2929 \begin_inset Formula $n$
2933 \begin_inset Formula
2935 \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}P(n-j)=n!a_{n}
2941 \begin_inset Formula $a_{n}$
2944 is the coefficient of degree
2945 \begin_inset Formula $n$
2949 \begin_inset Formula $P(x)$
2955 \begin_layout Plain Layout
2957 \begin_inset Formula
2959 \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}P(m+(n-j)d)=d^{n}n!a_{n}
2965 \begin_inset Formula $m$
2969 \begin_inset Formula $d$
2972 are complex numbers.
2978 \begin_inset Note Note
2981 \begin_layout Subsubsection
2982 Hankel transforms of the long-range parts, alternative regularisation with
2984 \begin_inset Formula $e^{-p/x^{2}}$
2988 \begin_inset CommandInset label
2990 name "sub:Hankel-transforms-ig-reg"
2997 \begin_layout Plain Layout
3002 \begin_layout Plain Layout
3015 \begin_layout Plain Layout
3025 \begin_inset Formula
3027 \int_{0}^{\infty}x^{\alpha-1}e^{-p/x^{2}}J_{\nu}\left(cx\right)\,\ud x=\frac{2^{\alpha-1}}{c^{\alpha}}Γ\begin{bmatrix}\left(\alpha+\nu\right)/2\\
3028 1+\left(\nu-\alpha\right)/2
3029 \end{bmatrix}{}_{0}F_{2}\left(1-\frac{\nu+\alpha}{2},1+\frac{\nu-\alpha}{2};\frac{c^{2}p}{4}\right)\\
3030 +\frac{c^{\nu}p^{\left(\alpha+\nu\right)/2}}{2^{\nu+1}}\text{Γ}\begin{bmatrix}\left(\alpha+\nu\right)/2\\
3032 \end{bmatrix}{}_{0}F_{2}\left(1+\frac{\nu+\alpha}{2},\nu+1;\frac{c^{2}p}{4}\right),\qquad[c,\Re p>0;\Re\alpha<3/2].\label{eq:prudnikov2 eq 2.12.9.14}
3038 \begin_inset Formula $\rho_{p}^{\textup{ig.}}$
3042 \begin_inset CommandInset ref
3044 reference "eq:inverse gaussian regularisation function"
3048 serve as the regularisation fuction and
3049 \begin_inset Formula
3051 \pht n{s_{q,k_{0}}^{\textup{L}'p}}\left(k\right)\equiv\int_{0}^{\infty}\frac{e^{ik_{0}r}}{\left(k_{0}r\right)^{q}}J_{n}\left(kr\right)e^{-p/r^{2}}r\,\ud r.
3056 And it seems that this is a dead-end, because
3057 \begin_inset CommandInset ref
3059 reference "eq:prudnikov2 eq 2.12.9.14"
3063 cannot deal with the
3064 \begin_inset Formula $e^{ik_{0}r}$
3076 \begin_layout Subsection
3080 \begin_layout Plain Layout
3081 \begin_inset Formula
3083 \uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
3084 \sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect k},\phi_{\vect k}\right)\left(-i\right)^{p}\usht p{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
3097 \begin_layout Section
3098 Exponentially converging decompositions
3101 \begin_layout Standard
3102 (As in Linton, Thompson, Journal of Computational Physics 228 (2009) 1815–1829
3104 \begin_inset CommandInset citation
3106 key "linton_one-_2009"
3113 \begin_layout Standard
3114 \begin_inset Note Note
3117 \begin_layout Plain Layout
3124 \begin_inset CommandInset citation
3126 key "linton_one-_2009"
3130 offers an exponentially convergent decomposition.
3132 \begin_inset Formula
3134 \sigma_{n}^{m}\left(\vect{\beta}\right) & = & \sum_{\vect R\in\Lambda}^{'}e^{i\vect{\beta}\cdot\vect R}\swv_{n}^{m}\left(\vect R\right),\\
3135 \swv_{n}^{m}\left(\vect r\right) & = & Y_{n}^{m}\left(\hat{\vect r}\right)h_{n}\left(\left|\vect r\right|\right).
3140 Then, we have a decomposition
3141 \begin_inset Formula $\sigma_{n}^{m}=\sigma_{n}^{m(0)}+\sigma_{n}^{m(1)}+\sigma_{n}^{m(2)}$
3145 The real-space sum part
3146 \begin_inset Formula $\sigma_{n}^{m(2)}$
3150 \begin_inset Quotes eld
3153 convention independent
3154 \begin_inset Quotes erd
3158 the result is also expressed in terms of
3159 \begin_inset Formula $Y_{n}^{m}$
3162 , so it is valid regardless of normalisation or CS-phase convention used
3164 \begin_inset Formula $Y_{n}^{m}$
3168 \begin_inset Formula
3170 \sigma_{n}^{m(2)}=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi.\label{eq:Ewald in 3D short-range part}
3175 However the other parts in
3176 \begin_inset CommandInset citation
3178 key "linton_one-_2009"
3183 \begin_inset Note Note
3186 \begin_layout Plain Layout
3192 are convention dependend, so let me fix it here.
3194 \begin_inset Note Note
3197 \begin_layout Plain Layout
3204 \begin_inset CommandInset citation
3206 key "linton_one-_2009"
3211 \begin_inset CommandInset citation
3214 key "linton_one-_2009"
3219 \begin_inset Note Note
3222 \begin_layout Plain Layout
3229 \begin_inset Formula
3231 P_{n}^{m}\left(0\right) & = & \frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}\qquad n+m\mbox{ even,}\\
3232 Y_{n}^{m}\left(\theta,\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi},
3237 noting that the former formula is valid also for negative
3238 \begin_inset Formula $m$
3241 (as can be checked by substituting
3242 \begin_inset CommandInset citation
3245 key "linton_one-_2009"
3250 \begin_inset Note Note
3253 \begin_layout Plain Layout
3261 \begin_inset Formula
3263 Y_{n}^{m}\left(\frac{\pi}{2},\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}\frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}\\
3264 & = & \frac{\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}}{\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}
3269 Let us substitute this into
3270 \begin_inset Note Note
3273 \begin_layout Plain Layout
3280 \begin_inset CommandInset citation
3283 key "linton_one-_2009"
3288 \begin_inset Formula
3290 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
3291 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
3292 & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3293 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
3294 & = & -\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3295 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:2D Ewald in 3D long-range part}
3300 which basically replaces an ugly prefactor with another, similarly ugly
3303 \begin_inset CommandInset citation
3305 key "linton_one-_2009"
3310 \begin_inset Note Note
3313 \begin_layout Plain Layout
3319 for the meanings of the
3320 \begin_inset Formula $pq$
3324 Note that the latter version does not depend on the sign of
3325 \begin_inset Formula $m$
3328 (except for that which is already included in
3329 \begin_inset Formula $Y_{n}^{m}$
3335 \begin_layout Standard
3336 To have it complete,
3337 \begin_inset Formula
3339 \sigma_{n}^{m(0)}=\frac{\delta_{n0}\delta_{m0}}{4\pi}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)=\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m}.\label{eq:Ewald in 3D origin part}
3347 \begin_layout Standard
3349 Apparently, the formulae might be valid regardless of coordinate system
3350 orientation (then the spherical harmonic arguments would be of course general
3352 \begin_inset Formula $Y_{n}^{m}\left(\theta,\phi\right)$
3356 \begin_inset Formula $Y_{n}^{m}\left(\theta_{b_{pq}},\phi_{\vect{\beta}_{pq}}\right)$
3359 accordingly; but CHECK).
3362 \begin_layout Subsection
3366 \begin_layout Standard
3367 For the part of a 2D lattice sum that lies outside of a circle with radius
3369 \begin_inset Formula $R$
3373 \begin_inset Formula $f(r)$
3376 positive, radial, monotonically decreasing, we have
3379 \begin_layout Standard
3380 \begin_inset Formula
3382 \mathscr{A}_{\Lambda}\sum_{\begin{array}{c}
3383 \vect R_{i}\in\Lambda\\
3384 \left|\vect R_{i}\right|\ge R
3385 \end{array}}f\left(\left|\vect R_{i}\right|\right)\le2\pi\underbrace{\int_{R_{\mathrm{s}}\left(R,\Lambda\right)}^{\infty}rf(r)\,\ud r}_{\equiv B_{R_{\mathrm{s}}}\left[f\right]},\label{eq:lsum_bound}
3391 \begin_inset Quotes eld
3395 \begin_inset Quotes erd
3399 \begin_inset Formula $R_{\mathrm{s}}\left(R,\Lambda\right)$
3402 is probably something like
3403 \begin_inset Formula $R-\left|\vect u_{\mathrm{L}}\right|$
3407 \begin_inset Formula $\vect u_{\mathrm{L}}$
3410 is the longer primitive lattice vector of
3411 \begin_inset Formula $\Lambda$
3417 \begin_layout Subsubsection
3418 Short-range (real-space) sum
3421 \begin_layout Standard
3422 For the short-range part
3423 \begin_inset Formula $\sigma_{n}^{m(2)}$
3426 , the radially varying part reads
3427 \begin_inset Formula $f_{\eta}^{\mathrm{S}}\left(R_{pq}\right)\equiv R_{pq}^{n}\int_{\eta}^{\infty}e^{-R_{pq}^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2n}\ud\xi$
3430 and for its integral as in
3431 \begin_inset CommandInset ref
3433 reference "eq:lsum_bound"
3438 \begin_inset Formula
3440 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{S}}\right] & = & \int_{R_{\mathrm{s}}}^{\infty}r^{n+1}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2n}\ud\xi\,\ud r\\
3441 & \le & e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}r^{n+1}e^{-r^{2}\xi^{2}}\xi^{2n}\ud\xi\,\ud r\\
3442 & = & e^{k^{2}/4\eta^{2}}\frac{\eta^{2n+1}R_{\mathrm{s}}^{2+n}\left(E_{\frac{1}{2}-n}\left(\eta^{2}R_{\mathrm{s}}^{2}\right)-E_{-\frac{n}{2}}\left(\eta^{2}R_{\mathrm{s}}^{2}\right)\right)}{2\left(n-1\right)}\\
3443 & = & e^{k^{2}/4\eta^{2}}\frac{\eta^{2n+1}R_{\mathrm{s}}^{2+n}\left(\left(\eta R_{\mathrm{s}}\right)^{-2n-1}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\left(\eta R_{\mathrm{s}}\right)^{-n-2}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right)}{2\left(n-1\right)}\\
3444 & = & \frac{e^{k^{2}/4\eta^{2}}}{2\left(n-1\right)}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right),
3449 where the integral is according to mathematica and the error functions were
3450 transformed to incomplete gammas using the relation
3451 \begin_inset Formula $\Gamma\left(s,x\right)=x^{s}E_{1-s}\left(x\right)$
3454 from Wikipedia or equivalently
3455 \begin_inset Formula $\Gamma\left(1-n,z\right)=z^{1-n}E_{n}\left(z\right)$
3459 \begin_inset CommandInset citation
3467 \begin_inset Note Note
3470 \begin_layout Plain Layout
3477 Therefore, the upper estimate for the short-range sum error is
3478 \begin_inset Formula
3480 \left|\sigma_{n}^{m(2)}|_{R_{pq}>R}\right| & \le & \frac{2^{n+1}}{k^{n+1}\sqrt{\pi}}\left|P_{n}^{m}\left(0\right)\right|\frac{2\pi}{\mathscr{A}_{\Lambda}}\frac{e^{k^{2}/4\eta^{2}}}{2\left(n-1\right)}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right)\\
3481 & = & \frac{2^{n+1}}{k^{n+1}}\left|P_{n}^{m}\left(0\right)\right|\frac{\sqrt{\pi}}{\mathscr{A}_{\Lambda}}\frac{e^{k^{2}/4\eta^{2}}}{n-1}\left(R_{\mathrm{s}}^{1-n}\Gamma\left(n+\frac{1}{2},\eta^{2}R_{\mathrm{s}}^{2}\right)-\eta^{n-1}\Gamma\left(\frac{n}{2}+1,\eta^{2}R_{\mathrm{s}}^{2}\right)\right).
3486 Apparently, this expression is problematic for
3487 \begin_inset Formula $n=1$
3490 ; Mathematica gives for that case some ugly expression with
3491 \begin_inset Formula $_{2}F_{2}$
3495 \begin_inset Formula
3497 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{S}}\right]\le e^{k^{2}/4\eta^{2}}\left(\frac{\eta R}{2}{}_{2}F_{2}\left(\begin{array}{cc}
3498 \frac{1}{2}, & \frac{1}{2}\\
3499 \frac{3}{2}, & \frac{3}{2}
3500 \end{array};-\eta^{2}R_{\mathrm{s}}^{2}\right)-\frac{\sqrt{\pi}}{8}\left(\gamma_{\mathrm{E}}-2\mathrm{erfc}\left(\eta R_{\mathrm{s}}\right)+2\log\left(2\eta R_{\mathrm{s}}\right)\right)\right).
3505 The problem is that evaluation of the
3506 \begin_inset Formula $_{2}F_{2}$
3509 for large argument is very problematic.
3510 However, Mathematica says that the value of the right parenthesis drops
3511 below DBL_EPSILON for
3512 \begin_inset Formula $\eta R_{\mathrm{s}}>6$
3518 \begin_layout Standard
3519 Also the expression for
3520 \begin_inset Formula $n\ne1$
3523 decreases very fast, so as long as the value of
3524 \begin_inset Formula $e^{k^{2}/4\eta^{2}}$
3527 is reasonably low, there should not be much trouble.
3530 \begin_layout Standard
3531 \begin_inset Note Note
3534 \begin_layout Plain Layout
3535 Maybe it might make sense to take a rougher estimate using (for
3536 \begin_inset Formula $n=1$
3540 \begin_inset Formula
3542 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{L}}\right] & = & \int_{R_{\mathrm{s}}}^{\infty}r^{2}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2}\ud\xi\,\ud r\\
3543 & \le & e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}r^{2}\xi^{2}\ud\xi\,\ud r,
3548 now the integration on the last line is
3549 \begin_inset Quotes eld
3553 \begin_inset Quotes erd
3558 \begin_inset Formula $R_{\mathrm{s}}\leftrightarrow\eta$
3561 , so we can write either
3562 \begin_inset Formula
3564 B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{L}}\right]\le e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}r^{2}\xi^{2}\ud\xi\,\ud r
3577 \begin_layout Subsubsection
3579 \begin_inset Formula $k$
3585 \begin_layout Standard
3587 \begin_inset Formula $\beta_{pq}>k$
3591 \begin_inset Formula $\gamma_{pq}=\frac{\beta_{pq}}{k}\sqrt{1-\left(k/\beta_{pq}\right)^{2}}\le\frac{\beta_{pq}}{k}$
3595 \begin_inset Formula $\Gamma_{j,pq}=\Gamma\left(\frac{1}{2}-j,\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)$
3599 \begin_inset Formula $\beta_{pq}$
3603 \begin_inset Formula $\sigma_{n}^{m(1)}$
3609 \begin_layout Standard
3610 \begin_inset Formula
3612 \left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}\left(\gamma_{pq}\right)^{2j-1} & = & \left(\beta_{pq}/k\right)^{n-2j}\Gamma\left(\frac{1}{2}-j,\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{j-\frac{1}{2}}\\
3613 & \le & \left(\beta_{pq}/k\right)^{n-2j}\left(\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)^{-j-\frac{1}{2}}e^{-\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}}\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{j-\frac{1}{2}}\\
3614 & = & \left(2\eta\right)^{2j+1}e^{-\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}}k^{-n-1}\beta_{pq}^{n-2j}\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{-1}\\
3615 & = & e^{-\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}}\left(\frac{\beta_{pq}}{k}\right)^{n}\frac{2\eta}{k}\left(\frac{2\eta}{\beta_{pq}}\right)^{2j}\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{-1}.
3620 The only diverging factor here is apparently
3621 \begin_inset Formula $\left(\beta_{pq}/k\right)^{n}$
3625 \begin_inset CommandInset citation
3632 \begin_inset Note Note
3635 \begin_layout Plain Layout
3642 \begin_inset Formula
3644 \int_{B_{\mathrm{s}}}^{\infty}e^{-\frac{\beta^{2}}{4\eta^{2}}}\beta^{n}\beta\ud\beta & = & \frac{B_{\mathrm{s}}^{n+2}}{2}E_{-\frac{n}{2}}\left(\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right)\\
3645 & = & \frac{B_{\mathrm{s}}^{n+2}}{2}\left(\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right)^{-1-\frac{n}{2}}\Gamma\left(1+\frac{n}{2},\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right)\\
3646 & = & \frac{\left(2\eta\right)^{n+2}}{2}\Gamma\left(1+\frac{n}{2},\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right).
3654 \begin_layout Subsection
3658 \begin_layout Standard
3659 For 1D chains, one can use almost the same formulae as above – the main
3660 difference is that there are different exponents in some terms of the long-rang
3662 \begin_inset Formula $\sigma_{n[1\mathrm{d}]}^{m(1)}/\sigma_{n[2\mathrm{d}]}^{m(1)}=k\gamma_{pq}/2\sqrt{\pi}$
3666 \begin_inset CommandInset citation
3669 key "linton_lattice_2010"
3676 \begin_layout Standard
3677 \begin_inset Formula
3679 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k\sqrt{\pi}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
3680 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j}\nonumber \\
3681 & = & -\frac{i^{n+1}}{2k\mathscr{A}}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3682 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j}\nonumber \\
3683 & = & -\frac{i^{n+1}}{k\mathscr{A}}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
3684 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j}\label{eq:1D Ewald in 3D long-range part}
3689 and of course, in this case the unit cell
3690 \begin_inset Quotes eld
3694 \begin_inset Quotes erd
3698 \begin_inset Formula $\mathscr{A}$
3701 has the dimension of length instead of
3702 \begin_inset Formula $\mbox{length}^{2}$
3708 \begin_inset CommandInset ref
3710 reference "eq:Ewald in 3D short-range part"
3715 \begin_inset CommandInset ref
3717 reference "eq:Ewald in 3D origin part"
3722 \begin_inset Formula $\sigma_{n}^{m(2)},\sigma_{n}^{m(0)}$
3725 can be used directly without modifications.
3728 \begin_layout Standard
3729 Another possibility is to consider the chain to be aligned along the
3730 \begin_inset Formula $z$
3733 -axis and to apply the formula
3734 \begin_inset CommandInset citation
3737 key "linton_lattice_2010"
3742 Let us rewrite it again in the spherical-harmonic-normalisation-agnostic
3745 \begin_inset CommandInset citation
3748 key "linton_lattice_2010"
3753 \begin_inset Formula $\sigma_{n}^{m}=\left(-1\right)^{m}\hat{\tau}_{n}^{m}$
3757 \begin_inset CommandInset citation
3760 key "linton_lattice_2010"
3765 \begin_inset Formula $P_{n}^{m}\left(\pm1\right)=\left(\pm1\right)^{n}\delta_{m0}$
3769 \begin_inset CommandInset citation
3772 key "linton_lattice_2010"
3777 \begin_inset Formula $Y_{n}^{m}\left(\theta,\phi\right)=\left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}$
3781 \begin_inset Formula
3783 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}\delta_{m0}\sqrt{\frac{2n+1}{4\pi}}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\expint_{j+1}\left(\frac{k^{2}\gamma^{\mu}}{4\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}\\
3784 & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\expint_{j+1}\left(\frac{k^{2}\gamma^{\mu}}{4\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}.
3790 \begin_inset Formula $\tilde{\beta}_{\mu}$
3793 seems to be again just
3794 \begin_inset Formula $\tilde{\beta}_{\mu}=\beta+K_{\mu}$
3798 the shifted reciprocal lattice point (projected onto the
3799 \begin_inset Formula $z$
3804 \begin_inset CommandInset citation
3807 key "linton_lattice_2010"
3812 \begin_inset Formula $\expint_{j+1}\left(\frac{k^{2}\gamma_{\mu}^{2}}{4\eta^{2}}\right)=\left(\frac{k\gamma_{\mu}}{2\eta}\right)^{2j}\Gamma\left(-j,\frac{k^{2}\gamma_{\mu}^{2}}{2\eta^{2}}\right)$
3816 \begin_inset Formula
3818 \sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\left(\frac{k\gamma_{\mu}}{2\eta}\right)^{2j}\Gamma\left(-j,\frac{k^{2}\gamma_{\mu}^{2}}{2\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}\nonumber \\
3819 & = & -\frac{i^{n+1}}{k^{n+1}\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\left(\frac{k\gamma_{\mu}}{2}\right)^{2j}\underbrace{\Gamma\left(-j,\frac{k^{2}\gamma_{\mu}^{2}}{2\eta^{2}}\right)}_{\Gamma_{j,\mu}}\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}\nonumber \\
3820 & = & -\frac{i^{n+1}}{k\mathscr{A}}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}n!\left(\tilde{\beta}_{\mu}/k\right)^{n-2j}\Gamma_{j,\mu}}{j!2^{2j}\left(n-2j\right)!}\left(\gamma_{\mu}\right)^{2j}.\label{eq:1D_z_LRsum}
3828 \begin_layout Standard
3829 \begin_inset Note Note
3832 \begin_layout Plain Layout
3833 One-dimensional lattice sums are provided in [REF LT, sect.
3835 However, these are the
3836 \begin_inset Quotes eld
3840 \begin_inset Quotes erd
3844 \begin_inset Formula
3846 \ell_{n}\left(\beta\right) & = & \sum_{j\in\ints}^{'}e^{i\beta aj}\mathcal{H}_{n}^{0}\left(aj\hat{\vect z}\right)\\
3847 & = & \sum_{j\in\ints}^{'}e^{i\beta aj}h_{n}\left(\left|aj\right|\right)Y_{n}^{0}\\
3848 & = & \sqrt{\frac{2n+1}{4\pi}}\sum_{j\in\ints}^{'}P_{n}^{0}\left(\sgn j\right)h_{n}\left(\left|aj\right|\right)e^{i\beta aj}\\
3849 & = & \sqrt{\frac{2n+1}{4\pi}}\sum_{j\in\ints}^{'}\left(\sgn j\right)^{n}h_{n}\left(\left|aj\right|\right)e^{i\beta aj},
3855 \begin_inset Formula $P_{n}^{m}\left(\pm1\right)=\left(\pm1\right)^{n}\delta_{m0}$
3866 \begin_layout Section
3867 Half-spaces and edge modes
3870 \begin_layout Subsection
3874 \begin_layout Standard
3875 Let us first consider the
3876 \begin_inset Quotes eld
3880 \begin_inset Quotes erd
3883 case without sublattices, so for example, let a set of identical particles
3884 particles be placed with spacing
3885 \begin_inset Formula $d$
3889 \begin_inset Formula $z$
3892 -halfaxis, so their coordinates are in the set
3893 \begin_inset Formula $C_{0}=C+\left\{ \vect 0\right\} =d\nats\hat{\vect{\mathbf{z}}}+\left\{ \vect 0\right\} $
3897 The scattering problem on the particle placed at
3898 \begin_inset Formula $\vect n\in C$
3901 can then be described in the per-particle-matrix form as
3902 \begin_inset Formula
3904 p_{\vect n}-p_{\vect n}^{(0)}=\sum_{\vect n'\in C_{0}\backslash\{\vect n\}}S_{\vect n\leftarrow\vect n'}Tp_{\vect n'},
3910 \begin_inset Formula $T$
3914 \begin_inset Formula $T$
3918 \begin_inset Formula $S_{\vect n\leftarrow\vect n'}$
3921 the translation operator and
3922 \begin_inset Formula $p_{\vect n}^{(0)}$
3925 the expansion of the external exciting fields, which can be set to zero
3926 in order to find the system's eigenmodes.
3929 \begin_layout Standard
3930 \begin_inset Note Note
3933 \begin_layout Section
3934 Major TODOs and open questions
3937 \begin_layout Itemize
3939 \begin_inset CommandInset ref
3941 reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
3945 gives a satisfactory result for the case
3946 \begin_inset Formula $q=2,n=0$
3952 \begin_layout Itemize
3953 Analyse the behaviour
3954 \begin_inset Formula $k\to k_{0}$
3960 \begin_layout Itemize
3961 Find a general algorithm for generating the expressions of the Hankel transforms.
3964 \begin_layout Itemize
3965 Three-dimensional case.
3973 \begin_layout Section
3974 (Appendix) Fourier vs.
3978 \begin_layout Subsection
3982 \begin_layout Standard
3983 Given a nice enough function
3984 \begin_inset Formula $f$
3987 of a real 3d variable, assume its factorisation into radial and angular
3989 \begin_inset Formula
3991 f(\vect r)=\sum_{l,m}f_{l,m}(\left|\vect r\right|)\ush lm\left(\theta_{\vect r},\phi_{\vect r}\right).
3996 Acording to (REF Baddour 2010, eqs.
3997 13, 16), its Fourier transform can then be expressed in terms of Hankel
3998 transforms (CHECK normalisation of
3999 \begin_inset Formula $j_{n}$
4003 \begin_inset Formula
4005 \uaft f(\vect k)=\frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sum_{l,m}\left(-i\right)^{l}\left(\bsht{f_{l,m}}{}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)
4010 where the spherical Hankel transform
4011 \begin_inset Formula $\bsht l{}$
4015 \begin_inset Formula $l$
4018 is defined as (REF Baddour eq.
4020 \begin_inset Formula
4022 \bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
4027 Using this convention, the inverse spherical Hankel transform is given by
4030 \begin_inset Formula
4032 g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
4037 so it is not unitary.
4041 \begin_layout Standard
4042 An unitary convention would look like this:
4043 \begin_inset Formula
4045 \usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
4051 \begin_inset Formula $\usht l{}^{-1}=\usht l{}$
4054 and the unitary, angular-momentum Fourier transform reads
4055 \begin_inset Formula
4057 \uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\nonumber \\
4058 & = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).\label{eq:Fourier v. Hankel tf 3d}
4066 \begin_layout Subsection
4070 \begin_layout Standard
4071 Similarly in 2d, let the expansion of
4072 \begin_inset Formula $f$
4076 \begin_inset Formula
4078 f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\vect r}},
4083 its Fourier transform is then (CHECK this, it is taken from the Wikipedia
4084 article on Hankel transform)
4085 \begin_inset Formula
4087 \uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\phi_{\vect k}}\pht mf_{m}\left(\left|\vect k\right|\right)\label{eq:Fourier v. Hankel tf 2d}
4092 where the Hankel transform of order
4093 \begin_inset Formula $m$
4097 \begin_inset Formula
4099 \pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
4100 & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r
4105 which is already self-inverse,
4106 \begin_inset Formula $\pht m{}^{-1}=\pht m{}$
4109 (hence also unitary).
4112 \begin_layout Section
4113 (Appendix) Multidimensional Dirac comb
4116 \begin_layout Subsection
4120 \begin_layout Standard
4121 This is all from Wikipedia
4124 \begin_layout Subsubsection
4128 \begin_layout Standard
4129 \begin_inset Formula
4131 Ш(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-k)\\
4132 Ш_{T}(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}Ш\left(\frac{t}{T}\right)
4140 \begin_layout Subsubsection
4141 Fourier series representation
4144 \begin_layout Standard
4145 \begin_inset Formula
4147 Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}\label{eq:1D Dirac comb Fourier series}
4155 \begin_layout Subsubsection
4159 \begin_layout Standard
4160 With unitary ordinary frequency Ft., i.e.
4163 \begin_layout Standard
4164 \begin_inset Formula
4166 \uoft f(\vect{\xi})\equiv\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect{\xi}}\ud^{n}\vect x
4172 \begin_inset Formula
4174 \uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}\label{eq:1D Dirac comb Ft ordinary freq}
4179 and with unitary angular frequency Ft., i.e.
4180 \begin_inset Formula
4182 \uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n/2}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-i\vect x\cdot\vect k}\ud^{n}\vect x\label{eq:Ft unitary angular frequency}
4188 \begin_inset Formula
4190 \uaft{Ш_{T}}(\omega)=\frac{\sqrt{2\pi}}{T}Ш_{\frac{2\pi}{T}}(\omega)=\frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-i\omega nT}
4198 \begin_layout Subsection
4199 Dirac comb for multidimensional lattices
4202 \begin_layout Subsubsection
4206 \begin_layout Standard
4208 \begin_inset Formula $d$
4211 be the dimensionality of the real vector space in question, and let
4212 \begin_inset Formula $\basis u\equiv\left\{ \vect u_{i}\right\} _{i=1}^{d}$
4215 denote a basis for some lattice in that space.
4216 Let the corresponding lattice delta comb be
4217 \begin_inset Formula
4219 \dc{\basis u}\left(\vect x\right)\equiv\sum_{n_{1}=-\infty}^{\infty}\ldots\sum_{n_{d}=-\infty}^{\infty}\delta\left(\vect x-\sum_{i=1}^{d}n_{i}\vect u_{i}\right).
4227 \begin_layout Standard
4229 \begin_inset Formula $\rec{\basis u}\equiv\left\{ \rec{\vect u}_{i}\right\} _{i=1}^{d}$
4232 be the reciprocal lattice basis, that is the basis satisfying
4233 \begin_inset Formula $\vect u_{i}\cdot\rec{\vect u_{j}}=\delta_{ij}$
4237 This slightly differs from the usual definition of a reciprocal basis,
4239 \begin_inset Formula $\recb{\basis u}\equiv\left\{ \recb{\vect u_{i}}\right\} _{i=1}^{d}$
4243 \begin_inset Formula $\vect u_{i}\cdot\recb{\vect u_{j}}=2\pi\delta_{ij}$
4249 \begin_layout Subsubsection
4250 Factorisation of a multidimensional lattice delta comb
4253 \begin_layout Standard
4254 By simple drawing, it can be seen that
4255 \begin_inset Formula
4257 \dc{\basis u}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right)
4263 \begin_inset Formula $c_{\basis u}$
4266 is some numerical volume factor.
4267 In order to determine
4268 \begin_inset Formula $c_{\basis u}$
4271 , let us consider only the
4272 \begin_inset Quotes eld
4276 \begin_inset Quotes erd
4279 of the comb, leading to
4280 \begin_inset Formula
4282 \delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\delta\left(\vect x\cdot\rec{\vect u_{i}}\right).
4287 From the scaling property of delta function,
4288 \begin_inset Formula $\delta(ax)=\left|a\right|^{-1}\delta(x)$
4292 \begin_inset Formula
4294 \delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert ^{-1}\delta\left(\vect x\cdot\frac{\rec{\vect u_{i}}}{\left\Vert \rec{\vect u_{i}}\right\Vert }\right).
4302 \begin_layout Standard
4303 From the Osgood's book (p.
4307 \begin_layout Standard
4308 \begin_inset Formula
4310 \dc A(\vect x)=\frac{1}{\left|\det A\right|}\dc{}^{(d)}\left(A^{-1}\vect x\right)
4316 \begin_inset Note Note
4319 \begin_layout Plain Layout
4320 Applying both sides to a test function that is one at the origin, we get
4322 \begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $
4326 \begin_inset Formula
4328 \dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).\label{eq:Dirac comb factorisation}
4341 \begin_layout Subsubsection
4342 Fourier series representation
4345 \begin_layout Standard
4346 \begin_inset Note Note
4349 \begin_layout Plain Layout
4350 Utilising the Fourier series for 1D Dirac comb
4351 \begin_inset CommandInset ref
4353 reference "eq:1D Dirac comb Fourier series"
4357 and the factorisation
4358 \begin_inset CommandInset ref
4360 reference "eq:Dirac comb factorisation"
4365 \begin_inset Formula
4367 \dc{\basis u}(\vect x) & = & \prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \sum_{n_{j}=-\infty}^{\infty}e^{2\pi in_{i}\vect x\cdot\rec{\vect u_{i}}}\\
4368 & = & \left(\prod_{j=1}^{d}\left\Vert \rec{\vect u_{j}}\right\Vert \right)\sum_{\vect n\in\mathbb{Z}^{d}}e^{2\pi i\vect x\cdot\sum_{k=1}^{d}n_{k}\rec{\vect u_{k}}}.
4381 \begin_layout Subsubsection
4382 Fourier transform (OK)
4385 \begin_layout Standard
4386 From the Osgood's book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf,
4391 \begin_layout Standard
4392 \begin_inset Formula
4394 \uoft{\dc{\basis u}}\left(\vect{\xi}\right)=\left|\det\rec{\basis u}\right|\dc{\rec{\basis u}}^{(d)}\left(\vect{\xi}\right).
4399 And consequently, for unitary/angular frequency it is
4402 \begin_layout Standard
4403 \begin_inset Formula
4405 \uaft{\dc{\basis u}}\left(\vect k\right) & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\uoft{\dc{\basis u}}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
4406 & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\rec{\basis u}}^{(d)}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
4407 & = & \left(2\pi\right)^{\frac{d}{2}}\left|\det\rec{\basis u}\right|\dc{\recb{\basis u}}\left(\vect k\right)\nonumber \\
4408 & = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\recb{\basis u}}\left(\vect k\right).\label{eq:Dirac comb uaFt}
4416 \begin_layout Standard
4417 \begin_inset Note Note
4420 \begin_layout Plain Layout
4421 On the third line, we used the stretch theorem, getting
4422 \begin_inset Formula
4424 \dc{\recb{\basis u}}\left(\vect k\right)=\dc{2\pi\rec{\basis u}}\left(\vect k\right)=\left(2\pi\right)^{-d}\dc{\rec{\basis u}}\left(\frac{\vect k}{2\pi}\right)
4437 \begin_layout Subsubsection
4441 \begin_layout Standard
4442 \begin_inset Formula
4444 \left(f\ast\dc{\basis u}\right)(\vect x)=\sum_{\vect t\in\basis u\ints^{d}}f(\vect x-\vect t)
4452 \begin_layout Standard
4453 \begin_inset Note Note
4456 \begin_layout Plain Layout
4457 So, from the stretch theorem
4458 \begin_inset Formula $\uoft{(f(A\vect x))}=\frac{1}{\left|\det A\right|}\uoft{f\left(A^{-T}\vect{\xi}\right)}=\left|\det A^{-T}\right|\uoft{f\left(A^{-T}\vect{\xi}\right)}$
4464 \begin_layout Plain Layout
4466 \begin_inset CommandInset ref
4468 reference "eq:Dirac comb factorisation"
4473 \begin_inset CommandInset ref
4475 reference "eq:1D Dirac comb Ft ordinary freq"
4480 \begin_inset Formula
4482 \uoft{\dc{\basis u}}(\vect{\xi})=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).
4495 \begin_layout Standard
4496 \begin_inset CommandInset bibtex
4498 bibfiles "Ewald summation,Tables"